首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterial cell that has a single polar flagellum alternately repeats forward swimming, in which the flagellum pushes the cell body, and backward swimming, in which the flagellum pulls the cell body. We have reported that the backward swimming speeds of Vibrio alginolyticus are on average greater than the forward swimming speeds. In this study, we quantitatively measured the shape of the trajectory as well as the swimming speed. The trajectory shape in the forward mode was almost straight, whereas that in the backward mode was curved. The same parameters were measured at different distances from a surface. The difference in the motion characteristics between swimming modes was significant when a cell swam near a surface. In contrast, the difference was indistinguishable when a cell swam >60 microm away from any surfaces. In addition, a cell in backward mode tended to stay near the surface longer than a cell in forward mode. This wall effect on the bacterial motion was independent of chemical modification of the glass surface. The macroscopic behavior is numerically simulated on the basis of experimental results and the significance of the phenomenon reported here is discussed.  相似文献   

2.
A general Boundary Element Method is presented and benchmarked with existing Slender Body Theory results and reflection solutions for the motion of spheres and slender bodies near plane boundaries. This method is used to model the swimming of a microorganism with a spherical cell body, propelled by a single rotating flagellum. The swimming of such an organism near a plane boundary, midway between two plane boundaries or in the vicinity of another similar organism, is investigated. It is found that only a small increase (less than 10%) results in the mean swimming speed of an organism swimming near and parallel to another identical organism. Similarly, only a minor propulsive advantage (again, less than 10% increase in mean swimming speed) is predicted when an organism swims very close and parallel to plane boundaries (such as a microscopic plate and (or) a coverslip, for example). This is explained in terms of the flagellar propulsive advantage derived from an increase in the ratio of the normal to tangential resistance coefficients of a slender body being offset by the apparently equally significant increase in the cell body drag. For an organism swimming normal to and toward a plane boundary, however, it is predicted that (assuming it is rotating its flagellum, relative to its cell body, with a constant angular frequency) the resulting swimming speed decreases asymptotically as the organism approaches the boundary.  相似文献   

3.
Analysis of gamete and zygote motility in Allomyces   总被引:3,自引:0,他引:3  
To study the mechanisms of chemotaxis in eukaryotes, the motility patterns of the gametes and zygotes and the chemotactic responses of the male gametes of the lower eukaryote Allomyces macrogynus were examined. Dark-field microscopy of the male gametes showed a smooth swimming pattern interrupted by very brief ‘jerks’ of the cell body that caused a change in swimming direction. Female gametes had a slower swimming velocity than the males and underwent more jerks or turns which accounted for their sluggish motility. The zygotes swam with the fastest velocity and were observed to have a helical swimming pattern involving a continuous turning of the cell body, a behavior absent from the gametes. Introduction of female gametes that produce the chemoattractant sirenin brought about an immediate change in the behavior of the male gametes. They moved in spirals (or helices) towards the source of the chemoattractant (the female gametes), undergoing only a few jerks to reorient the male cells. When very near the female cells, or in high concentrations of added sirenin, many very short motility tracks were observed that finally resulted in contact between the two gamete types. The results indicate that the poor swimming ability of the female gametes facilitates gamete contact, resulting in as many as 30–40 male gametes clustered on a single female cell. Further, male gamete orientation to the sirenin gradient is caused by the chemoattractant suppressing the jerk motion.  相似文献   

4.
Intracellular stimulation of each of three different types of mechanoreceptors, the T, P and N cells, evokes swimming behavior in leech preparations. Stimulation of an individual N cell or P cell evoked swimming in 75% and 53% respectively, of the preparations tested. Stimulation of an individual T cell was ineffective in eliciting swimming; however, simultaneous stimulation of two T cells evoked swimming in 59% of our preparations. Stimulation of mechanosensory neurons elicited swimming activity for a limited number of trials; i.e. the response habituated. The number of swim episodes evoked before habituation to criterion did not differ significantly for the different types of mechanoreceptors. The duration of swim episodes declined significantly over the course of N cell stimulation. The tendency for swim length to decline with repeated stimulation was present as well for swim episodes elicited by P or T cell stimulation. Swim initiation recovered spontaneously following habituation resulting from T cell stimulation. Spontaneous recovery following N cell stimulation was not demonstrated. However, N cell stimulation evoked swimming again after DP nerve shock or to a limited extent, after cell 204 stimulation. Spontaneous recovery of swim initiation to P cell stimulation was not investigated. A previous study detailed habituation of swimming activity to mechanical stimulation of the body wall (Debski and Friesen 1985). Only the T cells are activated significantly by this stimulus. Stimulation of sensory receptors other than mechanoreceptors was not effective in eliciting swimming in our preparation. We conclude that T cells mediate swim initiation elicited by stroking of the body wall and that the cessation of swimming to this stimulus is not due to sensory adaptation.  相似文献   

