首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptochromes are blue-light photoreceptors that regulate a variety of responses in animals and plants, including circadian entrainment in Drosophila and photomorphogenesis in Arabidopsis. They comprise a photolyase homology region (PHR) of about 500 amino acids and a C-terminal extension of varying length. In the PHR domain, flavin adenine dinucleotide (FAD) is noncovalently bound. The presence of a second chromophore, such as methenyltetrahydrofolate, in animal and plant cryptochromes is still under debate. Arabidopsis cryptochrome 1 (CRY1) has been intensively studied with regard to function and interaction of the protein in vivo and in vitro. However, little is known about the pathway from light absorption to signal transduction on the molecular level. We investigated the full-length CRY1 protein by Fourier transform infrared (FTIR) and UV/vis difference spectroscopy. Starting from the fully oxidized state of the chromophore FAD, a neutral flavoprotein radical is formed upon illumination in the absence of any exogenous electron donor. A preliminary assignment of the chromophore bands is presented. The FTIR difference spectrum reveals only moderate changes in secondary structure of the apoprotein in response to the photoreduction of the chromophore. Deprotonation of an aspartic or glutamic acid, probably D396, accompanies radical formation, as is deduced from the negative band at 1734 cm(-)(1) in D(2)O. The main positive band at 1524 cm(-)(1) in the FTIR spectrum shows a strong shift to lower frequencies as compared to other flavoproteins. Together with the unusual blue-shift of the absorption in the visible range to 595 nm, this clearly distinguishes the radical form of CRY1 from those of structurally highly homologous DNA photolyases. As a consequence, the direct comparison of cryptochrome to photolyase in terms of photoreactivity and mechanism has to be made with caution.  相似文献   

2.
Light-induced fluorescence quenching of chlorophyll a in light-harvesting complex II (LHCII) incorporated into liposomes was examined. The rate of fluorescence quenching was found to depend on the incubation temperature. The effect was almost not observed at liquid nitrogen temperature, demonstrated a lag phase after onset of light at temperatures below 25 °C and was most distinctly pronounced at temperatures above 25 °C. Energetic uncoupling of accessory xanthophylls and chlorophyll a, and energetic uncoupling of chlorophyll b and chlorophyll a were observed as accompanying the excitation quenching. The observed changes were reversible during dark incubation. Similar energetic uncoupling was also observed in darkness, induced by the increase in temperature. Additionally, the temperature characteristics of fluorescence measurements displayed a pronounced transition in the region of 22–25 °C. The experiments carried out with the monomolecular layer technique in dicated a structural transition of LHC II in the same temperature region as demonstrated by an increase in the mean molecular area of LHC II at the argon-water interface. Alterations in surface topography induced by temperature changes could also be observed with scanning force microscopy of LHC II monolayers deposited as Langmuir-Blodgett films onto glass slides. The transition was found to be associated with the enhanced excitation energy consumption by the protein, monitored by calorimetric measurements. It is proposed that the observed transition efficiently protects LHC II against overexcitation-related damage and is therefore of physiological importance.  相似文献   

