首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Engagement of membrane Ig (mIg) on WEHI-231 murine B lymphoma cells, a cell line model representative of primary immature B cells, results in growth arrest and subsequent apoptosis. Of the several dozen genes upregulated greater than two-fold by anti-IgM treatment through DNA microarray analysis, we focused on B cell translocation gene 1 (Btg1) and Btg2, member of Btg/Tob family of proteins. WEHI-231 cells were infected with the Btg1/EGFP or Btg2/EGFP retroviral vectors, and those expressing either Btg1 or Btg2 accumulated in G1 phase at significantly higher proportions than that seen for cells expressing control vector. Btg1 or Btg2 bound to protein arginine methyltransferase (PRMT) 1 via the box C region, an interaction required for anti-IgM-induced growth inhibition. The arginine methyltransferase inhibitor AdOx partially abrogated growth inhibition induced by Btg1, Btg2, or anti-IgM. The Btg1- or Btg2-induced growth inhibition was also abrogated in PRMT1-deficient cells via introduction of small interference RNA. In addition, we observed anti-IgM-induced arginine methylation of two proteins, a 28-kDa and a 36-kDa protein. Methylation, detected by a monoclonal antibody specific for asymmetric, but not symmetric methyl residues, was observed as early as 1 h-2 h after stimulation and was sustained for up to 24 h. The anti-IgM-induced p36 arginine methylation was abrogated in the PRMT1-deficient cells, suggesting that PRMT1 induces p36 methylation. Together, these results suggest that anti-IgM-induced growth inhibition is mediated via upregulation of Btg1 and Btg2, resulting in the activation of arginine methyltransferase activity and culminating in growth inhibition of WEHI-231 cells.  相似文献   

3.
Engagement of membrane immunoglobulin (mIg) on WEHI-231 mouse B lymphoma cells results in growth arrest at the G1 phase of the cell cycle, followed by a reduction of mitochondrial membrane potential (ΔΨm) and apoptosis. WEHI-231 cells resemble immature B cells in terms of the cell surface phenotype and sensitivity to mIg engagement. However, the molecular mechanisms underlying mIg-induced loss of ΔΨm and apoptosis have not yet been established. In this study, we show that apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase 1 (JNK1) signaling pathway participates in mIg-induced apoptosis through the generation of reactive oxygen species (ROS). Stimulation of WEHI-231 cells with anti-IgM induces phosphorylation and subsequent activation of ASK1, leading to JNK activation. Anti-IgM stimulation immediately (5 min) induces hydrogen peroxide (H2O2) production with a substantial increase during later time points (36-48 h), accompanied by loss of ΔΨm and an increase in cells with sub-G1 DNA content. The anti-IgM-induced late-phase H2O2 production, loss of ΔΨm, and increase in the sub-G1 fraction were all reduced substantially in WEHI-231 cells overexpressing a dominant-negative form of ASK1, compared with control vector alone, but enhanced substantially in cells overexpressing a constitutively active form of ASK1. These mIg-mediated events were also partially abrogated by ROS scavenger N-acetyl-l-cysteine (NAC). Taken together, these results suggest that mIg engagement induces H2O2 production leading to activation of ASK1-JNK1 pathway, creating a feedback amplification loop of ROS-ASK/JNK that leads to loss of ΔΨm and finally apoptosis.  相似文献   

4.
Thy28 protein is conserved among plants, bacteria, and mammalian cells. Nuclear Thy28 protein is substantially expressed in testis, liver, and immune cells such as lymphocytes. Lymphocyte apoptosis plays a crucial role in homeostasis and formation of a diverse lymphocyte repertoire. In this study, we examined whether Thy28 affects induction of apoptosis in WEHI-231 B lymphoma cells following engagement of membrane immunoglobulin (mIg). Once they were established, the Thy28-overexpressing WEHI-231 cells showed similar expression levels of IgM and class I major histocompatibility complex (MHC) molecule compared with controls. The Thy28-overexpressing cells were considerably resistant to loss of mitochondrial membrane potential (ΔΨm), caspase-3 activation, and increase in annexin-positive cells upon mIg engagement. These changes were concomitant with an increase in G1 phase associated with upregulation of p27Kip1. The anti-IgM-induced sustained activation of c-Jun N-terminal kinase (JNK), which was associated with late-phase hydrogen peroxide (H2O2) production, was partially reduced in the Thy28-expressing cells relative to controls. Taken together, the data suggest that in WEHI-231 B lymphoma cells, Thy28 regulates mIg-mediated apoptotic events through the JNK-H2O2 activation pathway, concomitant with an accumulation of cells in G1 phase associated with upregulation of p27Kip1 in WEHI-231 B lymphoma cells.  相似文献   

