首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding isotherms have been determined for the association of horse heart cytochrome c with dioleoyl phosphatidylglycerol (DOPG)/dioleoyl phosphatidylcholine (DOPC) bilayer membranes over a range of lipid compositions and ionic strengths. In the absence of protein, the DOPG and DOPC lipids mix nearly ideally. The binding isotherms have been analyzed using double layer theory to account for the electrostatics, either the Van der Waals or scaled particle theory equation of state to describe the protein surface distribution, and a statistical thermodynamic formulation consistent with the mass-action law to describe the lipid distribution. Basic parameters governing the electrostatics and intrinsic binding are established from the binding to membranes composed of anionic lipid (DOPG) alone. Both the Van der Waals and scaled particle equations of state can describe the effects of protein distribution on the DOPG binding isotherms equally well, but with different values of the maximum binding stoichiometry (13 lipids/protein for Van der Waals and 8 lipids/protein for scaled particle theory). With these parameters set, it is then possible to derive the association constant, Kr, of DOPG relative to DOPC for surface association with bound cytochrome c by using the binding isotherms obtained with the mixed lipid membranes. A value of Kr (DOPG:DOPC) = 3.3-4.8, depending on the lipid stoichiometry, is determined that consistently describes the binding at different lipid compositions and different ionic strengths. Using the value of Kr obtained it is possible to derive the average in-plane lipid distribution and the enhancement in protein binding induced by lipid redistribution using the statistical thermodynamic theory.  相似文献   

2.
One of the major obstacles in the development of new antimicrobial peptides as novel antibiotics is salt sensitivity. Hal18, an α-helical subunit of Halocidin isolated from Halocynthia aurantium, has been previously shown to maintain its antimicrobial activity in high salt conditions. The α-helicity of Hal18 in the presence and absence of salt was demonstrated by circular dichroism spectroscopy, which showed that the peptide was mainly unordered containing β-strands and β-turns. However, in the presence of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS) vesicles, Hal18 folded to form α-helices (circa 42?%). Furthermore, the structure was not significantly affected by pH or the presence of metal ions. These data were supported by monolayer results showing Hal18 induced stable surface pressure changes in monolayers composed of DMPC (5?mN?m(-1)) and DMPS (8.5?mN?m(-1)), which again were not effected by the presence of metal ions or pH. It is proposed that the hydrophobic groove within its molecular architecture enables the peptide to form stable associations with lipid membranes. The balance of hydrophobicity along the Hal18 long axis would also support oblique orientation of the peptide at the membrane interface. Hence, this model of membrane interaction would enable the peptide to penetrate deep into the membrane. This concept is supported by lysis data. Overall, it would appear that this peptide is a potential candidate for future AMP design for use in high salt environments.  相似文献   

3.
The effects of ionic strength (10-1,000 mM) on the gating of batrachotoxin-activated rat brain sodium channels were studied in neutral and in negatively charged lipid bilayers. In neutral bilayers, increasing the ionic strength of the extracellular solution, shifted the voltage dependence of the open probability (gating curve) of the sodium channel to more positive membrane potentials. On the other hand, increasing the intracellular ionic strength shifted the gating curve to more negative membrane potentials. Ionic strength shifted the voltage dependence of both opening and closing rate constants of the channel in analogous ways to its effects on gating curves. The voltage sensitivities of the rate constants were not affected by ionic strength. The effects of ionic strength on the gating of sodium channels reconstituted in negatively charged bilayers were qualitatively the same as in neutral bilayers. However, important quantitative differences were noticed: in low ionic strength conditions (10-150 mM), the presence of negative charges on the membrane surface induced an extra voltage shift on the gating curve of sodium channels in relation to neutral bilayers. It is concluded that: (a) asymmetric negative surface charge densities in the extracellular (1e-/533A2) and intracellular (1e-/1,231A2) sides of the sodium channel could explain the voltage shifts caused by ionic strength on the gating curve of the channel in neutral bilayers. These surface charges create negative electric fields in both the extracellular and intracellular sides of the channel. Said electric fields interfere with gating charge movements that occur during the opening and closing of sodium channels; (b) the voltage shifts caused by ionic strength on the gating curve of sodium channels can be accounted by voltage shifts in both the opening and closing rate constants; (c) net negative surface charges on the channel's molecule do not affect the intrinsic gating properties of sodium channels but are essential in determining the relative position of the channel's gating curve; (d) provided the ionic strength is below 150 mM, the gating machinery of the sodium channel molecule is able to sense the electric field created by surface changes on the lipid membrane. I propose that during the opening and closing of sodium channels, the gating charges involved in this process are asymmetrically displaced in relation to the plane of the bilayer. Simple electrostatic calculations suggest that gating charge movements are influenced by membrane electrostatic potentials at distances of 48 and 28 A away from the plane of the membrane in the extracellular sides of the channel, respectively.  相似文献   