3.
Chu HA  Feng YW  Wang CM  Chiang KA  Ke SC 《Biochemistry》2004,43(34):10877-10885
Light-induced Fourier transform infrared difference spectroscopy has been applied to studies of ammonia effects on the oxygen-evolving complex (OEC) of photosystem II (PSII). We found that NH(3) induced characteristic spectral changes in the region of the symmetric carboxylate stretching modes (1450-1300 cm(-1)) of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra of PSII. The S(2) state carboxylate mode at 1365 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectrum of the controlled samples was very likely upshifted to 1379 cm(-1) in that of NH(3)-treated samples; however, the frequency of the corresponding S(1) carboxylate mode at 1402 cm(-1) in the same spectrum was not significantly affected. These two carboxylate modes have been assigned to a Mn-ligating carboxylate whose coordination mode changes from bridging or chelating to unidentate ligation during the S(1) to S(2) transition [Noguchi, T., Ono, T., and Inoue, Y. (1995) Biochim. Biophys. Acta 1228, 189-200; Kimura, Y., and Ono, T.-A. (2001) Biochemistry 40, 14061-14068]. Therefore, our results show that NH(3) induced significant structural changes of the OEC in the S(2) state. In addition, our results also indicated that the NH(3)-induced spectral changes of the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are dependent on the temperature of the FTIR measurement. Among the temperatures we measured, the strongest effect was seen at 250 K, a lesser effect was seen at 225 K, and little or no effect was seen at 200 K. Furthermore, our results also showed that the NH(3) effects on the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are dependent on the concentrations of NH(4)Cl. The NH(3)-induced upshift of the 1365 cm(-1) mode is apparent at 5 mM NH(4)Cl and is completely saturated at 100 mM NH(4)Cl concentration. Finally, we found that CH(3)NH(2) has a small but clear effect on the spectral change of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum of PSII. The effects of amines on the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra (NH(3) > CH(3)NH(2) > AEPD and Tris) are inverse proportional to their size (Tris approximately AEPD > CH(3)NH(2) > NH(3)). Therefore, our results showed that the effects of amines on the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII are sterically selective for small amines. On the basis of the correlations between the conditions (dependences on the excitation temperature and NH(3) concentration and the steric requirement for the amine effects) that give rise to the NH(3)-induced upshift of the 1365 cm(-)(1) mode in the S(2)Q(A)(-)/S(1)Q(A) spectrum of PSII and the conditions that give rise to the altered S(2) state multiline EPR signal, we propose that the NH(3)-induced upshift of the 1365 cm(-1) mode is caused by the binding of NH(3) to the site on the Mn cluster that gives rise to the altered S(2) state multiline EPR signal. In addition, we found no significant NH(3)-induced change in the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum at 200 K. Under this condition, the OEC gives rise to the NH(3)-stabilized g = 4.1 EPR signal and a suppressed g = 2 multiline EPR signal. Our results suggest that the structural difference of the OEC between the normal g = 2 multiline form and the NH(3)-stabilized g = 4.1 form is small.  相似文献   

4.
The electric field-induced absorption changes (Stark effect) of light-harvesting complex II (LHCII) in different oligomerisation states-monomeric, trimeric and aggregated-have been probed at 77 K. All the chlorophyll (Chl) a molecules exhibit electro-optic properties in the Q(y) absorption region characterized by a change in dipole moment /Deltamu-->/ =0.6+/-0.06D/f and polarizability, Tr(Deltaalpha;) approximately 55+/-5 A(3)/f(2) upon electronic excitation, which are similar to those of unbound monomeric Chl a, indicating the absence of strong delocalization of the excitations which would be expected in the presence of strong excitonic interactions. The Stark effect in the Chl b absorption region is significantly bigger with /Deltamu-->/ values of the order of 2.0+/-0.2 D/f and it is attributed to strong interactions with neoxanthin molecules. Clear oligomerisation-dependent differences are observed in the carotenoid region, mainly due to the appearance of a new xanthophyll absorption band at 509 in the spectra of trimers and oligomers. It is ascribed to some lutein molecules, in agreement with previous experimental observations. The electro-optic properties of these lutein molecules are significantly different from those of the other xanthophylls in LHCII, which do not exhibit such a big change in dipole moment upon electronic excitation (/Deltamu-->/ =14.6+/-2.0 D/f). Upon aggregation of LHCII some extra absorption appears on the red side of the main Chl a Q(y) absorption band. In contrast to an earlier suggestion [J. Phys. Chem., A 103 (1999) 2422], no indications are found for the charge-transfer character of the corresponding band. The assignments of the S(2) electronic transitions of neoxanthin and lutein in LHCII and possible origins of the Stark effect are discussed.  相似文献   