5.
The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome''s tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite''s development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far.  相似文献   

6.
Examples of animals evolving similar traits despite the absence of that trait in the last common ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, are called cases of convergent evolution. Instances of convergent evolution of locomotory patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, we show that, with respect to a very diverse group of aquatic animals, a mechanically optimal method of swimming with elongated fins has evolved independently at least eight times in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we take the length of an undulation along an animal’s fin during swimming and divide it by the mean amplitude of undulations along the fin length, the result is consistently around twenty. We call this value the optimal specific wavelength (OSW). We show that the OSW maximizes the force generated by the body, which also maximizes swimming speed. We hypothesize a mechanical basis for this optimality and suggest reasons for its repeated emergence through evolution.  相似文献   

7.
Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction.  相似文献   

8.
Leptospira are spirochete bacteria distinguished by a short-pitch coiled body and intracellular flagella. Leptospira cells swim in liquid with an asymmetric morphology of the cell body; the anterior end has a long-pitch spiral shape (S-end) and the posterior end is hook-shaped (H-end). Although the S-end and the coiled cell body called the protoplasmic cylinder are thought to be responsible for propulsion together, most observations on the motion mechanism have remained qualitative. In this study, we analyzed the swimming speed and rotation rate of the S-end, protoplasmic cylinder, and H-end of individual Leptospira cells by one-sided dark-field microscopy. At various viscosities of media containing different concentrations of Ficoll, the rotation rate of the S-end and protoplasmic cylinder showed a clear correlation with the swimming speed, suggesting that these two helical parts play a central role in the motion of Leptospira. In contrast, the H-end rotation rate was unstable and showed much less correlation with the swimming speed. Forces produced by the rotation of the S-end and protoplasmic cylinder showed that these two helical parts contribute to propulsion at nearly equal magnitude. Torque generated by each part, also obtained from experimental motion parameters, indicated that the flagellar motor can generate torque >4000 pN nm, twice as large as that of Escherichia coli. Furthermore, the S-end torque was found to show a markedly larger fluctuation than the protoplasmic cylinder torque, suggesting that the unstable H-end rotation might be mechanically related to changes in the S-end rotation rate for torque balance of the entire cell. Variations in torque at the anterior and posterior ends of the Leptospira cell body could be transmitted from one end to the other through the cell body to coordinate the morphological transformations of the two ends for a rapid change in the swimming direction.  相似文献   

9.
To study the swimming of a peritrichous bacterium such as Escherichia coli, which is able to change its swimming direction actively, we simulate the “run-and-tumble” motion by using a bead-spring model to account for: 1), the hydrodynamic and the mechanical interactions among the cell body and multiple flagella; 2), the reversal of the rotation of a flagellum in a tumble; and 3), the associated polymorphic transformations of the flagellum. Because a flexible hook connects the cell body and each flagellum, the flagella can take independent orientations with respect to the cell body. This simulation reproduces the experimentally observed behaviors of E. coli, namely, a three-dimensional random-walk trajectory in run-and-tumble motion and steady clockwise swimming near a wall. We show that the polymorphic transformation of a flagellum in a tumble facilitates the reorientation of the cell, and that the time-averaged flow-field near a cell in a run has double-layered helical streamlines, with a time-dependent flow magnitude large enough to affect the transport of surrounding chemoattractants.  相似文献   

