首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang C  Yu Y  Zhang S  Liu M  Xing G  Wei H  Bi J  Liu X  Zhou G  Dong C  Hu Z  Zhang Y  Luo L  Wu C  Zhao S  He F 《Genomics》2000,63(3):400-408
We have identified and characterized a novel human ADP-ribosylation factor GTPase-activating protein (ARFGAP1) gene that is related to other members of the ARF GAP family. The full-length cDNA for human ARFGAP1 was cloned following the identification of an EST obtained by large-scale cDNA library sequencing through a Blast search of public databases. Structurally, ARFGAP1 encodes a polypeptide of 516 amino acids, which contained a typical GATA-1-type zinc finger motif (CXXCX(16)CXXC) with the four cysteine residues that are highly conserved among other members of the ARF GAP family. The conserved ARF GAP domain may emphasize the biological importance of this gene. The ARFGAP1 gene, which contained 16 exons ranging from 0.5 to 9.3 kb, was mapped to human chromosome 22q13.2-q13.3 using radiation hybridization and in silico analyses. ARFGAP1 is strongly expressed in endocrine glands and testis. Interestingly, the expression of ARFGAP1 in testis is about sixfold higher than that in ovary, indicating a possible role of ARFGAP1 in the physiological function of sperm. Expression of ARFGAP1 in four human fetal tissues and seven cancer cell lines was also detected.  相似文献   

2.
The neurofibromatosis type 1 gene encodes a protein related to GAP   总被引:88,自引:0,他引:88  
cDNA walking and sequencing have extended the open reading frame for the neurofibromatosis type 1 gene (NF1). The new sequence now predicts 2485 amino acids of the NF1 peptide. A 360 residue region of the new peptide shows significant similarity to the known catalytic domains of both human and bovine GAP (GTPase activating protein). A much broader region, centered around this same 360 amino acid sequence, is strikingly similar to the yeast IRA1 product, which has a similar amino acid sequence and functional homology to mammalian GAP. This evidence suggests that NF1 encodes a cytoplasmic GAP-like protein that may be involved in the control of cell growth by interacting with proteins such as the RAS gene product. Mapping of the cDNA clones has confirmed that NF1 spans a t(1;17) translocation mutation and that three active genes lie within an intron of NF1, but in opposite orientation.  相似文献   

3.
4.
5.
The von Recklinghausen neurofibromatosis locus, NF1, encodes a protein with homology restricted to the catalytic region of the RAS GTPase-activating protein, GAP, and with extensive homology to the IRA1 and IRA2 gene products of the yeast S. cerevisiae. A segment of the NF1 cDNA gene, expressed in yeast, can complement loss of IRA function and can inhibit both wild-type and mutant activated human H-ras genes that are coexpressed in yeast. Yeast expressing the NF1 segment have increased H-ras GTPase-stimulating activity. These studies indicate that the NF1 gene product can interact with RAS proteins and demonstrate structural and functional similarities and differences among the GAP, IRA1, IRA2, and NF1 proteins.  相似文献   

6.
G Xu  P O'Connell  J Stevens  R White 《Genomics》1992,13(3):537-542
We have isolated cDNA clones for human adenylate kinase isozyme 3 (AK3) with a genomic probe from the neurofibromatosis type 1 (NF1) region. Three overlapping clones isolated from a human frontal-cortex cDNA library gave rise to a consensus sequence of 1.7 kb. The open reading frame identified in this sequence predicted a peptide of 223 residues. A database search revealed striking homology, about 58% amino acid sequence identity, between this predicted protein and bovine AK3. Human AK3 protein also showed significant homology to other members of the adenylate kinase family isolated from various species. Genomic Southern analysis suggested that multiple AK3 loci exist in the human genome, including one located in an intron of NF1 on chromosome 17. The chromosome-17 locus appears to be a processed pseudogene, since it is intronless and contains a polyadenylate tract; it nevertheless retains coding potential because the open reading frame is not impaired by any observed base substitutions.  相似文献   