5.
Iwata T  Nozaki D  Tokutomi S  Kagawa T  Wada M  Kandori H 《Biochemistry》2003,42(27):8183-8191
Phototropin (Phot) is a blue-light receptor in plants. The molecule has two FMN (flavin mononucleotide) binding domains named LOV (light-, oxygen-, and voltage-sensing), which is a subset of the PAS (Per-Arnt-Sim) superfamily. Illumination of the phot-LOV domains in the dark state (D447) produces a covalent C(4a) flavin-cysteinyl adduct (S390) via a triplet excited state (L660), which reverts to D447 in the dark. In this work, we studied the light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 (phy3), which is a fusion protein of phot containing the phytochrome chromophoric domain, by low-temperature UV-visible and FTIR spectroscopy. UV-visible spectroscopy detected only one intermediate state, S390, in the temperature range from 77 to 295 K, indicating that the adduct is produced even at temperatures as low as 77 K, although a portion of D447 cannot be converted to S390 at low temperatures possibly because of motional freezing. In the whole temperature range, FTIR spectra in the S-H stretching frequency region showed that Cys966 of phy3-LOV2 is protonated in D447 and unprotonated on illumination, supporting adduct formation. The pK(a) of the S-H group in D447 is estimated to be >10. FTIR spectra also showed the light-induced appearance of a positive peak around 3621 cm(-1) in the whole temperature range, indicating that adduct formation accompanies rearrangement of a hydrogen bond of a water molecule(s), which can be either water25, water45, or both, near the chromophore. In contrast to the weak temperature dependence of the spectral changes in the UV-visible absorption and the FTIR of both S-H and O-H stretching bands, light-induced changes in the amide I vibration that probes protein backbone structure vary significantly with the increase in temperature. The spectral changes suggest that light excitation of FMN loosens the local structure around it, particularly in turns, in the early stages and that another change subsequently takes place to tighten it, mainly in beta-structure, but some occur in the alpha-helical structure of the protein moiety as well. Interestingly, these changes proceed without altering the shape of UV-visible spectra, suggesting the presence of multiple conformation states in S390.  相似文献   

6.
Hou LH  Wu CM  Huang HH  Chu HA 《Biochemistry》2011,50(43):9248-9254
NH(3) is a structural analogue of substrate H(2)O and an inhibitor to the water oxidation reaction in photosystem II. To test whether or not NH(3) is able to replace substrate water molecules on the oxygen-evolving complex in photosystem II, we studied the effects of NH(3) on the high-frequency region (3750-3550 cm(-1)) of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra (pH 7.5 at 250 K), where OH stretch modes of weak hydrogen-bonded active water molecules occur. Our results showed that NH(3) did not replace the active water molecule on the oxygen-evolving complex that gave rise to the S(1) mode at ~3586 cm(-1) and the S(2) mode at ~3613 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum of PSII. In addition, our mid-frequency FTIR results showed a clear difference between pH 6.5 and 7.5 on the concentration dependence of the NH(4)Cl-induced upshift of the S(2) state carboxylate mode at 1365 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectra of NH(4)Cl-treated PSII samples. Our results provided strong evidence that NH(3) induced this upshift in the spectra of NH(4)Cl-treated PSII samples at 250 K. Moreover, our low-frequency FTIR results showed that the Mn-O-Mn cluster vibrational mode at 606 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectrum of the NaCl control PSII sample was diminished in those samples treated with NH(4)Cl. Our results suggest that NH(3) induced a significant alteration on the core structure of the Mn(4)CaO(5) cluster in PSII. The implication of our findings on the structure of the NH(3)-binding site on the OEC in PSII will be discussed.  相似文献   

7.
We have applied flash-induced FTIR spectroscopy to study structural changes upon the S(2)-to-S(3) state transition of the oxygen-evolving complex (OEC) in Photosystem II (PSII). We found that several modes in the difference IR spectrum are associated with bond rearrangements induced by the second laser flash. Most of these IR modes are absent in spectra of S(2)/S(1), of the acceptor-side non-heme ion, of Yradical(D)/Y(D) and of S(3)'/S(2)' from Ca-depleted PSII preparations. Our results suggest that these IR modes most likely originate from structural changes in the oxygen-evolving complex itself upon the S(2)-to-S(3) state transition in PSII.  相似文献   