10.
Three-dimensional, numerical simulations of the flow field arounda freely swimming model-copepod were performed using a finite-volumecode. The model copepod had a realistic body shape representedby a curvilinear body-fitted coordinate system. The beatingmovement of the cephalic appendages was replaced by a distributedforce field acting on the water ventrally adjacent to the copepod'sbody. In the simulations, we took into account that freely swimmingcopepods are self-propelled bodies through properly couplingthe Navier–Stokes equations with the dynamic equationfor the copepod's body. Flow fields were calculated for fivesteady motions: (1) hovering, (2) sinking, (3) upwards swimming,(4) backwards swimming and (5) forwards swimming. The numericalresults confirm the conclusions drawn from the theoretical analysisusing Stokes flow models by Jiang et al. [in a companion paper(Jiang et al., 2002a)] for a spherical copepod shape and showthat the geometry of the flow field around a freely swimmingcopepod varies significantly with the different swimming behaviours.When a copepod hovers in the water, or swims very slowly, itgenerates a cone-shaped and wide flow field. In contrast, whena copepod sinks, or swims fast, the flow geometry is not cone-shaped,but cylindrical, narrow and long. The relationships betweencopepods' swimming behaviour and body orientation, hydrodynamicconspicuousness, energetics as well as feeding efficiency werediscussed, based on the simulation data. It is shown that thebehaviour of hovering or swimming slowly is more energeticallyefficient in terms of relative capture volume per energy expendedthan the behaviour of swimming fast, i.e. for a same amountof energy expended a hovering or slow-swimming copepod is ableto scan more water than a fast-swimming one. The numerical resultsalso suggest that the flow field generated by a fast-swimmingcopepod enables the copepod to use mechanoreception to perceivethe food/prey and therefore increases the food concentrationin the swept volume and that the flow field around a free-sinkingcopepod favours the copepod's mechanoreception while minimizingthe energy expense, so that the energy budget can still be maintainedfor both cases.  相似文献   

11.
Biflagellated algae swim in mean directions that are governed by their environments. For example, many algae can swim upward on average (gravitaxis) and toward downwelling fluid (gyrotaxis) via a variety of mechanisms. Accumulations of cells within the fluid can induce hydrodynamic instabilities leading to patterns and flow, termed bioconvection, which may be of particular relevance to algal bioreactors and plankton dynamics. Furthermore, knowledge of the behavior of an individual swimming cell subject to imposed flow is prerequisite to a full understanding of the scaled-up bulk behavior and population dynamics of cells in oceans and lakes; swimming behavior and patchiness will impact opportunities for interactions, which are at the heart of population models. Hence, better estimates of population level parameters necessitate a detailed understanding of cell swimming bias. Using the method of regularized Stokeslets, numerical computations are developed to investigate the swimming behavior of and fluid flow around gyrotactic prolate spheroidal biflagellates with five distinct flagellar beats. In particular, we explore cell reorientation mechanisms associated with bottom-heaviness and sedimentation and find that they are commensurate and complementary. Furthermore, using an experimentally measured flagellar beat for Chlamydomonas reinhardtii, we reveal that the effective cell eccentricity of the swimming cell is much smaller than for the inanimate body alone, suggesting that the cells may be modeled satisfactorily as self-propelled spheres. Finally, we propose a method to estimate the effective cell eccentricity of any biflagellate when flagellar beat images are obtained haphazardly.  相似文献   

12.
Li G  Tang JX 《Biophysical journal》2006,91(7):2726-2734
We determined the torque of the flagellar motor of Caulobacter crescentus for different motor rotation rates by measuring the rotation rate and swimming speed of the cell body and found it to be remarkably different from that of other bacteria, such as Escherichia coli and Vibrio alginolyticus. The average stall torque of the Caulobacter flagellar motor was approximately 350 pN nm, much smaller than the values of the other bacteria measured. Furthermore, the torque of the motor remained constant in the range of rotation rates up to those of freely swimming cells. In contrast, the torque of a freely swimming cell for V. alginolyticus is typically approximately 20% of the stall torque. We derive from these results that the C. crescentus swarmer cells swim more efficiently than both E. coli and V. alginolyticus. Our findings suggest that C. crescentus is optimally adapted to low nutrient aquatic environments.  相似文献   

