首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Association of the Golgi-specific adaptor protein complex 1 (AP-1) with the membrane is a prerequisite for clathrin coat assembly on the trans-Golgi network (TGN). The AP-1 adaptor is efficiently recruited from cytosol onto the TGN by myristoylated ADP-ribosylation factor 1 (ARF1) in the presence of the poorly hydrolyzable GTP analog guanosine 5′-O-(3-thiotriphosphate) (GTPγS). Substituting GTP for GTPγS, however, results in only poor AP-1 binding. Here we show that both AP-1 and clathrin can be recruited efficiently onto the TGN in the presence of GTP when cytosol is supplemented with ARF1. Optimal recruitment occurs at 4 μM ARF1 and with 1 mM GTP. The AP-1 recruited by ARF1·GTP is released from the Golgi membrane by treatment with 1 M Tris-HCl (pH 7) or upon reincubation at 37°C, whereas AP-1 recruited with GTPγS or by a constitutively active point mutant, ARF1(Q71L), remains membrane bound after either treatment. An incubation performed with added ARF1, GTP, and AlFn, used to block ARF GTPase-activating protein activity, results in membrane-associated AP-1, which is largely insensitive to Tris extraction. Thus, ARF1·GTP hydrolysis results in lower-affinity binding of AP-1 to the TGN. Using two-stage assays in which ARF1·GTP first primes the Golgi membrane at 37°C, followed by AP-1 binding on ice, we find that the high-affinity nucleating sites generated in the priming stage are rapidly lost. In addition, the AP-1 bound to primed Golgi membranes during a second-stage incubation on ice is fully sensitive to Tris extraction, indicating that the priming stage has passed the ARF1·GTP hydrolysis point. Thus, hydrolysis of ARF1·GTP at the priming sites can occur even before AP-1 binding. Our finding that purified clathrin-coated vesicles contain little ARF1 supports the concept that ARF1 functions in the coat assembly process rather than during the vesicle-uncoating step. We conclude that ARF1 is a limiting factor in the GTP-stimulated recruitment of AP-1 in vitro and that it appears to function in a stoichiometric manner to generate high-affinity AP-1 binding sites that have a relatively short half-life.  相似文献   

2.
Polarized epithelial cells coexpress two almost identical AP-1 clathrin adaptor complexes: the ubiquitously expressed AP-1A and the epithelial cell–specific AP-1B. The only difference between the two complexes is the incorporation of the respective medium subunits μ1A or μ1B, which are responsible for the different functions of AP-1A and AP-1B in TGN to endosome or endosome to basolateral membrane targeting, respectively. Here we demonstrate that the C-terminus of μ1B is important for AP-1B recruitment onto recycling endosomes. We define a patch of three amino acid residues in μ1B that are necessary for recruitment of AP-1B onto recycling endosomes containing phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3]. We found this lipid enriched in recycling endosomes of epithelial cells only when AP-1B is expressed. Interfering with PI(3,4,5)P3 formation leads to displacement of AP-1B from recycling endosomes and missorting of AP-1B–dependent cargo to the apical plasma membrane. In conclusion, PI(3,4,5)P3 formation in recycling endosomes is essential for AP-1B function.  相似文献   

3.
In the present paper, we show that transport from early to late endosomes is inhibited at the restrictive temperature in a mutant CHO cell line (ldlF) with a ts-defect in ε coatomer protein (εCOP), although internalization and recycling continue. Early endosomes then appear like clusters of thin tubules devoid of the typical multivesicular regions, which are normally destined to become vesicular intermediates during transport to late endosomes. We also find that the in vitro formation of these vesicles from BHK donor endosomes is inhibited in cytosol prepared from ldlF cells incubated at the restrictive temperature. Although εCOP is rapidly degraded in ldlF cells at the restrictive temperature, cellular amounts of the other COP-I subunits are not affected. Despite the absence of εCOP, we find that a subcomplex of β, β′, and ζCOP is still recruited onto BHK endosomes in vitro, and this binding exhibits the characteristic properties of endosomal COPs with respect to stimulation by GTPγS and sensitivity to the endosomal pH. Previous studies showed that γ and δCOP are not found on endosomes. However, αCOP, which is normally present on endosomes, is no longer recruited when εCOP is missing. In contrast, all COP subunits, except obviously εCOP itself, still bind BHK biosynthetic membranes in a pH-independent manner in vitro. Our observations thus indicate that the biogenesis of multivesicular endosomes is coupled to early endosome organization and depends on COP-I proteins. Our data also show that membrane association and function of endosomal COPs can be dissected: whereas β, β′, and ζCOP retain the capacity to bind endosomal membranes, COP function in transport appears to depend on the presence of α and/or εCOP.  相似文献   