5.
The engagement of membrane-bound Igs (mIgs) results in growth arrest, accompanied by apoptosis, in the WEHI-231 murine B lymphoma cells, a cell line model representative of primary immature B cells. Inhibitor of differentiation (Id) proteins, members of the helix-loop-helix protein family, functions in proliferation, differentiation, and apoptosis in a variety of cell types. In this study, we analyzed the involvement of Id protein in mIg-induced growth arrest and apoptosis in WEHI-231 cells. Following stimulation with anti-IgM, expression of Id3 was up-regulated at both the mRNA and protein levels; this up-regulation could be reversed by CD40L treatment. Retrovirus-mediated transduction of the Id3 gene into WEHI-231 cells resulted in an accumulation of the cells in G(1) phase, but did not induce apoptosis. E box-binding activity decreased in response to anti-IgM administration, but increased after stimulation with either CD40L alone or anti-IgM plus CD40L, suggesting that E box-binding activity correlates with cell cycle progression. WEHI-231 cells overexpressing Id3 accumulated in G(1) phase, which was accompanied by reduced levels of cyclin D2, cyclin E, and cyclin A, and a reciprocal up-regulation of p27(Kip1). Both the helix-loop-helix and the C-terminal regions of Id3 were required for growth-suppressive activity. These data suggest that Id3 mimics mIg-mediated G(1) arrest in WEHI-231 cells.  相似文献   

6.
CD40 activation is necessary for thymus-dependent humoral immune responses and rescuing both phenotypically immature WEHI-231 B lymphoma cells from B cell antigen receptor-induced cell death and germinal center B cells from spontaneous apoptosis. As some effects of CD40 are probably mediated by differences in gene expression, cDNA expression arrays and RNase protection assays were used to identify the anti-apoptotic Bcl-2 homolog A1 as a CD40-inducible gene in B cell lines and purified germinal center B cells. Sustained CD40-induced A1 upregulation correlated with CD40-mediated rescue of WEHI-231 cells from anti-IgM-induced apoptosis. Moreover, overexpression of A1 specifically protected WEHI-231 cells from anti-IgM-induced apoptosis but not cell death triggered by certain other stimuli.  相似文献   

7.
We have previously shown that CD40 causes strong activation of the c-Jun N-terminal kinase (JNK), the p38 mitogen-activated protein kinases (MAPK) and MAPKAP kinase-2, a downstream target of p38 MAPK. To identify signaling motifs in the CD40 cytoplasmic domain that are responsible for activation of these kinases, we have created a set of 11 chimeric receptors consisting of the extracellular and transmembrane domains of CD8 fused to portions of the murine CD40 cytoplasmic domain. These chimeric receptors were expressed in WEHI-231 B lymphoma cells. We found that amino acids 35-45 of the CD40 cytoplasmic domain constitute an independent signaling motif that is sufficient for activation of the JNK and p38 MAPK pathways, as well as for induction of I kappa B alpha phosphorylation and degradation. Amino acids 35-45 were also sufficient to protect WEHI-231 cells from anti-IgM-induced growth arrest. This is the same region of CD40 required for binding the TNF receptor-associated factor-2 (TRAF2), TRAF3, and TRAF5 adapter proteins. These data support the idea that one or more of these TRAF proteins couple CD40 to the kinase cascades that activate NF-kappa B, JNK, and p38 MAPK.  相似文献   

8.
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15–30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.  相似文献   