13.
In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fishes also tend to have different wake structures. Carangiform swimmers generally produce two staggered vortices per tail beat and a strong downstream jet, while anguilliform swimmers produce a more complex wake, containing at least two pairs of vortices per tail beat and relatively little downstream flow. Are these differences a result of the different swimming modes or of the different body shapes, or both? Disentangling the functional roles requires a multipronged approach, using experiments on live fishes as well as computational simulations and physical models. We present experimental results from swimming eels (anguilliform), bluegill sunfish (carangiform), and rainbow trout (subcarangiform) that demonstrate differences in the wakes and in swimming performance. The swimming of mackerel and lamprey was also simulated computationally with realistic body shapes and both swimming modes: the normal carangiform mackerel and anguilliform lamprey, then an anguilliform mackerel and carangiform lamprey. The gross structure of simulated wakes (single versus double vortex row) depended strongly on Strouhal number, while body shape influenced the complexity of the vortex row, and the swimming mode had the weakest effect. Performance was affected even by small differences in the wakes: both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimmers are more efficient at high speed. At high Reynolds number, the lamprey-shaped swimmer produced a more complex wake than the mackerel-shaped swimmer, similar to the experimental results. Finally, we show results from a simple physical model of a flapping fin, using fins of different flexural stiffness. When actuated in the same way, fins of different stiffnesses propel themselves at different speeds with different kinematics. Future experimental and computational work will need to consider the mechanisms underlying production of the anguilliform and carangiform swimming modes, because anguilliform swimmers tend to be less stiff, in general, than are carangiform swimmers.  相似文献   

14.
《Zoology (Jena, Germany)》2014,117(4):269-281
Studies of center of mass (COM) motion are fundamental to understanding the dynamics of animal movement, and have been carried out extensively for terrestrial and aerial locomotion. But despite a large amount of literature describing different body movement patterns in fishes, analyses of how the center of mass moves during undulatory propulsion are not available. These data would be valuable for understanding the dynamics of different body movement patterns and the effect of differing body shapes on locomotor force production. In the present study, we analyzed the magnitude and frequency components of COM motion in three dimensions (x: surge, y: sway, z: heave) in three fish species (eel, bluegill sunfish, and clown knifefish) swimming with four locomotor modes at three speeds using high-speed video, and used an image cross-correlation technique to estimate COM motion, thus enabling untethered and unrestrained locomotion. Anguilliform swimming by eels shows reduced COM surge oscillation magnitude relative to carangiform swimming, but not compared to knifefish using a gymnotiform locomotor style. Labriform swimming (bluegill at 0.5 body lengths/s) displays reduced COM sway oscillation relative to swimming in a carangiform style at higher speeds. Oscillation frequency of the COM in the surge direction occurs at twice the tail beat frequency for carangiform and anguilliform swimming, but at the same frequency as the tail beat for gymnotiform locomotion in clown knifefish. Scaling analysis of COM heave oscillation for terrestrial locomotion suggests that COM heave motion scales with positive allometry, and that fish have relatively low COM oscillations for their body size.  相似文献   

15.
Energy metabolism fuels swimming and other biological processes. We compared the swimming performance and energy metabolism within and across eight freshwater fish species. Using swim tunnel respirometers, we measured the standard metabolic rate (SMR) and maximum metabolic rate (MMR) and calculated the critical swimming speed (Ucrit). We accounted for body size, metabolic traits, and some morphometric ratios in an effort to understand the extent and underlying causes of variation. Body mass was largely the best predictor of swimming capacity and metabolic traits within species. Moreover, we found that predictive models using total length or SMR, in addition to body mass, significantly increased the explained variation of Ucrit and MMR in certain fish species. These predictive models also underlined that, once body mass has been accounted for, Ucrit can be independently affected by total length or MMR. This study exemplifies the utility of multiple regression models to assess within-species variability. At interspecific level, our results showed that variation in Ucrit can partly be explained by the variation in the interrelated traits of MMR, fineness, and muscle ratios. Among the species studied, bleak Alburnus alburnus performed best in terms of swimming performance and efficiency. By contrast, pumpkinseed Lepomis gibbosus showed very poor swimming performance, but attained lower mass-specific cost of transport (MCOT) than some rheophilic species, possibly reflecting a cost reduction strategy to compensate for hydrodynamic disadvantages. In conclusion, this study provides insight into the key factors influencing the swimming performance of fish at both intra- and interspecific levels.  相似文献   