4.
Focal adhesion assembly and actin stress fiber formation were studied in serum-starved Swiss 3T3 fibroblasts permeabilized with streptolysin-O. Permeabilization in the presence of GTPγS stimulated rho-dependent formation of stress fibers, and the redistribution of vinculin and paxillin from a perinuclear location to focal adhesions. Addition of GTPγS at 8 min after permeabilization still induced paxillin recruitment to focal adhesion–like structures at the ends of stress fibers, but vinculin remained in the perinuclear region, indicating that the distributions of these two proteins are regulated by different mechanisms. Paxillin recruitment was largely rho-independent, but could be evoked using constitutively active Q71L ADP-ribosylation factor (ARF1), and blocked by NH2-terminally truncated Δ17ARF1. Moreover, leakage of endogenous ARF from cells was coincident with loss of GTPγS- induced redistribution of paxillin to focal adhesions, and the response was recovered by addition of ARF1. The ability of ARF1 to regulate paxillin recruitment to focal adhesions was confirmed by microinjection of Q71LARF1 and Δ17ARF1 into intact cells. Interestingly, these experiments showed that V14RhoA- induced assembly of actin stress fibers was potentiated by Q71LARF1. We conclude that rho and ARF1 activate complimentary pathways that together lead to the formation of paxillin-rich focal adhesions at the ends of prominent actin stress fibers.  相似文献   

5.
Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.  相似文献   

6.
BIG2 and BIG1 are closely related guanine-nucleotide exchange factors (GEFs) for ADP-ribosylation factors (ARFs) and are involved in the regulation of membrane traffic through activating ARFs and recruiting coat protein complexes, such as the COPI complex and the AP-1 clathrin adaptor complex. Although both ARF-GEFs are associated mainly with the trans-Golgi network (TGN) and BIG2 is also associated with recycling endosomes, it is unclear whether BIG2 and BIG1 share some roles in membrane traffic. We here show that knockdown of both BIG2 and BIG1 by RNAi causes mislocalization of a subset of proteins associated with the TGN and recycling endosomes and blocks retrograde transport of furin from late endosomes to the TGN. Similar mislocalization and protein transport block, including furin, were observed in cells depleted of AP-1. Taken together with previous reports, these observations indicate that BIG2 and BIG1 play redundant roles in trafficking between the TGN and endosomes that involves the AP-1 complex.  相似文献   

7.
The heterotetrameric AP-1A adaptor complex of clathrin-coated vesicles is ubiquitously expressed. The µ1-adaptin subunit of the complex exists as the ubiquitous µ1A and the polarized epithelia-specific µ1B, which are 80% identical. In polarized epithelia, µ1B is incorporated into the AP-1B complex, which is required for basolateral plasma membrane sorting of the low-density lipoprotein receptor. Binding of AP-1B to subdomains of the trans-Golgi network (TGN) appears to be part of the mechanism by which protein sorting is mediated. We expressed µ1B in µ1A-deficient fibroblasts to test for µ1B function in non-polarized cells. AP-1B complexes were formed and bound to the TGN and to endosomes. Moreover, AP-1B restored the AP-1A-dependent sorting of mannose 6-phosphate receptors between endosomes and the TGN. This demonstrates that µ1A and µ1B do have overlapping sorting functions and indicates that AP-1A and AP-1B mediate protein sorting along parallel pathways between the TGN and endosomes in polarized epithelia.  相似文献   

