首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) isolated from Plumbago zeylanica Linn, when administered orally, at a dosage of 4 mg/kg body weight induces tumour regression in 3-methyl-4-dimethyl aminoazobenzene (3Me-DAB) induced hepatoma in Wistar male rats. The purpose of this investigation was to identify the changes in the rate of glycolysis and gluconeogenesis in tumour-bearing rats and the effects of treatment with Plumbagin. The levels of certain glycolytic enzymes, namely, hexokinase; phosphoglucoisomerase; and aldolase levels increased (p<0.001) in hepatoma bearing rats, whereas they decreased in Plumbagin administered rats to near normal levels. Certain gluconeogenic enzymes, namely, glucose-6-phosphatase and fructose-1,6-diphosphatase decreased (p<0.001) in tumour hosts, whereas Plumbagin administration increased the gluconeogenic enzyme levels in the treated animals. These investigations indicate the molecular basis of the different biological behaviour of 3MeDAB induced hepatoma and the anticarcinogenic property of Plumbagin against hepatoma studied in rats.  相似文献   

2.
The toxic nature of the secondary metabolite of Penicillium patulum has been studied in rats. Liver, Kidney and Intestine of the experimental animals showed derangement in carbohydrate metabolism. Changes in the concentration of a few key enzymes in carbohydrate metabolism have also been studied. Glycogen phosphorylase is found to be markedly increased while the glycolytic enzymes like hexokinase and aldolase are significantly lowered. Gluconeogenesis is stimulated and this is evidenced by increased glucose-6-phosphatase and fructose-1,6-diphosphatase activity. Our results revealed that, patulin, the secondary metabolite of Penicillium patulum showed toxicity in all the organs studied.  相似文献   

3.
The effect of diet on the desaturation of linoleic acid to gamma-linolenic acid by liver microsomal preparations, on blood glucose and insulin levels, and on activities of glucokinase, hexokinase, pyruvate kinase, and alpha-glycerophosphate dehydrogenase have been studied. The female rats used in these experiments were maintained on one of the following dietary regimes: (a) fasted, (b) fasted for 96 hr and refed glucose, (c) balanced diet, (d) carbohydrate-free diet, (e) lipid-free diet, or (f) protein-free diet. Fasting for 96 hr caused a decrease of both linoleic acid desaturation and glucokinase and pyruvate kinase activity together with a slight decrease of the blood insulin level. Alpha-glycerophosphate dehydrogenase activity was not modified. Refeeding of glucose for 50 hr increased the conversion of linoleic acid to linolenic acid as well as the activities of all the enzymes studied except alpha-glycerophosphate dehydrogenase. The increase in desaturation, however, was transient. The feeding of a lipid-free diet did not modify the tested parameters. Feeding a carbohydrate-free diet for 96 hr resulted in increased linoleic acid desaturation but decreased glucokinase and pyruvate kinase activity, thus apparently eliminating a putative correlation between the fatty acid desaturating activity and glycolytic activity or blood insulin levels under these experimental conditions. The findings suggest that dietary proteins may play an important role in determining the level of fatty acid desaturation.  相似文献   

4.
Oxidative stress contributes to the vascular and neurological complications of diabetes mellitus. The aim was to evaluate the effects of treatment with the radical scavenger and transition metal chelator, alpha-lipoic acid, on endothelium-dependent relaxation of the mesenteric vasculature and on superior cervical ganglion blood flow in 8 week streptozotocin-induced diabetic rats. alpha-Lipoic acid effects on small nerve fiber-mediated nociception were also monitored. For the in vitro phenylephrine-precontracted mesenteric vascular bed, diabetes caused a 31% deficit in maximum endothelium-dependent relaxation to acetylcholine, and a 4-fold reduction in sensitivity. alpha-Lipoic acid gave 85% protection against these defects. Acetylcholine responses are mediated by nitric oxide and endothelium-derived hyperpolarizing factor: isolation of the latter by nitric oxide synthase blockade revealed a 74% diabetic deficit that was halved by alpha-lipoic acid. Superior cervical ganglion blood flow, 52% reduced by diabetes, was dose-dependently restored by alpha-lipoic acid (ED(50), 44 mg/kg/d). Diabetic rats exhibited mechanical and thermal hyperalgesia, which were abolished by alpha-lipoic acid treatment. Thus, diabetes impairs nitric oxide and endothelium-derived hyperpolarizing factor-mediated vasodilation. This contributes to reduced neural perfusion, and may be responsible for altered nociceptive function. The effect of alpha-lipoic acid strongly implicates oxidative stress in these events and suggests a potential therapeutic approach.  相似文献   