7.
The rap1/Krev-1 gene encodes a ras-related protein that suppresses transformation by ras oncogenes. We have purified an 88 kd GTPase activating protein (GAP), specific for the rap1/Krev-1 gene product, from bovine brain. Based on partial amino acid sequences obtained from this protein, a 3.3 kb cDNA was isolated from a human brain library. Expression of the cDNA in insect Sf9 cells resulted in high level production of an 85-95 kd rap1GAP that specifically stimulated the GTPase activity of p21rap1. The complete deduced amino acid sequence is not homologous to any known protein sequences, including GAPs specific for p21ras. Northern and Western blotting analysis indicate that rap1GAP is not ubiquitously expressed and appears most abundant in fetal tissues and certain tumor cell lines, particularly the Wilms' kidney tumor, SK-NEP-1, and the melanoma, SK-MEL-3, cell lines.  相似文献   

8.
Cellular fractionation of GTPase activating protein (GAP) activity using bovine cerebral cortex revealed that about half of GAP activity was found in membrane fraction. GAP activity of membrane was not solubilized with 0.5% (v/v) triton X-100 and was immunoprecipitated with antibody against carboxy-terminus of neurofibromatosis type 1 (NF1) gene product. In contrast, soluble GAP activity was precipitated with antibody against GAP but not with anti-NF1. These results suggest that NF1 gene product is a GTPase activating protein toward ras p21 with completely different intracellular distribution from that of GAP.  相似文献   

9.
Tikoo A  Czekay S  Viars C  White S  Heath JK  Arden K  Maruta H 《Gene》2000,257(1):23-31
To date, two distinct genes coding for Ras GAP-binding phosphoproteins of 190kDa, p190-A and p190-B, have been cloned from mammalian cells. Rat p190-A of 1513 amino acids shares 50% sequence identity with human p190-B of 1499 amino acids. We have previously demonstrated, using rat p190-A cDNA, that full-length p190-A is a tumor suppressor, reversing v-Ha-Ras-induced malignancy of NIH 3T3 cells through both the N-terminal GTPase (residues 1-251) and the C-terminal Rho GAP (residues 1168-1441) domains. Here we report the cloning of the full-length human p190-A cDNA and its first exon covering more than 80% of this protein, as well as its chromosomal mapping. Human p190-A encodes a protein of 1514 amino acids, and shares overall 97% sequence identity with rat p190-A. Like the p190-B exon, the first exon of p190-A is extremely large (3.7 kb in length), encoding both the GTPase and middle domains (residues 1-1228), but not the remaining GAP domain, suggesting a high conservation of genomic structure between two p190 genes. Using a well characterized monochromosome somatic cell hybrid panel, fluorescent in situ hybridization (FISH) and other complementary approaches, we have mapped the p190-A gene between the markers D19S241E and STD (500 kb region) of human chromosome 19q13.3. Interestingly, this chromosomal region is known to be rearranged in a variety of human solid tumors including pancreatic carcinomas and gliomas. Moreover, at least 40% glioblastoma/astrocytoma cases with breakpoints in this region were previously reported to show loss of the chromosomal region encompassing p190-A, suggesting the possibility that loss or mutations of this gene might be in part responsible for the development of these tumors.  相似文献   

10.
Neurofibromatosis type 1 (NF1) is caused by mutations in a large gene on chromosome 17q11.2. Previously described partial cDNAs for this gene predicted a protein related to yeast IRA1/IRA2 and the mammalian RAS GTPase activator protein GAP. To initiate a detailed study of the role of this gene in NF1, we have characterized a set of overlapping cDNAs that represent its complete coding sequence. Our results show that two differentially expressed human NF1 mRNAs differ by a 63-bp insertion in the GAP-related domain. These mRNAs predict two 2,818- and 2,839-amino acid proteins with calculated molecular masses of approximately 317 and 319 kD. Extensive similarity to IRA proteins is evident in a 1,450-amino-acid central segment, roughly between amino acids 900 and 2,350. However, the remainder of the NF1 protein is not significantly similar to other proteins. Interestingly, the SK-N-SH human neuroblastoma line expresses no detectable NF1 mRNA, indicating that expression of NF1 is not essential for viability of this neural crest-derived tumor cell line.  相似文献   