8.
Yeast trans-Golgi network (TGN) membrane proteins maintain steady-state localization by constantly cycling to and from endosomes. In this study, we examined the trafficking itinerary and molecular requirements for delivery of a model TGN protein A(F-->A)-alkaline phosphatase (ALP) to the prevacuolar/endosomal compartment (PVC). A(F-->A)-ALP was found to reach the PVC via early endosomes (EEs) with a half-time of approximately 60 min. Delivery of A(F-->A)-ALP to the PVC was not dependent on either the GGA or adaptor protein 1 (AP-1) type of clathrin adaptors, which are thought to function in TGN to PVC and TGN to EE transport, respectively. Surprisingly, in cells lacking the function of both GGA and AP-1 adaptors, A(F-->A)-ALP transport to the PVC was dramatically accelerated. A 12-residue cytosolic domain motif of A(F-->A)-ALP was found to mediate direct binding to AP-1 and was sufficient to slow TGN-->EE-->PVC trafficking. These results suggest a model in which this novel sorting signal targets A(F-->A)-ALP into clathrin/AP-1 vesicles at the EE for retrieval back to the TGN.  相似文献   

9.
The heterotetrameric adaptor protein complex, AP-3, sorts proteins to both the endosome/lysosome and the synaptic vesicles. We have characterized the recruitment of pure AP-3 complex and ADP-ribosylation factor (ARF) onto the endosomal donor compartments that give rise to synaptic vesicles. We demonstrated that endosomes become heavier in a sucrose gradient after incubation with rat brain cytosol and a nonhydrolyzable GTP analog, GTPgammaS. This process requires a small GTPase, ARF-1. Furthermore, the endosomal coating is specific for AP-3 but not the AP-2 complex. This process requires only two soluble proteins AP-3 and ARF, with the recruitment of AP-3 being saturable at about 30 nM. These results establish that the synaptic vesicle's donor membrane is coated with AP-3 before vesiculation, in a coat-protein-specific and dose-dependent fashion.  相似文献   

10.
Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.  相似文献   

11.
Clathrin-coated vesicles mediate endocytosis and transport between the trans-Golgi network (TGN) and endosomes in eukaryotic cells. Clathrin adaptors play central roles in coat assembly, interacting with clathrin, cargo and membranes. Two main types of clathrin adaptor act in TGN-endosome traffic: GGA proteins and the AP-1 complex. Here we characterize the relationship between GGA proteins, AP-1 and other TGN clathrin adaptors using live-cell and super-resolution microscopy in yeast. We present evidence that GGA proteins and AP-1 are recruited sequentially in two waves of coat assembly at the TGN. Mutations that decrease phosphatidylinositol 4-phosphate (PtdIns(4)P) levels at the TGN slow or uncouple AP-1 coat assembly from GGA coat assembly. Conversely, enhanced PtdIns(4)P synthesis shortens the time between adaptor waves. Gga2p binds directly to the TGN PtdIns(4)-kinase Pik1p and contributes to Pik1p recruitment. These results identify a PtdIns(4)P-based mechanism for regulating progressive assembly of adaptor-specific clathrin coats at the TGN.  相似文献   

12.
The small GTPase ADP-ribosylation factor (ARF) is absolutely required for coatomer vesicle formation on Golgi membranes but not for anterograde transport to the medial-Golgi in a mammalian in vitro transport system. This might indicate that the in vivo mechanism of intra-Golgi transport is not faithfully reproduced in vitro, or that intra-Golgi transport occurs by a nonvesicular mechanism. As one approach to distinguishing between these possibilities, we have characterized two additional cell-free systems that reconstitute transport to the trans-Golgi (trans assay) and trans-Golgi network (TGN assay). Like in vitro transport to the medial-Golgi (medial assay), transport to the trans-Golgi and TGN requires cytosol, ATP, and N-ethylmaleimide–sensitive fusion protein (NSF). However, each assay has its own distinct characteristics of transport. The kinetics of transport to late compartments are slower, and less cytosol is needed for guanosine-5′-O-(3-thiotriphosphate) (GTPγS) to inhibit transport, suggesting that each assay reconstitutes a distinct transport event. Depletion of ARF from cytosol abolishes vesicle formation and inhibition by GTPγS, but transport in all assays is otherwise unaffected. Purified recombinant myristoylated ARF1 restores inhibition by GTPγS, indicating that the GTP-sensitive component in all assays is ARF. We also show that asymmetry in donor and acceptor membrane properties in the medial assay is a unique feature of this assay that is unrelated to the production of vesicles. These findings demonstrate that characteristics specific to transport between different Golgi compartments are reconstituted in the cell-free system and that vesicle formation is not required for in vitro transport at any level of the stack.  相似文献   