5.
The function of DL alpha-lipoic acid (6,8-thioctic acid) as a prosthetic group in the oxidative decarboxylation of alpha-keto acids, pyruvate and alpha-ketoglutarate in mitochondria is well known. Its role is well extended to certain reactions in lipid biosynthesis. In addition, lipoic acid has been shown to prevent the induced precipitation of calcium oxalate crystals in the renal tissues of laboratory animals. Here, the effect of alpha-lipoic acid was studied, on altered tissue lipid levels manifested during experimental renal lithiasis. Raised tissue cholesterol, triglyceride and low phospholipid levels were some of the striking significant observations made in calculogenic rats. Lipoic acid treatment reduced tissue cholesterol and triglyceride levels significantly and raised phospholipids. The alterations may have a bearing in relation to calcium oxalate stone formation.  相似文献   

6.
Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats.   总被引:2,自引:0,他引:2  
Mitochondrial dysfunction appears to contribute to some of the loss of function accompanying ageing. Mitochondria from aged tissue use oxygen inefficiently impairing ATP synthesis and results in increased oxidant production. A high flux of oxidants not only damages mitochondria, but other important cell biomolecules as well. In the present investigation, the levels of lipid peroxidation, oxidized glutathione, non-enzymatic antioxidants and the activities of mitochondrial enzymes were measured in liver and kidney mitochondria of young and aged rats before and after lipoic acid supplementation. In both liver and kidney increase in the levels of mitochondrial lipid peroxidation and oxidized glutathione and decrease in the levels of antioxidants and the activities of mitochondrial enzymes were observed in aged rats. DL-alpha-lipoic acid supplemented aged rats showed a decrease in the levels of lipid peroxidation and oxidized glutathione and increase in the levels of reduced glutathione, vitamins C and E and the activities of mitochondrial enzymes like isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, NADH-dehydrogenase and cytochrome-c-oxidase. Thus, lipoic acid reverses the age-associated decline in endogenous low molecular weight antioxidants and mitochondrial enzymes and, therefore, may lower the increased risk of oxidative damage that occurs during ageing. From our results it can be concluded that lipoic acid supplementation enhances the activities of mitochondrial enzymes and antioxidant status and thereby protects mitochondria from ageing.  相似文献   

7.
We evaluated the effect of sodium molybdate on carbohydrate metabolizing enzymes and mitochondrial enzymes in diabetic rats. Diabetic rats showed a significant reduction in the activities of glucose metabolising enzymes like hexokinase, glucose-6-phosphate dehydrogenase, glycogen synthase and in the level of glycogen. An elevation in the activities of aldolase, glucose-6-phosphatase, fructose 1,6- bisphosphatase, glycogen phosphorylase and in the level of blood glucose were also observed in diabetic rats when compared to control rats. The activities of mitochondrial enzymes isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH-dehydrogenase and cytochrome-C-oxidase were also significantly lowered in diabetic rats. Molybdate administration to diabetic rats reversed the above changes in a significant manner. From our observations, we conclude that administration of sodium molybdate regulated the blood sugar levels in alloxan-induced diabetic rats. Sodium molybdate therapy not only maintained the blood glucose homeostasis but also altered the activities of carbohydrate metabolising enzymes. Molybdate therapy also considerably improved the activities of mitochondrial enzymes, thereby suggesting its role in mitochondrial energy production.  相似文献   

8.
An adequate folate intake minimizes the risk of various cancers and other disorders such as vascular diseases and neural tube defects. However, meta-analyses revealed difficulties in supporting the relationship between folate intake and the risk of cancer. Interestingly, there have been no reports to date on the potential ability of folate to modulate xenobiotic metabolising enzymes (XMEs), the inhibition of bioactivating Phase-I XMEs and/or induction of detoxifying Phase-II XMEs being one of the most evoked cancer chemopreventive strategies. Here, several CYP-dependent oxidations were studied in liver sub-cellular preparations from Sprague-Dawley rats receiving rodent chow supplemented with folic acid daily, for 1 or 2 consecutive months. Using either specific substrates as probes of different CYP isoforms or the regio- and stereo-selective metabolism of testosterone as a multibiomarker, we found that folic acid markedly inactivated most of the Phase-I XME analysed; up to 54% for the CYP1A1-linked deethylation of ethoxyresorufin in males, and up to 86% for the testosterone 2alpha-hydroxylase (CYP2C11) in females, after 2 months treatment. The Phase-II marker glutathione S-transferase significantly increased (~107%) after 1 month of supplementation in females only. These changes, if reproduced in humans might have public health implications. These data suggest caution in performing folate chemoprevention trials before its overall toxicological characterization has been fully addressed.  相似文献   