8.
Electronic spectroscopy of a single biological molecule is demonstrated with approximately 4 A spatial resolution. The light-harvesting complex II (LHC II), in the ground and photo-excited states, was studied using scanning tunneling microscopy and spectroscopy of intact Photosystem II complexes. Analysis of the spectra indicates that the main mechanisms of tunneling between the STM tip and the surface involve delocalized electronic states of the LHC II and local vibronic states associated with C=C, C=O, C-H, N-H, and O-H groups near the LHC II surface. Conduction within the bulk LHC II is then due to ohmic and hopping conduction as well as tunneling between amino acid residues. Light activation of LHC II occurs via a photoconductive rather than a photovoltaic mechanism. There is a dramatic light-induced increase in the electronic density of states indicating a light-induced enhancement of energy and electron delocalization which is important for the efficient and rapid transfer of excitation energy from LHC II to the Photosystem II reaction center.  相似文献   

9.
Spectroscopic and polarization properties of single light-harvesting complexes of higher plants (LHC-II) were studied at both room temperature and T < 5 K. Monomeric complexes emit roughly linearly polarized fluorescence light thus indicating the existence of only one emitting state. Most probably this observation is explained by efficient triplet quenching restricted to one chlorophyll a (Chl a) molecule or by rather irreversible energy transfer within the pool of Chl a molecules. LHC-II complexes in the trimeric (native) arrangement bleach in a number of steps, suggesting localization of excitations within the monomeric subunits. Interpretation of the fluorescence polarization properties of trimers requires the assumption of transition dipole moments tilted out of the symmetry plane of the complex. Low-temperature fluorescence emission of trimers is characterized by several narrow spectral lines. Even at lowest excitation intensities, we observed considerable spectral diffusion most probably due to low temperature protein dynamics. These results also indicate weak interaction between Chls belonging to different monomeric subunits within the trimer thus leading to a localization of excitations within the monomer. The experimental results demonstrate the feasibility of polarization sensitive studies on single LHC-II complexes and suggest an application for determination of the Chl transition-dipole moment orientations, a key issue in understanding the structure-function relationships.  相似文献   

10.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

11.
12.
Reversible oxidation of amino acids within intracellular proteins leads to local and/or global conformational changes in protein structure. Thus, the enzymatic activity or binding properties of a protein might be regulated by local changes in a cell's redox potential, mediated by the availability of reducing/oxidizing equivalents. Whereas it is well established that intracellular pools of oxidizable groups compensate for oxidative stress, far less is known about the molecular mechanisms that accompany transient and reversible oxidation of cytoplasmic proteins. Therefore, the intrinsic redox properties of proteins amenable to reversible oxidation need to be determined. Here we describe the application of NMR spectroscopy to derive the redox properties of intracellular proteins. As exemplified for thioredoxin 1, the Tnk-1 kinase SH3 domain, and the hSH3(N) domain of the T cell protein ADAP, the conformational changes associated with disulfide bond formation can be followed directly upon titration with different ratios of reduced to oxidized glutathione. Redox potentials can be measured accurately in homogeneous solutions and define the conditions under which regulatory oxidation of the respective protein may occur in the living cell.  相似文献   

13.
Five-day-old etiolated radish ( Raphanux salivux L. cv. Saxa) seedlings exposed to white continuous light in the presence of Cd2+ (0.2 mM) showed characteristic changes in their light-harvesting chlorophyll a/b protein complex II after 48 h of greening. The content of its oligomeric supramolecular form was greatly diminished with a concomitant increase in the level of the monomer. The isolation of highly purified light-harvesting chlorophyll a/b protein complex II from control and Cd2+ treated radish cotyledons and a detailed analysis of its structure and composition revealed that first of all, Cd2+ altered the content of the specific phosphatidylglycerol fatty acid - trans -Δ3-hexadecenoic acid, widely accepted as a component responsible for the oligomerization of this chlorophyll-protein complex. This fatty acid in the thylakoid membrane phosphatidylglycerol pool seems to be very sensitive to different environmental stresses lowering its content, which indicates the vital significance of this component for the supramolecular organization and proper functioning of the light-harvesting chlorophyll a/b protein complex II.  相似文献   