9.
WEHI-231 B lymphoma cells have been employed for analysis of antigen-induced B cell unresponsiveness because these cells undergo cell cycle arrest in G1, accompanied by induction of apoptosis. In the present study, we examined the requirement for toxic small molecules apoptosis-inducing factor (AIF) and cytochrome c, and subsequent caspase activation in apoptotic cell death in WEHI-231 and CH31 B lymphoma cells following engagement of membrane immunoglobulin (mIg). Pan-caspase inhibitor BD-fmk blocked mIg-mediated increase in cells with sub-G1 DNA content, whereas it did not affect mIg-mediated loss of mitochondrial membrane potential and phosphatidylserine exposure on B cell membrane. Dominant-negative form of c-Jun NH2-terminal kinase1 (JNK1) blocked the translocation of AIF into the nuclei and cytosol from the mitochondria in the WEHI-231 and CH31 cells following mIg engagement, whereas constitutively active form of JNK1 enhanced it. This AIF translocation was also blocked by Bcl-xL, but not by BD-fmk. Moreover, AIF-deficient clones via small interfering RNA (siRNA)-mediated method showed small increase in loss of mitochondrial membrane potential. After mIg engagement, the AIF-deficient clones displayed an enhanced sensitivity to mIg-mediated apoptosis, concomitant with translocation of a residual AIF into the nuclei, compared with control clone. Our findings are compatible with the notion that AIF has dual role, with a proapoptotic function in the nuclei and a distinct anti-apoptotic function in the mitochondria. These observations would be valuable for analysis of B cell unresponsiveness and hopefully for treatment of diseases involving B cell dysfunction.  相似文献   

10.
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15-30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.  相似文献   

11.
Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other PAHs. The mechanism underlying this synergism is not clearly understood. We observed that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in promotion sensitive mouse epidermal JB6 Cl41 cells at non-cytotoxic concentrations. BPDE also activates AP-1 several folds in AP-1 reporter JB6 cells. Cadmium at non-cytotoxic concentrations inhibits both AP-1 activation and apoptosis in response to BPDE. Since AP-1 is known to be involved in stress-induced apoptosis we investigated whether inhibition of AP-1 by cadmium has any role in the inhibition of BPDE-induced apoptosis. MAP kinases (particularly ERKs, p38 and JNKs) are known to have important role in DNA damage-induced AP-1 activation. We observed that ERK and JNK, but not p38 MAP kinase, are involved in BPDE-induced AP-1 activation. Effect of cadmium on MAP kinases and the effect of inhibition of above three MAP kinases on BPDE-induced AP-1 activation and apoptosis indicate that AP-1 is probably not involved in BPDE-induced apoptosis. Cadmium up-regulates BPDE-activated ERKs and ERK inhibition by U0126 relieves cadmium-mediated inhibition of BPDE-induced apoptosis. We suggest that cadmium inhibits BPDE-induced apoptosis not involving AP-1 but probably through a different mechanism by up-regulating ERK which is known to promote cell survival.  相似文献   

12.
Signaling through the B cell antigen receptor (BCR) is a key determinant in the regulation of B cell physiology. Depending on additional factors, such as microenvironment and developmental stage, ligation of the BCR can trigger B lymphocyte activation, proliferation, or apoptosis. The regulatory mechanisms determining B cell apoptosis and survival are not completely known. Using the murine B lymphoma cell line WEHI-231 as a model system, we investigated the role of Bad phosphorylation, a pro-apoptotic member of the Bcl-2 family, in anti-IgM mediated apoptosis. For apoptotic analysis we focused in particular on the mitochondrial potential (deltapsi(m)) collapse which has been reported as a rate-limiting step in the BCR-induced cell death of immature B lymphocytes. Bad phosphorylation at serine 112, 136 and 155 was found in WEHI-231 cell control cultures and its hypophosphorylation on the three sites correlated with the appearance of apoptosis when cross-linking surface IgM. Furthermore, treatment of cells with specific PK inhibitors known to be involved in serine phosphorylation of Bad (LY294002 for PI3K and H-89 for PKA) mimiced or enhanced BCR-induced cell death. These results strongly suggest that regulation of Bad phosphorylation plays an active role in mediating anti-IgM-induced apoptosis of immature B cells.  相似文献   