9.
Chlorocholine chloride (CCC) was sprayed on a potato crop 25 days after sowing (DAS) at 5 day intervals for a total of 7 sprays. Activity of sucrose synthase (SS) in the sucrose cleavage direction was many fold higher than that of acid invertase in all the tissues. The activity of alkaline invertase was negligible. A sharp decline in the starch content of stolons of the CCC-sprayed crop was observed between 60 DAS and 70 DAS. This could divert the carbon towards tubers and thus enhancing its availability for starch synthesis. The CCC-treated crop, in general, had higher SS (cleavage) activity in stem, stolons and tubers. A higher sucrose content in the stem of the CCC-treated crop could be due to the high sucrose phosphate synthase (SPS) activity observed in this plant part. In tubers of CCC-treated crops a higher SS (cleavage) activity along with a high sucrose content in tubers during the active tuber filling stage could lead to better availability of UDP-glucose for its conversion to glucose-1-phosphate, which could enter into the amyloplast leading to higher starch content. High SPS activity in tubers of CCC-treated plants ensures that reducing sugars formed are reconverted efficiently to sucrose. The efficiency of developing tubers from CCC-sprayed plants to convert 14C sucrose fed through stolons into starch was about 2.5 times more than in the control.  相似文献   

10.
Effect of static magnetic field on some enzymes activities in rats   总被引:2,自引:0,他引:2  
The magnetic field of 0.008 T and 0.15 T inductions influence lasting 7 weeks (7 days a week), 1 h daily determines the increase of the activity of cytoplasmatic enzymes (glutamic pyruvic transaminase, glutamic oxalacetic transaminase, lactic dehydrogenase), the decrease of cholinesterase activity and the growth of alkaline phosphatase activity in the plasma of the examined animals. The observed changes were reversible. 2 months after the exposure had been stopped, the tested parameters were back to normal.  相似文献   

11.
Accumulation of 60–70 % of biomass in turnip root takes place between 49–56 days after sowing. To understand the phenomenon of rapid sink filling, the activities of sucrose metabolising enzymes and carbohydrate composition in leaf blades, petiole and root of turnip from 42–66 days of growth were determined. An increase (2–3 folds) in glucose and fructose contents of roots accompanied by an increase in activities of acid and alkaline invertases was observed during rapid biomass accumulating phase of roots. The observed decrease in the activities of acid and alkaline invertases along with sucrose synthase (cleavage) in petiole during this period could facilitate unrestricted transport of sucrose from leaves to the roots. During active root filling period, a decrease in sucrose synthase (cleavage) and alkaline invertase activities was also observed in leaf blades. A rapid decline in the starch content of leaf blades was observed during the phase of rapid sink filling. These metabolic changes in the turnip plant led to increase in hexose content (35–37 %) of total dry biomass of roots at maturity. High hexose content of the roots appears to be due to high acid invertase activity of the root.  相似文献   

12.
The ability of the synthetic hypertrehalosemic peptides, HT-I and HT-II, to influence the activities of glycogen phosphorylase, trehalase and hexokinase via elevation of Ca++ and cAMP levels was examined in thoracic musculature of the American cockroach, Periplaneta americana. The peptides effect dose- and time-dependent activation of phosphorylase, trehalase and hexokinase activities that occur concomitantly with elevated levels of intracellular calcium. In addition, HT-I increases the accumulation of cyclic AMP in muscle cells.  相似文献   