11.
Plasmid clones containing cDNA coding for the B-chain of human Clq were isolated from a liver cDNA library. The longest cDNA insert isolated contained all the coding sequence for amino acid residues B1 to B226 plus a 3' non-translated region of 264 nucleotides that extended into the poly(A) tail, thus accounting for 950 nucleotides of the mRNA. The B-chain mRNA was estimated by Northern-blot analysis to be 1.46 kb (kilobases) long, which indicated that approx. 500 bases were not accounted for in the cDNA clone. A cosmid clone containing the C1q-B chain gene was isolated from a human genomic DNA library. The precise 5' limit of gene was not established, but from the data available it appears that the gene is approx. 2.6 kb long. The coding sequence for residues B1 to B226 in the gene is interrupted by one intron, of 1.1 kb, which is located within the codon coding for glycine at position B36. This glycine residue is located in the middle of the triple-helical regions found in C1q at exactly the position where there is an unusual structural feature, i.e. a bend in each of the helical regions brought about by the interruption of the Gly-Xaa-Yaa repeating triplet sequences in the A- and C-chains and the presence of an 'extra' triplet in the B-chain. Nucleotide sequencing of the 5' end of the gene indicates the presence of a predominantly hydrophobic stretch of 29 amino acids, immediately before residue B1, which could serve as a signal peptide.  相似文献   

12.
Neurofibromin is the product of the NF1 gene, whose alteration is responsible for the pathogenesis of neurofibromatosis type 1 (NF1), one of the most frequent genetic disorders in man. It acts as a GTPase activating protein (GAP) on Ras; based on homology to p120GAP, a segment spanning 250-400 aa and termed GAP-related domain (NF1GRD; 25-40 kDa) has been shown to be responsible for GAP activity and represents the only functionally defined segment of neurofibromin. Missense mutations found in NF1 patients map to NF1GRD, underscoring its importance for pathogenesis. X-ray crystallographic analysis of a proteolytically treated catalytic fragment of NF1GRD comprising residues 1198-1530 (NF1-333) of human neurofibromin reveals NF1GRD as a helical protein that resembles the corresponding fragment derived from p120GAP (GAP-334). A central domain (NF1c) containing all residues conserved among RasGAPs is coupled to an extra domain (NF1ex), which despite very limited sequence homology is surprisingly similar to the corresponding part of GAP-334. Numerous point mutations found in NF1 patients or derived from genetic screening protocols can be analysed on the basis of the three-dimensional structural model, which also allows identification of the site where structural changes in a differentially spliced isoform are to be expected. Based on the structure of the complex between Ras and GAP-334 described earlier, a model of the NF1GRD-Ras complex is proposed which is used to discuss the strikingly different properties of the Ras-p120GAP and Ras-neurofibromin interactions.  相似文献   

13.
14.
The neurofibromatosis type 1 (NF1) protein contains a region of significant sequence similarity to ras p21 GTPase-activating protein (GAP) and the yeast IRA1 gene product. A fragment of NF1 cDNA encoding the GAP-related domain (NF1 GRD) was expressed, immunoaffinity purified, and assayed for effects on N-ras p21 GTPase activity. The GTPase of wild-type ras p21 was stimulated by NF1 GRD, but oncogenic mutants of ras p21 (Asp-12 and Val-12) were unaffected, and the GTPase of an effector mutant (Ala-38) was only weakly stimulated. NF1 GRD also down-regulated RAS function in S. cerevisiae. The affinity of NF1 GRD for ras p21 was estimated to be 250 nM: this is more than 20-fold higher than the affinity of GAP for ras p21. However, its specific activity was about 30 times lower. These kinetic measurements suggest that NF1 may be a significant regulator of ras p21 activity, particularly at low ras p21 concentrations.  相似文献   

15.
Neurofibromatosis type 1 (NF1) is an autosomal dominant neurocutaneous disorder. A part of the gene for NF1 was cloned and its deduced protein has a domain functionally related to mammalian ras GTP-ase-activating protein (GAP). Human tissues examined express two types of NF1 mRNAs: an originally identified species of NF1 mRNA (type I) and another one containing the 63 base insert in the region coding for GAP-related domain (type II). However relative levels of both mRNAs seem to change under certain conditions. Human brain expresses type I mRNA predominantly, while type II is preferentially expressed in most primary brain tumors (13/16 tumors analyzed). We suggest that higher levels of type II mRNA may be related to the genesis of brain tumors.  相似文献   

