首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in vulnerability to natural enemies, reproductive rate and insecticide resistance among phenotypes of Myzus persicae (Sulzer) has been shown to have the potential to disrupt biological control and IPM of this species, and movement of particularly troublesome phenotypes in international horticultural trade could be cause for concern. Three important components of fitness, vulnerability to parasitoids, reproduction and insecticide resistance were determined in three clones of M. persicae originating from prevalent phenotype populations on pepper crops in greenhouses in British Columbia, Canada. One of these phenotypes appeared to be consistently involved in outbreaks in commercial operations. These clones were also characterized for their DNA microsatellite genotype and compared with genotypes of M. persicae from Europe. The clone involved in outbreaks in commercial greenhouses showed reduced vulnerability to parasitoids, and a higher reproductive rate compared to the other two clones suggesting that these traits may have been involved in outbreaks. As in M. persicae European clones, a higher reproductive rate was correlated with a lack of esterase‐based resistance (primarily to organophosphates and, to some extent, to carbamates and pyrethroids). However, microsatellite analysis demonstrated that the three clones investigated in British Columbia had unique genotypes, and therefore there was no evidence for their movement in international trade.  相似文献   

2.
Analysis of holocentric mitotic metaphase chromosomes of the peach‐potato aphid Myzus persicae (Sulzer) clone 33H revealed different chromosome numbers, ranging from 12 to 17 within each embryo, in contrast to the standard karyotype of this species (2n = 12). Chromosome length measurements revealed that the observed chromosomal mosaicism is the result of recurrent fragmentations of chromosomes X, 1 and 3 because of fragile sites or hot spots of recombination. Fluorescent in situ hybridization experiments showed that X chromosomes were frequently involved in recurrent fragmentations, in particular their telomeric end opposite to the nucleolar organizer region. Experiments to induce males showed that M. persicae clone 33H is obligately parthenogenetic. The reproduction by apomictic parthenogenesis, together with a high telomerase expression that stabilized the chromosomes involved in the fragmentations observed in the M. persicae clone 33H, appears to favour the stabilization of the observed chromosome instability. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 350–358.  相似文献   

3.
The effects of sub-lethal imidacloprid concentrations on acquisition and inoculation of potato leafroll virus (PLRV) by Myzus persicae (Sulzer) (Hemiptera: Aphididae) were investigated. In experiments using two aphid clones to acquire PLRV from infected potatoes, virus transmission declined significantly with increasing concentrations of imidacloprid. The same was true in experiments using imidacloprid-treated Physalis floridana Rydb. as acquisition sources. When viruliferous M. persicae were placed on uninfected, imidacloprid-treated P. floridana, there were significant declines in PLRV transmission. Sub-lethal concentrations of imidacloprid clearly inhibited both acquisition and inoculation of PLRV by M. persicae, either through poisoning, temporary intoxication, and/or antifeedant effects.  相似文献   

4.
The performance of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) adults of the aulica and nigra phenotypes fed on Aphis fabae Scopoli and Myzus persicae (Sulzer) was compared by measuring their voracity, daily biomass consumption, daily weight gain, efficiency of food utilisation, and reproductive capacity. Our results demonstrated differences in the suitability of A. fabae and M. persicae for the two phenotypes of the predator. This suggests that either differences occur in the nutritive requirements of the predators, or in the nutritive value of the two prey species. Both A. fabae and M. persicae supported the growth and oviposition of the aulica and nigra phenotypes. Although nigra females consumed fewer M. persicae, they achieved the same daily weight gain as aulica females. The predator phenotypes consumed the same amount of A. fabae, but the daily weight gain of aulica females was higher than that of nigra. The two predator phenotypes had the same feeding efficiency when consuming M. persicae or A. fabae. The reproductive capacity of nigra females was higher, when this phenotype consumed A. fabae rather than M. persicae.  相似文献   