13.
14.
Diabetes mellitus is a major cause of neuropathy, leading to adverse effects including autonomic gastrointestinal dysfunction. Oxidative stress contributes to the etiology of diabetic neuropathy. The aim was to examine whether treatment with the antioxidant, alpha-lipoic acid (LA), could prevent or correct diabetic functional defects in the gastric fundus non-adrenergic, non-cholinergic (NANC) nerves, which use nitric oxide as their major neurotransmitter. LA (100 mg/kg/d) was given in a prevention study for 8 weeks following streptozotocin-diabetes induction, and in an intervention study for 4 weeks after 4 weeks of untreated diabetes. Fundus strips were studied in vitro after precontraction with 5-hydroxytryptamine in the presence of guanethidine and atropine to isolate NANC relaxation to electrical field stimulation. After 4 and 8 weeks of diabetes, there were 26% and 48% deficits in maximum relaxation, respectively. Prevention LA treatment gave 83% protection; intervention LA prevented the deterioration between 4 and 8 weeks of diabetes and corrected the initial 4 week deficit by 56%. Diabetes also resulted in a failure to maintain relaxation for prolonged stimulation, which was prevented by LA. Thus, LA prevented and reversed the development of impaired gastric fundus NANC responses in diabetic rats, which has potential therapeutic implications for gastrointestinal autonomic neuropathy.  相似文献   

15.
-Lipoic acid (LA), an antioxidant with broad neuroprotective capacity, is thought to act by scavenging reactive oxygen species and stimulation of glutathione synthesis. LA shows structural resemblance to dithiolethiones, like anethole dithiolethione (ADT). ADT protects against oxidative damage, primarily by induction of phase II detoxication enzymes, in particular NAD(P)H:quinone oxidoreductase (NQO1) and glutathione- S -transferase (GST). Therefore, we investigated whether LA, like ADT, is capable also of inducing these protective enzymes. Our data show that LA, like ADT, induces a highly significant, time- and concentration dependent, increase in the activity of NQO1 and GST in C6 astroglial cells. The LA or ADT mediated induction of NQO1 was further confirmed by quantitative PCR and western blot analysis. This work for the first time unequivocally demonstrates LA mediated upregulation of phase II detoxication enzymes, which may highly contribute to the compounds' neuroprotective potential. Moreover, the data support the notion of a common mechanism of action of LA and ADT.  相似文献   

16.
17.
Treatment of adult guinea pigs with prostaglandins produces changes in the levels of enzymes involved in carbohydrate metabolism of the thyroid gland. A decrease in glucose-6-phosphate dehydrogenase activity is observed with a concomitant increase in 6-phosphogluconic dehydrogenase; the glycolytic enzymes appear unaffected by the same treatment. The results indicate that prostaglandins do not have the biochemical effects obtained with thyrotropin and cAMP administration, showing that these compounds play an antagonistic role in comparison with the above mentioned stimulating agents.  相似文献   

18.
S F Leong 《Life sciences》1991,48(6):561-567
Hexokinase and glucose-6-phosphate dehydrogenase activities were studied in brain regions after intraventricular injection of kainic acid. Hexokinase activity was decreased by 10-15% in various regions while glucose-6-phosphate dehydrogenase activity remained unaltered. Soluble hexokinase activity, which remained the smaller fraction of total hexokinase activity, showed slightly more dramatic decreases of 15-35% compared to normal activities in brain regions. This decrease of hexokinase activity in the cytosolic compartment could partly account for the kainate-induced decreases seen in glucose metabolism.  相似文献   

19.
Increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. This study was designed to determine whether alpha-lipoic acid, which has been shown to have substantial antioxidant properties, when administered (10 mg/kg ip) once daily for 14 days to normal and diabetic female Sprague-Dawley rats would prevent diabetes-induced changes in biomarkers of oxidative stress in liver, kidney and heart. Serum glucose concentrations, aspartate aminotransferase activity, and glycated hemoglobin levels, which were increased in diabetes, were not significantly altered by alpha-lipoic acid treatment. Normal rats treated with a high dose of alpha-lipoic acid (50 mg/kg) survived but diabetic rats on similar treatment died during the course of the experiment. The activity of glutathione peroxidase was increased in livers of normal rats treated with alpha-lipoic acid, but decreased in diabetic rats after alpha-lipoic acid treatment. Hepatic catalase activity was decreased in both normal and diabetic rats after alpha-lipoic acid treatment. Concentrations of reduced glutathione and glutathione disulfide in liver were increased after alpha-lipoic acid treatment of normal rats, but were not altered in diabetics. In kidney, glutathione peroxidase activity was elevated in diabetic rats, and in both normal and diabetic animals after alpha-lipoic acid treatment. Superoxide dismutase activity in heart was decreased in diabetic rats but normalized after treatment with alpha-lipoic acid; other cardiac enzyme activities were not influenced by either diabetes or antioxidant treatment. These results suggest that after 14 days of treatment with an appropriate pharmacological dose, alpha-lipoic acid may reduce oxidative stress in STZ-induced diabetic rats, perhaps by modulating the thiol status of the cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号