16.
We have isolated, in guinea-pig endometrial cells, an estrogen-induced 1.8 kb RNA called gec1. Screening of a guinea-pig genomic library led to identification of gec1 gene consisting of 4 exons and 3 introns. Exon 1 contains the 5'UTR and the ATG initiation codon. A guinea-pig gec1 cDNA was obtained by 5'-RACE. The 351 bp coding sequence shares 76.8% identity with that of the human GABARAP 924 bp cDNA while UTRs of the two cDNAs differ. A gec1 probe from the 3'UTR revealed a 1.9 kb mRNA in human tissues and a human GEC1 cDNA was isolated from placenta. Its coding sequence shares 93 and 79% identity with that of guinea-pig gec1 and human GABARAP, respectively. The human and guinea-pig GEC1 proteins have 100% identity. GEC1 and GABARAP proteins have 87% identity and N terminus featuring a tubulin binding motif. Thus, estrogen-regulated gec1 is a new gene which could encode a microtubule-associated protein.  相似文献   

17.
We have isolated a cDNA coding for the core protein of the large basement membrane heparan sulfate proteoglycan (HSPG) from a human fibrosarcoma cell (HT1080) library. The library was screened with a mouse cDNA probe and one clone obtained, with a 1.5-kb insert, was isolated and sequenced. The sequence contained an open reading frame coding for 507 amino acid residues with a 84% identity to the corresponding mouse sequence. This amino acid sequence contained several cysteine-rich internal repeats similar to those found in component chains of laminin. The HSPG cDNA clone was used to assign the gene (HSPG2) to the p36.1----p35 region of chromosome 1 using both somatic cell hybrid and in situ hybridization. In the study of the polymorphisms of the locus, a BamHI restriction fragment length polymorphism was identified in the gene. This polymorphism displayed bands of 23 and 12 kb with allele frequencies of 76 and 24%, respectively.  相似文献   

18.
The regulation of the GTPase activity of the Ras proteins is thought to be a key element of signal transduction. Ras proteins have intrinsic GTPase activity and are active in signal transduction when bound to GTP but not following hydrolysis of GTP to GDP. Three cellular Ras GTPase-activating proteins (Ras-gaps) which increase the GTPase activity of wild-type (wt) Ras but not activated Ras in vitro have been identified: type I and type II GAP and type I NF1. Mutations of wt Ras resulting in lowered intrinsic GTPase activity or loss of response to cellular Ras-gap proteins are thought to be the primary reason for the transforming properties of the Ras proteins. In vitro assays show type I and type II GAP and the GAP-related domain of type I NF1 to have similar biochemical properties with respect to activation of the wt Ras GTPase, and it appears as though both type I GAP and NF1 can modulate the GTPase function of Ras in cells. Here we report the assembling of a full-length coding clone for type I NF1 and the biological effects of microinjection of Ras and Ras-gap proteins into fibroblasts. We have found that type I GAP, type II GAP, and type I NF1 show markedly different biological activities in vivo. Coinjection of type I GAP or type I NF1, but not type II GAP, with wt Ras abolished the ability of wt Ras to induce expression from an AP-1-controlled reporter gene. We also found that serum-stimulated DNA synthesis was reduced by prior injection of cells with type I GAP but not type II GAP or type I NF1. These results suggest that type I GAP, type II GAP, and type I NF1 may have different activities in vivo and support the hypothesis that while type I forms of GAP and NF1 may act as negative regulators of wt Ras, they may do so with differential efficiencies.  相似文献   

19.
Affinity purified antibodies to human sex hormone binding globulin (SHBG) were used in screening a human liver cDNA library, constructed in the expression vector lambda gt11. One clone, identified as producing recombinant SHBG, carried a cDNA insert of 1.1 kb. The nucleotide sequence of the insert had an open reading frame coding for 356 amino acid residues. The coding sequence was followed by a short 3'-region of 19 non-translated nucleotides and a poly(A) tail. Confirmation that the cDNA clone represented human SHBG was obtained by the finding of a complete agreement in amino acid sequence with several peptide fragments generated from purified SHBG by proteolytic cleavage. The primary structure of SHBG shows a considerable homology to that of protein S, a vitamin K-dependent protein with functions in the coagulation system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号