13.
Expression of the COOH-terminal residues 179-330 of the LSP1 protein in the LSP1(+) B-cell line W10 increases anti-IgM- or ionomycin-induced apoptosis, suggesting that expression of this LSP1 truncate (B-LSP1) interferes with a Ca(2+)-dependent step in anti-IgM signaling. Here we show that inhibition of Ca(2+)-dependent conventional protein kinase C (cPKC) isoforms with G?6976 increases anti-IgM-induced apoptosis of W10 cells and that expression of B-LSP1 inhibits translocation of PKCbetaI but not of PKCbetaII or PKCalpha to the plasma membrane. The increased anti-IgM-induced apoptosis is partially reversed by overexpression of PKCbetaI. This shows that the B-LSP1-mediated inhibition of PKCbetaI leads to increased anti-IgM-induced apoptosis. Expression of constitutively active PKCbetaI protein in W10 cells activates the mitogen-activated protein kinase ERK2, whereas expression of B-LSP1 inhibits anti-IgM-induced activation of ERK2, suggesting that anti-IgM-activated PKCbetaI is involved in the activation of ERK2 and that inhibition of ERK2 activation contributes to the increased anti-IgM-induced apoptosis. Pull-down assays show that LSP1 interacts with PKCbetaI but not with PKCbetaII or PKCalpha in W10 cell lysates, while in vitro LSP1 and B-LSP1 bind directly to PKCbetaI. Thus, B-LSP1 is a unique reagent that binds PKCbetaI and inhibits anti-IgM-induced PKCbetaI translocation, leading to inhibition of ERK2 activation and increased apoptosis.  相似文献   

14.
The ability of CD40 signaling to regulate B cell growth, survival, differentiation, and Ig class switching involves many changes in gene expression. Using cDNA expression arrays and Northern blotting, we found that CD40 signaling increased the mRNA levels for pim-1, a protooncogene that encodes a serine/threonine protein kinase. Subsequent experiments showed that CD40 engagement also increased both Pim-1 protein levels and Pim-1 kinase activity in B cells. We then investigated the signaling pathways by which CD40 regulates Pim-1 expression and found that CD40 up-regulates Pim-1 primarily via the activation of NF-kappaB. Inhibiting the activation of NF-kappaB, either by treating cells with a chemical inhibitor, BAY11-7082, or by inducibly expressing a superrepressor form of IkappaBalpha, significantly impaired the ability of CD40 to increase Pim-1 protein levels. Because Pim-1 expression is associated with cell proliferation and survival, we asked whether this correlated with the ability of CD40 signaling to prevent anti-IgM-induced growth arrest in the WEHI-231 murine B cell line, a model for Ag-induced clonal deletion. We found that the anti-IgM-induced growth arrest in WEHI-231 cells correlated with a substantial decrease in Pim-1 levels. In contrast, culturing WEHI-231 cells with either anti-CD40 Abs or with the B cell mitogen LPS, both of which prevent the anti-IgM-induced growth arrest, also prevented the rapid decline in Pim-1 levels. This suggests that Pim-1 could regulate the survival and proliferation of B cells.  相似文献   