4.
Equinatoxin II is a cytolytic protein isolated from the sea anemone Actinia equina. It is a member of the actinoporins, a family of eukaryotic pore-forming toxins with a unique mechanism of pore formation. Equinatoxin II is a 20 kDa cysteineless protein, with sphingomyelin-dependent activity. Recent studies showed that the N-terminal region of the molecule requires conformational flexibility during pore formation. An understanding of the N-terminal position in the final pore and its role in membrane insertion and pore stability is essential to define the precise molecular mechanism of pore formation. The formation of pores and their electrophysiologic characteristics were studied with planar lipid membranes. We show that amino acids at positions 1 and 3 of equinatoxin II are exposed to the lumen of the pore. Moreover, sulfhydryl reagents and a hexa-histidine tag attached to the N-terminus revealed that the N-terminus of the toxin extends through the pore to the other (trans) side of the membrane and that negatively charged residues inside the pore are crucial to define the electrophysiologic characteristics of the channel. Finally, we detected a new, less stable, state with a lower conductance by using a deletion mutant in which the first five N-terminal amino acids were removed. We propose that the first five amino acids help to anchor the amphipathic helix on the trans side of the membrane and consequently stabilize the final transmembrane pore.  相似文献   

5.
The effects of millimeter microwaves in the frequency range of 54–76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB?). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% ± 0.5%. At the same time, membrane current induced by TPhB transport increased by 5% ± 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% ± 0.4%). No “resonance-like” effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 °C. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The nonelectrolyte permeability of planar lipid bilayer membranes   总被引:9,自引:4,他引:5       下载免费PDF全文
The permeability of lecithin bilayer membranes to nonelectrolytes is in reasonable agreement with Overton's rule. The is, Pd alpha DKhc, where/Pd is the permeability coefficient of a solute through the bilayer, Khc is its hydrocarbon:water partition coefficient, and D is its diffusion coefficient in bulk hydrocarbon. The partition coefficients are by far the major determinants of the relative magnitudes of the permeability coefficients; the diffusion coefficients make only a minor contribution. We note that the recent emphasis on theoretically calculated intramembranous diffusion coefficients (Dm'S) has diverted attention from the experimentally measurable and physiologically relevant permeability coefficients (Pd'S) and has obscured the simplicity and usefulness of Overton's rule.  相似文献   

7.
Isolated protein subunits of the crystalline bacterial cell surface layer (S-layer) of Bacillus coagulans E38-66 have been recrystallized on one side of planar black lipid membranes (BLMs) and their influence on the electrical properties, rupture kinetics and mechanical stability of the BLM was investigated. The effect on the boundary potential, the capacitance or the conductance of the membrane was negligible whereas the mechanical properties were considerably changed. The mechanical stability was characterized by applying voltage pulses or ramps to induce irreversible rupture. The amplitude of the voltage pulse leading to rupture allows conclusions on the ability of membranes to resist external forces. Surprisingly, these amplitudes were significantly lower for composite S-layer/lipid membranes compared to undecorated BLMs. In contrast, the delay time between the voltage pulse and the appearance of the initial defect was found to be drastically longer for the S-layer-supported lipid bilayer. Furthermore, the kinetics of the rupture process was recorded. Undecorated membranes show a fast linear increase of the pore conductance in time, indicating an inertia-limited defect growth. The attachment of an S-layer causes a slow exponential increase in the conductance during rupture, indicating a viscosity-determined widening of the pore. In addition, the mechanical properties on a longer time scale were investigated by applying a hydrostatic pressure across the BLMs. This causes the BLM to bulge, as monitored by an increase in capacitance. Compared to undecorated BLMs, a significantly higher pressure gradient has to be applied on the S-layer face of the composite BLMs to observe any change in capacitance. Received: 4 May 1999 / Revised version: 1 July 1999 / Accepted: 1 July 1999  相似文献   