13.
HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions still exist about Vpu’s mechanism of action. Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antagonism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occurring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation. Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmembrane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu phosphoserine motif and adjacent acidic residues. Taken together these data explain the discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antagonism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promiscuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first step in tetherin antagonism.  相似文献   

14.
Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed β-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo. We investigated the importance of the TD in clathrin function by generating 1) mutations in the yeast HC gene (CHC1) to disrupt the binding sites for the CBM and W-box (chc1-box), and 2) four TD-specific temperature-sensitive alleles of CHC1. We found that TD is important for the retention of resident TGN enzymes and endocytosis of α-factor; however, the known adaptor binding sites are not necessary, because chc1-box caused little to no effect on trafficking pathways involving clathrin. The Chc1-box TD was able to interact with the endocytic adaptor Ent2 in a CBM-dependent manner, and HCs encoded by chc1-box formed clathrin-coated vesicles. These data suggest that additional or alternative binding sites exist on the TD propeller to help facilitate the recruitment of clathrin to sites of vesicle formation.  相似文献   

15.
Endosomes function as a hub for multiple protein-sorting events, including retrograde transport to the trans-Golgi network (TGN) and recycling to the plasma membrane. These processes are mediated by tubular-vesicular carriers that bud from early endosomes and fuse with a corresponding acceptor compartment. Two tethering complexes named GARP (composed of ANG2, VPS52, VPS53, and VPS54 subunits) and EARP (composed of ANG2, VPS52, VPS53, and Syndetin subunits) were previously shown to participate in SNARE-dependent fusion of endosome-derived carriers with the TGN and recycling endosomes, respectively. Little is known, however, about other proteins that function with GARP and EARP in these processes. Here we identify a protein named TSSC1 as a specific interactor of both GARP and EARP and as a novel component of the endosomal retrieval machinery. TSSC1 is a predicted WD40/β-propeller protein that coisolates with both GARP and EARP in affinity purification, immunoprecipitation, and gel filtration analyses. Confocal fluorescence microscopy shows colocalization of TSSC1 with both GARP and EARP. Silencing of TSSC1 impairs transport of internalized Shiga toxin B subunit to the TGN, as well as recycling of internalized transferrin to the plasma membrane. Fluorescence recovery after photobleaching shows that TSSC1 is required for efficient recruitment of GARP to the TGN. These studies thus demonstrate that TSSC1 plays a critical role in endosomal retrieval pathways as a regulator of both GARP and EARP function.  相似文献   

16.
The phosphoinositide-binding proteins Ent3p and Ent5p are required for protein transport from the trans-Golgi network (TGN) to the vacuole in Saccharomyces cerevisiae. Both proteins interact with the monomeric clathrin adaptor Gga2p, but Ent5p also interacts with the clathrin adaptor protein 1 (AP-1) complex, which facilitates retention of proteins such as Chs3p at the TGN. When both ENT3 and ENT5 are mutated, Chs3p is diverted from an intracellular reservoir to the cell surface. However, Ent3p and Ent5p are not required for the function of AP-1, but rather they seem to act in parallel with AP-1 to retain proteins such as Chs3p at the TGN. They have all the properties of clathrin adaptors, because they can both bind to clathrin and to cargo proteins. Like AP-1, Ent5p binds to Chs3p, whereas Ent3p facilitates the interaction between Gga2p and the endosomal syntaxin Pep12p. Thus, Ent3p has an additional function in Gga-dependent transport to the late endosome. Ent3p also facilitates the association between Gga2p and clathrin; however, Ent5p can partially substitute for this function. We conclude that the clathrin adaptors AP-1, Ent3p, Ent5p, and the Ggas cooperate in different ways to sort proteins between the TGN and the endosomes.  相似文献   