15.
Type I interferon (IFN)-induced antitumor action is due in part to apoptosis, but the molecular mechanisms underlying IFN-induced apoptosis remain largely unresolved. In the present study, we demonstrate that IFN-beta induced apoptosis and the loss of mitochondrial membrane potential (delta psi m) in the murine CH31 B lymphoma cell line, and this was accompanied by the up-regulation of CD95, but not CD95-ligand (CD95-L), tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL). Pretreatment with anti-CD95-L mAb partially prevented the IFN-beta-induced loss of delta psi m, suggesting that the interaction of IFN-beta-up-regulated CD95 with CD95-L plays a crucial role in the induction of fratricide. IFN-beta induced a sustained activation of c-Jun NH2-terminal kinase 1 (JNK1), but not extracellular signal-regulated kinases (ERKs). The IFN-beta-induced apoptosis and loss of delta psi m were substantially compromised in cells overexpressing a dominant-negative form of JNK1 (dnJNK1), and it was slightly enhanced in cells carrying a constitutively active JNK construct, MKK7-JNK1 fusion protein. The IFN-beta-induced up-regulation of CD95 together with caspase-8 activation was also abrogated in the dnJNK1 cells while it was further enhanced in the MKK7-JNK1 cells. The levels of cellular FLIP (c-FLIP), competitively interacting with caspase-8, were down-regulated by stimulation with IFN-beta but were reversed by the proteasome inhibitor lactacystin. Collectively, the IFN-beta-induced sustained activation of JNK mediates apoptosis, at least in part, through up-regulation of CD95 protein in combination with down-regulation of c-FLIP protein.  相似文献   

16.
17.
Signals transduced by the B cell antigen receptor (BCR) play a central role in regulating the functional response of the cell to antigen. Depending on the nature of the antigenic signal and the developmental or differentiation state of the B cell, antigen receptor signaling can promote either apoptosis or survival and activation. Understanding the molecular mechanisms underlying BCR-mediated apoptosis constitutes an important area of research because aberrations in programmed cell death can result in the development of autoimmunity or cancer. Expression of the adaptor protein hematopoietic Src homology 2 (HSH2) was found to significantly decrease BCR-mediated apoptosis in the murine WEHI-231 cell line. Analysis of signal transduction pathways activated in response to BCR ligation revealed that HSH2 does not significantly alter total protein tyrosine phosphorylation or Ca2+ mobilization. HSH2 does not potentiate the activation-dependent phosphorylation of AKT either. With respect to MAPK activation, HSH2 was not observed to alter the activation of ERK or p38 in response to BCR ligation, but it does significantly potentiate JNK activation. Analysis of processes directly associated with apoptosis revealed that HSH2 inhibits mitochondrial depolarization to a significant degree, whereas it has only a slight effect on caspase activation and poly ADP-ribose polymerase cleavage. BCR-induced apoptosis of WEHI-231 cells is associated with the loss of endogenous HSH2 expression within 12 h, whereas inhibition of apoptosis in response to CD40-mediated signaling leads to stabilization of HSH2 expression. Thus, endogenous HSH2 expression correlates directly with survival of WEHI-231 cells, which supports the hypothesis that HSH2 modulates the apoptotic response through its ability to directly or indirectly promote mitochondrial stability.  相似文献   

18.
The aim of this study was to determine whether Helicobacter pylori activates mitogen-activated protein (MAP) kinases in gastric epithelial cells. Infection of AGS cells with an H. pylori cag+ strain rapidly (5 min) induced a dose-dependent activation of extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) MAP kinases, as determined by Western blot analysis and in vitro kinase assay. Compared with cag+ strains, cag- clinical isolates were less potent in inducing MAP kinase, particularly JNK and p38, activation. Isogenic inactivation of the picB region of the cag pathogenicity island resulted in a similar loss of JNK and p38 MAP kinase activation. The specific MAP kinase inhibitors, PD98059 (25 microM; MAP kinase kinase (MEK-1) inhibitor) and SB203580 (10 microM; p38 inhibitor), reduced H. pylori-induced IL-8 production in AGS cells by 78 and 82%, respectively (p < 0.01 for each). Both inhibitors together completely blocked IL-8 production (p < 0.001). However, the MAP kinase inhibitors did not prevent H. pylori-induced IkappaBalpha degradation or NF-kappaB activation. Thus, H. pylori rapidly activates ERK, p38, and JNK MAP kinases in gastric epithelial cells; cag+ isolates are more potent than cag- strains in inducing MAP kinase phosphorylation and gene products of the cag pathogenicity island are required for maximal MAP kinase activation. p38 and MEK-1 activity are required for H. pylori-induced IL-8 production, but do not appear to be essential for H. pylori-induced NF-kappaB activation. Since MAP kinases regulate cell proliferation, differentiation, programmed death, stress, and inflammatory responses, activation of gastric epithelial cell MAP kinases by H. pylori cag+ strains may be instrumental in inducing gastroduodenal inflammation, ulceration, and neoplasia.  相似文献   