16.
Epibiosis, the colonization of biogenic surfaces by epibiotic organisms such as bacteria, filamentous algae, and sessile invertebrates, poses a major threat to the fitness and survival of macroorganisms which could potentially be fouled. Fouling of artificial submerged structures can also cause severe economic problems, making the need for refined bioassays to determine the efficacy of potential antifouling compounds even more important. The aim of this study was to use the distinct swimming behaviour of zoospores of the fouling brown alga Hincksia irregularis to develop a new laboratory antifouling bioassay to test the effect of marine natural products. Spores were exposed to different concentrations of aqueous and organic extracts from body walls of sympatric echinoderms (Asteroidea: Luidia clathrata, Astropecten articulatus; Ophiuroidea: Astrocyclus caecilia). Computer-assisted motion analysis was used to distinguish between the straight and fast swimming movements of undisturbed spores (controls) and the helical and erratic swimming patterns of chemically irritated spores, using the quantitative parameters rate of direction change (RCD) and swimming speed (SPD). The ratio RCD/SPD of spore swimming paths at extract treatments compared to controls can be used to quantify the detrimental effect of echinoderm extracts. Echinoderm extracts had significant effects on spore swimming behaviour at concentrations three orders of magnitude lower than that present naturally in the echinoderm body walls (mg extract/dry weight echinoderm body wall). Comparative studies on spore settlement and germination under similar treatment conditions show that changes in spore swimming behaviour reflect decreased fitness and survivourship of algal spores. It is suggested that this bioassay can be used to screen potential antifouling extracts and compounds at very low concentrations, making this assay particularly suitable for detection of concentration dependent effects and for bioassay-guided fractionation of extracts to identify active compounds.  相似文献   

17.
In fish, the relative amount of tissues of different densities changes significantly over short periods throughout the year, depending on the availability of food, nutrition and their developmental status, such as sexual maturation. If a land-living animal accumulates fat it influences not only its general state of health, but also markedly increases its energy expenditure for locomotion owing to the force of gravity. On a body submerged in water, this force, which acts on the centre of gravity (COG), is counterbalanced by a lifting force that is negligible in air and which acts on the centre of buoyancy (COB). Any difference in the longitudinal positions of the two centres will therefore result in pitching moments that must be counteracted by body or fin movements. The displacement of the COG away from the COB is a result of tissues of different density (e.g. bones and fat) not being distributed homogeneously along the body axis. Moreover, the proportions of tissues of different densities change significantly with feeding status. It is still unknown whether these changes produce a displacement of the COG and thus affect the hydrostatic stability of fish. Analysis of computed tomography and magnetic resonance imaging images of Atlantic herring, Atlantic salmon and Atlantic mackerel reveals that the COG is fairly constant in each species, although we recorded major interspecies differences in the relative amount of fat, muscle and bone. We conclude that the distribution of different tissues along the body axis is very closely adjusted to the swimming mode of the fish by keeping the COG constant, independent of the body fat status, and that fish can cope with large variations in energy intake without jeopardizing their COG and thus their swimming performance.  相似文献   