17.
Biochemical dissection of AP-1 recruitment onto Golgi membranes   总被引:28,自引:18,他引:10       下载免费PDF全文
Recruitment of the Golgi-specific AP-1 adaptor complex onto Golgi membranes is thought to be a prerequisite for clathrin coat assembly on the TGN. We have used an in vitro assay to examine the translocation of cytosolic AP-1 onto purified Golgi membranes. Association of AP-1 with the membranes required GTP or GTP analogues and was inhibited by the fungal metabolite, brefeldin A. In the presence of GTP gamma S, binding of AP-1 to Golgi membranes was strictly dependent on the concentration of cytosol added to the assay. AP-1 recruitment was also found to be temperature dependent, and relatively rapid at 37 degrees C, following a lag period of 3 to 4 min. Using only an adaptor-enriched fraction from cytosol, purified myristoylated ARF1, and Golgi membranes, the GTP gamma S-dependent recruitment of AP-1 could be reconstituted. Our results show that the association of the AP-1 complex with Golgi membranes, like the coatomer complex, requires ARF, which accounts for the sensitivity of both to brefeldin A. In addition, they provide the basis for a model for the early biochemical events that lead to clathrin-coated vesicle formation on the TGN.  相似文献   

18.
β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET178P), but not rat β-arrestin-1 (PER177P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK178P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species.  相似文献   

19.
In order to investigate the regulation of presynaptic phospholipase D (PLD) activity by calcium and G proteins, we established a permeabilization procedure for rat cortical synaptosomes using Staphylococcus aureus α-toxin (30–100 μg/ml). In permeabilized synaptosomes, PLD activity was significantly stimulated when the concentration of free calcium was increased from 0.1 μM to 1 μM. This activation was inhibited in the presence of KN-62 (1 μM), an inhibitor of calcium/calmodulin-dependent kinase II (CaMKII), but not by the protein kinase C inhibitor, Ro 31-8220 (1–10 μM). Synaptosomal PLD activity was also stimulated in the presence of 1 μM GTPγS. When Rho proteins were inhibited by pretreatment of the synaptosomes with Clostridium difficile toxin B (TcdB; 1–10 ng/ml), the effect of GTPγS was significantly reduced; in contrast, brefeldin A (10–100 μM), an inhibitor of ARF activation, was ineffective. Calcium stimulation of PLD was inhibited by TcdB, but GTPγS-dependent activation was insensitive to KN-62. We conclude that synaptosomal PLD is activated in a pathway which sequentially involves CaMKII and Rho proteins.  相似文献   

20.
The transport of the two mannose 6-phosphate receptors (MPRs) from the secretory pathway to the endocytic pathway is mediated by carrier vesicles coated with the AP-1 Golgi-specific assembly protein and clathrin. Using an in vitro assay that reconstitutes the ARF-1–dependent translocation of cytosolic AP-1 onto membranes of the TGN, we have previously reported that the MPRs are key components for the efficient recruitment of AP-1 (Le Borgne, R., G. Griffiths, and B. Hoflack. 1996. J. Biol. Chem. 271:2162–2170). Using a polyclonal antibody against the mouse γ-adaptin, we have now examined the steady state distribution of AP-1 after subcellular fractionation of mouse fibroblasts lacking both MPRs or reexpressing physiological levels of either MPR. We report that the amount of AP-1 bound to membranes and associated with clathrin-coated vesicles depends on the expression level of the MPRs and on the integrity of their cytoplasmic domains. Thus, these results indicate that the concentration of the MPRs, i.e., the major transmembrane proteins sorted toward the endosomes, determines the number of clathrin-coated vesicles formed in the TGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号