14.
Dzwolak W  Ravindra R  Lendermann J  Winter R 《Biochemistry》2003,42(38):11347-11355
Pressure perturbation calorimetry (PPC), differential scanning calorimetry (DSC), and time-resolved Fourier transform infrared spectroscopy (FTIR) have been employed to investigate aggregation of bovine insulin at pH 1.9. The aggregation process exhibits two distinguished phases. In the first phase, an intermediate molten globule-like conformational state is transiently formed, reflected by loose tertiary contacts and a robust H/D-exchange. This is followed by unfolding of the native secondary structure. The unfolding of insulin is fast, endothermic, partly reversible, and accompanied by a volume expansion of approximately 0.2%. The second phase consists of actual aggregation: an exothermic irreversible process revealing typical features of nucleation-controlled kinetics. The volumetric changes associated with the second phase are small. The concentration-dependence of DSC scans does not support a monomer intermediate model. While insulin aggregation under ambient pressure is fast and quantitative, pressure as low as 300 bar is sufficient to prevent the aggregation completely, as high-pressure FTIR spectroscopy revealed. This is explained in terms of the high pressure having an adverse effect on the thermal unfolding of insulin, and therefore preventing occurrence of the aggregation-prone intermediate. A comparison of the aggregation in H(2)O and D(2)O shows that the isotopic substitution has diverse effects on both the phases of aggregation. In heavy water, a more pronounced volume expansion accompanies the unfolding stage, while only the second phase shifts to higher temperature.  相似文献   

15.
A novel fluorescence method has been developed for detecting the light-induced conformational changes of rhodopsin and for monitoring the interaction between photolyzed rhodopsin and G-protein or arrestin. Rhodopsin in native membranes was selectively modified with fluorescent Alexa594-maleimide at the Cys(316) position, with a large excess of the reagent Cys(140) that was also derivatized. Modification with Alexa594 allowed the monitoring of fluorescence changes at a red excitation light wavelength of 605 nm, thus avoiding significant rhodopsin bleaching. Upon absorption of a photon by rhodopsin, the fluorescence intensity increased as much as 20% at acidic pH with an apparent pK(a) of approximately 6.8 at 4 degrees C, and was sensitive to the presence of hydroxylamine. These findings indicated that the increase in fluorescence is specific for metarhodopsin II. In the presence of transducin, a significant increase in fluorescence was observed. This increase of fluorescence emission intensity was reduced by addition of GTP, in agreement with the fact that transducin enhances the formation of metarhodopsin II. Under conditions that favored the formation of a metarhodopsin II-Alexa594 complex, transducin slightly decreased the fluorescence. In the presence of arrestin, under conditions that favored the formation of metarhodopsin I or II, a phosphorylated, photolyzed rhodopsin-Alexa594 complex only slightly decreased the fluorescence intensity, suggesting that the cytoplasmic surface structure of metarhodopsin II is different in the complex with arrestin and transducin. These results demonstrate the application of Alexa594-modified rhodopsin (Alexa594-rhodopsin) to continuously monitor the conformational changes in rhodopsin during light-induced transformations and its interactions with other proteins.  相似文献   

16.
The infrared spectra of photosystem II (PS II) enriched submembrane fractions isolated from spinach are obtained in water and in heavy water suspension Other spectra are obtained after a photooxidation reaction was performed on PS II to bleach the pigments. The water bands are removed by computer subtraction and the amide bands (A, B, I, II, and III) of the protein are identified. Computer enhancement techniques are used to narrow the bandwidth of the bands that the weak chlorophyll bands, buried in the much stronger protein bands, can be observed. Comparing the spectra of native and photooxidized PS II pr in water and in heavy water, we determine that three polypeptide domains are present in the native material. The first domain, which contains 22% of th is situated in the peripheral region of the PS II system. The polypeptides in this region are unfolded and devoid of chlorophyll. The second domain con of the polypeptides, is more organized, and contains the chlorophylls. The third domain has an alpha-helix configuration, does not contain chlorophyll, a affected by the photooxidation reaction or by the proton/deuteron exchange. Three different types of chlorophyll organisation are identified: two have carbonyl groups non-bonded, differing from one another only in their hydrophobic milieux; the third is weakly bonded to another unidentified group. Other forms of chlorophyll organisation are present but could not be observed because their absorption is buried in the protein amide I band.  相似文献   