8.
Both natural and synthetic polycations can induce demixing of negatively charged components in artificial and possibly in natural membranes. This process can result in formation of clusters (binding of several components to a polycation chain) and/or domains (aggregation of clusters and formation of a separate phase enriched in some particular component). In order to distinguish between these two phenomena, a model lipid membrane system containing ion channels, formed by a negatively charged peptide, O-pyromellitylgramicidin, and polycations of different structures was used. Microelectrophoresis of liposomes, changes in boundary potential of planar bilayers, the shape of compression curves and potentials of lipid and lipid/peptide monolayers were used to monitor the electrostatic factors in polymer adsorption to the membrane and peptide-polymer interactions. The synthesized PEO-grafted polylysine, PLL-PEO20000, did not induce peptide demixing monitored by stabilization of the gramicidin channels, in contrast to parent polylysine (PLL). Both polymers were shown to bind effectively to negatively charged liposomes and lipid monolayers, suggesting that the ineffectiveness of PLL-PEO20000 was not due to reduction of its binding. It was hypothesized that PLL-PEO20000 could not induce domain formation due to steric hindrance of long PEO chains preventing lateral fusion of clusters. Another copolymer, PLL-PEO4000, having four PEO chains of 4000 Da, exhibited intermediate effect between PLL and PLL-PEO20000, which shows the importance of the copolymer architecture for the effect on the lateral distribution of OPg channels. The model system can be relevant to regulation of lateral organization of ion channels and other components in natural membrane systems.  相似文献   

9.
10.
Both natural and synthetic polycations can induce demixing of negatively charged components in artificial and possibly in natural membranes. This process can result in formation of clusters (binding of several components to a polycation chain) and/or domains (aggregation of clusters and formation of a separate phase enriched in some particular component). In order to distinguish between these two phenomena, a model lipid membrane system containing ion channels, formed by a negatively charged peptide, O-pyromellitylgramicidin, and polycations of different structures was used. Microelectrophoresis of liposomes, changes in boundary potential of planar bilayers, the shape of compression curves and potentials of lipid and lipid/peptide monolayers were used to monitor the electrostatic factors in polymer adsorption to the membrane and peptide-polymer interactions. The synthesized PEO-grafted polylysine, PLL-PEO20000, did not induce peptide demixing monitored by stabilization of the gramicidin channels, in contrast to parent polylysine (PLL). Both polymers were shown to bind effectively to negatively charged liposomes and lipid monolayers, suggesting that the ineffectiveness of PLL-PEO20000 was not due to reduction of its binding. It was hypothesized that PLL-PEO20000 could not induce domain formation due to steric hindrance of long PEO chains preventing lateral fusion of clusters. Another copolymer, PLL-PEO4000, having four PEO chains of 4000 Da, exhibited intermediate effect between PLL and PLL-PEO20000, which shows the importance of the copolymer architecture for the effect on the lateral distribution of OPg channels. The model system can be relevant to regulation of lateral organization of ion channels and other components in natural membrane systems.  相似文献   

11.
Major components of polar lipids of halophilic phototrophic Ectothiorhodospira species were PG, CL, PC and PE. PA was only present in minor amounts. According to 14C-incorporation, polar lipids approximated to 75%–93% of the total lipid carbon. With increasing salinity, a strong increase in the portion of PG and a decrease in that of PE (especially in Ectothiorhodospira mobilis BN 9903) and CL (especially in E. halophila strains) were observed. Moreover, there was a significant increase in the excess negative charges of phospholipids upon increasing medium salinity. This increase was most dramatic in the slightly halophilic E. mobilis BN 9903, but quantitatively less important in both strains of E. halophila which had, however, a higher percentage of negative charges of their lipids. During salt-shift experiments, E. halophila BN 9630 responded to suddenly increased salinity by promoting the biosynthesis of PG and decreasing that of PC, CL and PE. Upon dilution stress, responses were reversed and resulted in a strong increase in PE biosynthesis. The effects of lipid charges and bilayer forming forces in stabilizing the membranes of Ectothiorhodospira species during salt stress are discussed.Abbreviations PC phosphatidylcholine - PG, PG-1, PG-2 phosphatidylglycerol - CL, CL-1, Cl-2 cardiolipin - PE phosphatidylethanol-amine - PA phosphatidic acid - NL nonpolar lipids - ori origin - TLC thin layer chromatography  相似文献   

12.
Detergents are widely used for extracting and purifying membrane proteins. Four such detergents have been studied to find the extent to which they alone can alter black lipid film conductances. The slope of the plot of conductivity versus concentration for Triton X-100 is 4.54 in the range 0.025–0.15 mM; dodecyl sulphate 0.82 in the range 0.01–1 mM; sodium deoxycholate 1.03 in the range 0.01–1 mM and sodium cholate 1.37 in the range 0.1–10 mM. These ranges are below the respective critical micelle concentrations; above these concentrations the membranes break. Bilayer lipid membrane conductivity measured at constant detergent concentration increases with the conductivity of the bathing salt solution with a slope greater than 1, indicating an effect on the putative pore structures induced by detergents.  相似文献   