18.
Eel locomotion is considered typical of the anguilliform swimming mode of elongate fishes and has received substantial attention from various perspectives such as swimming kinematics, hydrodynamics, muscle physiology, and computational modeling. In contrast to the extensive knowledge of swimming mechanics, there is limited knowledge of the internal body morphology, including the body components that contribute to this function. In this study, we conduct a morphological analysis of the collagenous connective tissue system, i.e., the myosepta and skin, and of the red muscle fibers that sustain steady swimming, focusing on the interconnections between these systems, such as the muscle-tendon and myosepta-skin connections. Our aim is twofold: (1) to identify the morphological features that distinguish this anguilliform swimmer from subcarangiform and carangiform swimmers, and (2) to reveal possible pathways of muscular force transmission by the connective tissue in eels. To detect gradual morphological changes along the trunk we investigated anterior (0.4L), midbody (0.6L), and posterior body positions (0.75L) using microdissections, histology, and three-dimensional reconstructions. We find that eel myosepta have a mediolaterally oriented tendon in each the epaxial and hypaxial regions (epineural or epipleural tendon) and two longitudinally oriented tendons (myorhabdoid and lateral). The latter two are relatively short (4.5-5% of body length) and remain uniform along a rostrocaudal gradient. The skin and its connections were additionally analyzed using scanning electron microscopy (SEM). The stratum compactum of the dermis consists of approximately 30 layers of highly ordered collagen fibers of alternating caudodorsal and caudoventral direction, with fiber angles of 60.51 +/- 7.05 degrees (n = 30) and 57.58 +/- 6.92 degrees (n = 30), respectively. Myosepta insert into the collagenous dermis via fiber bundles that pass through the loose connective tissue of the stratum spongiosum of the dermis and either weave into the layers of the stratum compactum (weaving fiber bundles) or traverse the stratum compactum (transverse fiber bundles). These fiber bundles are evenly distributed along the insertion line of the myoseptum. Red muscles insert into lateral and myorhabdoid myoseptal tendons but not into the horizontal septum or dermis. Thus, red muscle forces might be distributed along these tendons but will only be delivered indirectly into the dermis and horizontal septum. The myosepta-dermis connections, however, appear to be too slack for efficient force transmission and collagenous connections between the myosepta and the horizontal septum are at obtuse angles, a morphology that appears inadequate for efficient force transmission. Though the main modes of undulatory locomotion (anguilliform, subcarangiform, and carangiform) have recently been shown to be very similar with respect to their midline kinematics, we are able to distinguish two morphological classes with respect to the shape and tendon architecture of myosepta. Eels are similar to subcarangiform swimmers (e.g., trout) but are substantially different from carangiform swimmers (e.g., mackerel). This information, in addition to data from kinematic and hydrodynamic studies of swimming, shows that features other than midline kinematics (e.g., wake patterns, muscle activation patterns, and morphology) might be better for describing the different swimming modes of fishes.  相似文献   

19.
普通齿蛉幼虫的游泳行为(英文)   总被引:1,自引:0,他引:1  
为了探究广翅目昆虫幼虫在水中的游泳能力, 以丰富其水生习性的行为学资料, 选取中国特有种普通齿蛉Neoneuromus ignobilis幼虫为研究对象, 通过室内试验对其游泳的姿势、 刺激因素、 不同龄期游泳能力及在外界刺激下的游泳行为进行了观察和测定。结果表明: 普通齿蛉幼虫有垂直、 平行、 仰面和侧面等4种游泳姿势, 出现的频率分别为89.08%, 5.49%, 4.40%和0.61%。游泳时身体呈不同程度的“S”形, 利用头部和尾部方向的改变实现虫体的上升、 下沉和游泳姿势的改变。普通齿蛉幼虫利用身体的摆动游泳, 游泳时3对足以固定的姿势靠紧身体。不同龄期的幼虫游泳能力差异很大, 6龄幼虫的游泳能力远强于2龄和末龄幼虫。在游泳时, 普通齿蛉幼虫还具有比较复杂和独特的防御行为, 如其腹部末端会喷射出化学物质。据此认为, 普通齿蛉拥有较强的游泳能力, 有助于其逃生和防御。  相似文献   

20.
The slender body theory, lifting surface theories, and more recently panel methods and Navier-Stokes solvers have been used to study the hydrodynamics of fish swimming. This paper presents progress on swimming hydrodynamics using a boundary integral equation method (or boundary element method) based on potential flow model. The unsteady three-dimensional BEM code 3DynaFS that we developed and used is able to model realistic body geometries, arbitrary movements, and resulting wake evolution. Pressure distribution over the body surface, vorticity in the wake, and the velocity field around the body can be computed. The structure and dynamic behavior of the vortex wakes generated by the swimming body are responsible for the underlying fluid dynamic mechanisms to realize the high-efficiency propulsion and high-agility maneuvering. Three-dimensional vortex wake structures are not well known, although two-dimensional structures termed 'reverse Karman Vortex Street' have been observed and studied. In this paper, simulations about a swimming saithe (Pollachius virens) using our BEM code have demonstrated that undulatory swimming reduces three-dimensional effects due to substantially weakened tail tip vortex, resulting in a reverse Karman Vortex Street as the major flow pattern in the three-dimensional wake of an undulating swimming fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号