5.
The occurrence of karyotype variations with respect to both chromosome number and structure has been frequently reported in aphids. Here, we review recent data attesting to the presence of recurrent chromosomal changes in the karyotype of the peach potato aphid Myzus persicae, where clones presenting metaphases with different chromosome number (from 12 to 17) have been observed, also comparing plates obtained within the same embryo. According to the available data, M. persicae autosomes 3 and 1 are the chromosomes mostly involved in changes compared to other autosomes, suggesting that they could have sites more susceptible to fragmentation. Chromosomal fissions involving the X chromosomes have also been observed, suggesting that they may have fragile sites located at the termini opposite to the nucleolar organizer regions‐bearing telomere. The presence of holocentric chromosomes and reproduction by apomictic parthenogenesis, together with a constitutive expression of telomerase, could explain the inheritance of the observed chromosomal instability in aphids. Considering that chromosomal changes may affect the host choice and could also favour speciation, it would be intriguing to confirm whether the observed karyotype variants have effects over short temporal and spatial scales.  相似文献   

6.
We present data on the frequency of amplified E4 and FE4 carboxylesterase genes in Myzus persicae s.l. clones collected during the years 2002–2007 and 2012 in Greece. Most clones were of the tobacco aphid, Myzus persicae nicotianae. Samples from 2012 were genotyped with microsatellite DNA markers and a number of them were karyotyped. Aphid clones with amplified FE4 genes predominated in all years, whereas E4 was present in only 3.5% of all samples and always occurred in clones with FE4. Most of the clones examined showed high carboxylesterase activity levels (R2 resistant category). The results showed marked changes in the frequencies of the two carboxylesterase genes in the tobacco aphid populations compared to published data that were collected in Greece in the mid 1990s, when E4 was recorded on its own in 20% of all samples and in 32% of samples from tobacco. A parallel change in karyotype was also observed because the A1,3 translocation, which had a worldwide association with amplified E4 genes in the 1990s, was not detected in the clones analyzed in 2012. Possible causes for these changes are discussed, although selection as a result of pest management practices appears to be the major one. Novel chromosomal rearrangements were also found in M. persicae nicotianae clones. These rearrangements could be a result of clastogenic effects of nicotine, which could persist because of the holocentric nature of aphid chromosomes. The results are discussed in relation to rapid evolution events that have taken place in the tobacco aphid in Greece during the last two decades. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 455–470.  相似文献   

7.
8.
Abstract Plants protect themselves against aphid attacks by species‐specific defense mechanisms. Previously, we have shown that Solanum stoloniferum Schlechtd has resistance factors to Myzus persicae Sulzer (Homoptera: Aphididae) at the epidermal/mesophyll level that are not effective against Macrosiphum euphorbiae Thomas (Homoptera: Aphididae). Here, we compare the nymphal mortality, the pre‐reproductive development time, and the probing behavior of M. persicae and M. euphorbiae on S. stoloniferum and Solanum tuberosum L. Furthermore, we analyze the changes in gene expression in S. stoloniferum 96 hours post infestation by either aphid species. Although the M. euphorbiae probing behavior shows that aphids encounter more probing constrains on phloem activities–longer probing and salivation time– on S. stoloniferum than on S. tuberosum, the aphids succeeded in reaching a sustained ingestion of phloem sap on both plants. Probing by M. persicae on S. stoloniferum plants resulted in limited feeding only. Survival of M. euphorbiae and M. persicae was affected on young leaves, but not on senescent leaves of S. stoloniferum. Infestation by M. euphorbiae changed the expression of more genes than M. persicae did. At the systemic level both aphids elicited a weak response. Infestation of S. stoloniferum plants with a large number of M. persicae induced morphological changes in the leaves, leading to the development of pustules that were caused by disrupted vascular parenchyma and surrounding tissue. In contrast, an infestation by M. euphorbiae had no morphological effects. Both plant species can be regarded as good host for M. euphorbiae, whereas only S. tuberosum is a good host for M. persicae and S. stoloniferum is not. Infestation of S. stoloniferum by M. persicae or M. euphorbiae changed the expression of a set of plant genes specific for each of the aphids as well as a set of common genes.  相似文献   