13.
Planar bilayer lipid membranes formed from trepang phospholipids possess an intrinsic Ca2(+)-permeability. These phospholipids dissolved in a non-polar solvent can extract 45Ca2+ from the aqueous to the organic phase. The triterpenic glycoside holotoxin A isolated from the trepang Stichopus japonicus inhibits the Ca2+ flux of lipid bilayers from trepang phospholipids as well as the Ca2+ flux induced in phosphatidylcholine bilayers by the calcium ionophore X-537A. Toxin inhibits the Ca2+ ionophore A23187 induced Ca2+ efflux from phosphatidylcholine liposomes and 45Ca2+ transition from the aqueous to the organic phase. Holotoxin A does not inhibit the 45Ca2+ transfer to the non-polar phase induced by holoturia phospholipids and does not affect the phosphatidylcholine hydroperoxide-induced Ca2+ flux of lipid bilayers. Using the fluorescent probe pyrene, it was demonstrated that toxin increases the microviscosity of liposomal membranes and trepang oocyte "ghosts".  相似文献   

14.
The biogenesis of lipid droplets (LD) in the yeast Saccharomyces cerevisiae was theoretically investigated on basis of a biophysical model. In accordance with the prevailing model of LD formation, we assumed that neutral lipids oil-out between the membrane leaflets of the endoplasmic reticulum (ER), resulting in LD that bud-off when a critical size is reached.Mathematically, LD were modeled as spherical protuberances in an otherwise planar ER membrane. We estimated the local phospholipid composition, and calculated the change in elastic free energy of the membrane caused by nascent LD. Based on this model calculation, we found a gradual demixing of lipids in the membrane leaflet that goes along with an increase in surface curvature at the site of LD formation. During demixing, the phospholipid monolayer was able to gain energy during LD growth, which suggested that the formation of curved interfaces was supported by or even driven by lipid demixing. In addition, we show that demixing is thermodynamically necessary as LD cannot bud-off otherwise.In the case of Saccharomyces cerevisiae our model predicts a LD bud-off diameter of about 12 nm. This diameter is far below the experimentally determined size of typical yeast LD. Thus, we concluded that if the standard model of LD formation is valid, LD biogenesis is a two step process. Small LD are produced from the ER, which subsequently ripe within the cytosol through a series of fusions.  相似文献   

15.
16.
A theory on the electrostatic repulsion between ion-penetrable membranes proposed previously by us is extended by taking into account the degree of dissociation of the membrane-fixed ionizable groups. A system of equations which determines the pH dependence of the membrane interaction is presented. The density of membrane-fixed charges is consistently determined as a function of the electric potential so that both the membrane-fixed charge density and the potential are not constant but functions of the membrane separation. The pH at the surface of interacting membranes is also calculated as a function of the membrane separation.  相似文献   

17.
18.
M Nakanishi 《FEBS letters》1984,176(2):385-388
In hepatocytes from control rats, the ureogenic action of epinephrine is mainly mediated through alpha 1-adrenoceptors and the effect is independent of the presence of extracellular calcium. In hepatocytes from adrenalectomized rats, both alpha 1- and beta-adrenoceptors are involved in the action of epinephrine. Furthermore, the alpha 1-adrenergic-mediated stimulation of ureogenesis in these cells is dependent on the presence of extracellular calcium. Our results indicate that glucocorticoids modulate the calcium dependency of alpha 1-adrenergic effects and are consistent with our suggestion that two pathways are involved in the transduction of the alpha 1-adrenergic signal.  相似文献   

19.
A method is described for reconstruction of certain sarcolemma characteristics of smooth muscle cells in the small intestine of a rabbit on the planar lipid membranes (PLM). The method is based on the use of fusogenic properties of certain lipid preparations. The ultrasound dispergates of azolectin and egg lecithin in combined incubation with sarcolemma vesicles of smooth-muscle cells promote a 1.4-1.8-fold increase of the total ATPase activity of the sarcolemma. Cholesterol, dipalmithoil lecithin, total brain phospholipids, inhibit the ATPase activity. Sarcolemma vesicles preincubated with azolectin lyposomes in the ratio which induces maximum ATPase activation (sarcolemma protein: azolectin-1:6) interact intensively with PLM from azolectin. PLM modified in such a way is channel-conductive, sensitive to tetraethylammonium and sign of the applied voltage.  相似文献   

20.
If a polyhalide concentration gradient exists across a bilayer lipid membrane (BLM), ion pair movement occurs. The term ion pair indicates a lipid soluble complex of cation and anion with stoichiometry dictated by the respective charges. In a mixture of metal halide (MXn, X = I, Cl, Br) and iodine, the ion pair is of the form M(I2X)n. The flux of ion pairs was monitored by measuring the flow of metal ions or polyhalide ions across the BLM. The flux of ion pairs across the BLM depended on cation crystal radius, fluidity of the membrane, strength of the ion pair complex and on the osmotic gradient (i.e., there exists a coupling between water and ion pair fluxes). The relationship between ion pairing and the electrical conductivity of BLM is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号