19.
Callsen D  Brüne B 《Biochemistry》1999,38(8):2279-2286
The inflammatory mediator nitric oxide (NO*) promotes apoptotic cell death based on morphological evidence, accumulation of the tumor suppressor p53, caspase-3 activation, and DNA fragmentation in RAW 264.7 macrophages. Since nitrosothiols may actually be the predominant form of biologically active NO* in vivo, we used S-nitrosoglutathione (GSNO) to study activation of extracellular signal-regulated protein kinases1/2 (ERK1/2), c-Jun N-terminal kinases/stress-activated protein kinases (JNK1/2), and p38 kinases. Moreover, we determined the role of mitogen-activated protein kinase signaling in the apoptotic transducing ability of GSNO. ERK1/2 became activated in response to GSNO after 4 h and remained active for the next 20 h. Blocking the ERK1/2 pathway by the mitogen-activated protein kinase kinase inhibitor PD 98059 enhanced GSNO-elicited apoptosis. p38 was activated as well, but inhibition of p38 with SB 203580 left apoptosis unaltered. Activation of JNK1/2 by GSNO showed maximal kinase activities between 2 and 8 h. Attenuating JNK1/2 by antisense-depletion eliminated the pro-apoptotic action of low GSNO concentrations (250 microM), whereas apoptosis proceeded independently of JNK1/2 at higher doses of the NO donor (500 microM). Decreased apoptosis by JNK1/2 depletion prevented p53 accumulation after the addition of GSNO, which positions JNK1/2 upstream of the p53 response at low agonist concentrations. In line, JNK1/2 activation proceeded unaltered in p53-antisense transfected macrophages. However, with higher GSNO concentrations apoptotic transducing pathways, including p53 accumulation, were JNK1/2 unrelated. The regulation of mitogen-activated protein kinases by GSNO may help to define cell protective and destructive actions of reactive nitrogen species.  相似文献   

20.
Mitogen-activated protein kinases (MAP kinases) are intracellular signaling kinases activated by phosphorylation in response to a variety of extracellular stimuli. Mammalian MAP kinase pathways are composed of three major pathways: MEK1 (mitogen-activated protein kinase kinase 1)/ERK 1/2 (extracellular signal-regulated kinases 1/2)/p90 RSK (p90 ribosomal S6 kinase), JNK (c-Jun amino (N)-terminal kinase)/c-Jun, and p38 MAPK pathways. These pathways coordinately mediate physiological processes such as cell survival, protein synthesis, cell proliferation, growth, migration, and apoptosis. The involvement of MAP kinase in noise-induced hearing loss (NIHL) has been implicated in the cochlea; however, it is unknown how expression levels of MAP kinase change after the onset of NIHL and whether they are regulated by transient phosphorylation or protein synthesis. CBA/J mice were exposed to 120-dB octave band noise for 2 h. Auditory brainstem response confirmed a component of temporary threshold shift within 0–24 h and significant permanent threshold shift at 14 days after noise exposure. Levels and localizations of phospho- and total- MEK1/ERK1/2/p90 RSK, JNK/c-Jun, and p38 MAPK were comprehensively analyzed by the Bio-Plex® Suspension Array System and immunohistochemistry at 0, 3, 6, 12, 24 and 48 h after noise exposure. The phospho-MEK1/ERK1/2/p90 RSK signaling pathway was activated in the spiral ligament and the sensory and supporting cells of the organ of Corti, with peaks at 3–6 h and independently of regulations of total-MEK1/ERK1/2/p90 RSK. The expression of phospho-JNK and p38 MAPK showed late upregulation in spiral neurons at 48 h, in addition to early upregulations with peaks at 3 h after noise trauma. Phospho-p38 MAPK activation was dependent on upregulation of total-p38 MAPK. At present, comprehensive data on MAP kinase expression provide significant insight into understanding the molecular mechanism of NIHL, and for developing therapeutic models for acute sensorineural hearing loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号