17.
Chu HA  Sackett H  Babcock GT 《Biochemistry》2000,39(47):14371-14376
We have developed conditions for recording the low-frequency S(2)/S(1) Fourier transform infrared difference spectrum of hydrated PSII samples. By exchanging PSII samples with buffered (18)O water, we found that a positive band at 606 cm(-)(1) in the S(2)/S(1) spectrum in (16)O water is clearly downshifted to 596 cm(-)(1) in (18)O water. By taking double-difference (S(2)/S(1) and (16)O minus (18)O) spectra, we assign the 606 cm(-)(1) mode to an S(2) mode and also identify a corresponding S(1) mode at about 625 cm(-)(1). In addition, by Sr and (44)Ca substitution experiments, we found that the 606 cm(-)(1) mode is upshifted to about 618 cm(-)(1) by Sr(2+) substitution but that this mode is not affected by substitution with the (44)Ca isotope. On the basis of these results and also on the basis of studies of Mn model compounds, we assign the 625 cm(-)(1) mode in the S(1) state and the 606 cm(-)(1) mode in the S(2) state to a Mn-O-Mn cluster vibration of the oxygen-evolving complex (OEC) in PSII. This structure may include additional bridge(s), which could be another oxo, carboxylato(s), or atoms derived from an amino acid side chain. Our results indicate that the bridged oxygen atom shown in this Mn-O-Mn cluster is exchangeable and accessible by water. The downshift in the Mn-O-Mn cluster vibration as manganese is oxidized during the S(1) --> S(2) transition is counterintuitive; we discuss possible origins of this behavior. Our results also indicate that Sr(2+) substitution in PSII causes a small structural perturbation that affects the bond strength of the Mn-O-Mn cluster in the PSII OEC. This suggests that Sr(2+), and by inference, Ca(2+), communicates with, but is not integral to, the manganese core.  相似文献   

18.
Noguchi T  Sugiura M 《Biochemistry》2000,39(36):10943-10949
The vibrations of a water molecule in the water-oxidizing complex (WOC) of photosystem II were detected for the first time using Fourier transform infrared (FTIR) spectroscopy. In a flash-induced FTIR difference spectrum upon the S(1)-to-S(2) transition, a pair of positive and negative bands was observed at 3618 and 3585 cm(-1), respectively, and both bands exhibited downshifts by 12 cm(-1) upon replacement of H(2)(16)O by H(2)(18)O. Upon D(2)O substitution, the bands largely shifted down to 2681 and 2652 cm(-1). These observations indicate that the bands at 3618 and 3585 cm(-1) arise from the O-H stretching vibrations of a water molecule, probably substrate water, coupled to the Mn cluster in the S(2) and S(1) states, respectively. The band frequencies indicate that the O-H group forms a weak H-bond and this H-bonding becomes weaker upon S(2) formation. Intramolecular coupling with the other O-H vibration of this water molecule was studied by a decoupling experiment using a H(2)O/D(2)O (1:1) mixture. The downshifts by decoupling were estimated to be 4 and 12 cm(-1) for the 3618 (S(2)) and 3585 cm(-1) (S(1)) bands, both of which were much smaller than 52 cm(-1) of water in vapor, indicating that the observed water has a considerably asymmetric structure; i.e., one of the O-H groups is weakly and the other is strongly H-bonded. The smaller coupling in the S(2) than the S(1) state means that this H-bonding asymmetry becomes more prominent upon S(2) formation. Such a structural change may facilitate the proton release reaction that takes place in the later step by lowering the potential barrier. The present study showed that FTIR detection of the O-H vibrations is a useful and promising method to directly monitor the chemical reactions of substrate water and clarify the molecular mechanism of photosynthetic water oxidation.  相似文献   

19.
Photoreceptor chromoproteins undergo light-induced conformational changes that result in a modulation of protein interaction and enzymatic activity. Bacterial phytochromes such as Cph1 from the cyanobacterium Synechocystis PCC 6803 are light-regulated histidine kinases in which the light signal is transferred from the N-terminal chromophore module to the C-terminal kinase module. In this study, purified recombinant Cph1 was subjected to limited proteolysis using trypsin and endoproteinase Glu-C (V8). Cleavage sites of chromopeptide fragments were determined by MALDI-TOF and micro-HPLC on-line with tandem mass spectrometry in an ion trap mass spectrometer. Trypsin produced three major chromopeptides, termed F1 (S56 to R520), F2 (T64 to R472), and F3 (L81 to R472). F1 was produced only in the far-red absorbing form Pfr within 15 min and remained stable up to >1 h; F2 and F3 were obtained in the red-light absorbing form Pr within ca. 5-10 min. When F1 was photoconverted to Pr in the presence of trypsin, this fragment degraded to F2 and F3 within 1-2 min. On size exclusion chromatography, F1 eluted as a dimer in the Pfr and as a monomer in the Pr form, whereas F2 and F3 behaved always as monomers, irrespective of the light conditions. These and other results are discussed in the context of light-dependent subunit interactions, in which amino acids 473-520 within the PHY domain are required for chromophore-module subunit interaction within the homodimer. V8 proteolysis yielded five major chromopeptides, F4 (T17 to N449), F5 (T17 to E335), F6 (T17 to E323), F7 (unknown sequence), and F8 (tentatively L121 to E323). F6 and F8 were formed in the Pr form, whereas F4, F5, and F7 were preferentially formed in the Pfr form. Three amino acids next to specific cleavage sites, R520, R472, and E323, were altered by site-directed mutagenesis. The mutants were analyzed by UV-vis spectroscopy, size exclusion chromatography, and autophosphorylation. Histidine kinase activity was low in R472A, R520P, and R520A; in all mutants, the ratio of phosphorylation intensity between Pr and Pfr was reduced. Thus, light regulation of autophosphorylation is negatively affected in all mutants. In R472P, E323P, and E323D, the phosphorylation intensity of the Pfr form exceeded that of the wild-type control. This result shows that the histidine kinase activity of Cph1 is actively inhibited by photoconversion into Pfr.  相似文献   

20.
Excitation energy transfer in the light-harvesting complex II of higher plants is modeled using excitonic couplings and local transition energies determined from structure-based calculations recently (Müh et al., 2010). A theory is introduced that implicitly takes into account protein induced dynamic localization effects of the exciton wavefunction between weakly coupled optical and vibronic transitions of different pigments. Linear and non-linear optical spectra are calculated and compared with experimental data reaching qualitative agreement. High-frequency intramolecular vibrational degrees of freedom are found important for ultrafast subpicosecond excitation energy transfer between chlorophyll (Chl) b and Chla, since they allow for fast dissipation of the excess energy. The slower ps component of this transfer is due to the monomeric excited state of Chlb 605. The majority of exciton relaxation in the Chla spectral region is characterized by slow ps exciton equilibration between the Chla domains within one layer and between the lumenal and stromal layers in the 10-20 ps time range. Subpicosecond exciton relaxation in the Chla region is only found within the terminal emitter domain (Chls a 610/611/612) and within the Chla 613/614 dimer. Deviations between measured and calculated exciton state life times are obtained for the intermediate spectral region between the main absorbance bands of Chla and Chlb that indicate that besides Chlb 608 another pigment should absorb there. Possible candidates, so far not identified by structure-based calculations, but by fitting of optical spectra and mutagenesis studies, are discussed. Additional mutagenesis studies are suggested to resolve this issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号