9.
The genetic constitutions of chromosome 2M of Aegilops comosa and the derived wheat-Ae. comosa translocations were analyzed by molecular cytogenetic techniques. Hybridization of 15 RFLP markers covering the entire length of the group-2 chromosomes revealed that chromosome 2M was structurally rearranged compared to the homoeologous chromosomes of wheat by either a pericentric inversion or a terminal intrachromosomal translocation. The breakpoint of the rearrangement was located in a region between the loci Xpsr131 and Xcdo405, resulting in the translocation of 47% of 2MS to 2ML. This aberrant structure of 2M allowed homoeologous recombination between 2M and its wheat counterpart only in the translocated segment on 2ML. C-banding and genomic in situ hybridization analyses confirmed that all translocation chromosomes consisted of the complete 2MS arm, a large part of 2ML, and very small distal segments derived from 2AS or 2DS, as expected from the aberrant structure of chromosome 2M. Thus, the translocation in the line 2A-2M?4/2 can be described as T2AS-2M?1L???2M?1S and the translocations in the lines Compair and 2D-2M?3/8 as T2DS-2M?1L???2M?1S. RFLP analysis determined the breakpoints in these translocation chromosomes to be within the telomeric 16% of the wheat chromosome arms. The breakpoint of the 2A/2M translocation was between Xbcd348 and Xcdo783, and that of the 2D/2M translocation was between Xcdo783 and Xpsr666. Because the translocation chromosomes retain the structural aberration found in chromosome 2M, further exploitation of the wheat-Ae. comosa translocations for cultivar improvement is questionable.  相似文献   

10.
11.
Voracity and prey preference were evaluated for adult females of the predatory bugs Anthocoris nemorum (L.) and Anthocoris nemoralis (Fabricius) (Heteroptera: Anthocoridae) preying upon five species of aphids (Homoptera: Aphididae), of which Myzus persicae Sulzer, Aulacorthum solani (Kaltenbach), Macrosiphum euphorbiae (Thomas), and Aphis gossypii Glover are common pests in Danish glasshouse crops. Aphis fabae Scopoli was included to determine the influence of food quality on the preference of the predators, since A. fabae has proved to be of poor nutritional value to Anthocoris spp. The experiments were carried out over 24 h in climate cabinets at 20 °C, 60–70% r.h., L18:D6. The aphids were offered in equal amounts in combinations of two species in instars of comparable size. Myzus persicae served as a reference species in all combinations. Both predators accepted all five species of aphids as prey. The numbers of aphids killed per 24 h period varied between 3.7 and 18.0 for A. nemorum and between 3.6 and 12.7 for A. nemoralis. Field collected A. nemorum females, presumably in a state of reproductive diapause, killed in three of four prey combinations significantly more aphids than did ovipositing A. nemoralis females which originated from a commercial rearing. When A. nemorum females had terminated their reproductive diapause and commenced oviposition, voracity increased approximately threefold. When prey preferences were evaluated as a total number of killed prey, no difference in preference was found between the two Anthocoris species. Both predatory bugs preferred M. persicae to the other species, the most accepted alternative prey were A. gossypii, A. fabae, A. solani, and M. euphorbiae, in descending order. However, evaluating preference by number of aphids consumed, A. nemoralis showed a more pronounced preference for M. persicae, especially when combined with A. fabae. In nearly every case, A. nemoralis rejected A. fabae as a food item after killing the aphid. Thus, A. nemoralis exhibited a more specific food choice than A. nemorum. By killing and consuming different aphid species found in glasshouse crops – particularly M. persicae– both A. nemorum and A. nemoralis showed preliminary qualities as agents for the biological control of aphids.  相似文献   

12.
Prior to designation as distinct species, an appellation presently in question, the tobacco aphid, Myzus nicotianae Blackman (Homoptera: Aphididae), was classified as a tobacco-feeding form of the green peach aphid, Myzus persicae (Sulzer). In this study, RAPD polymorphisms distinguished members of the Myzus persicae complex (M. persicae and M. nicotianae) from three outgroup Myzus species (M. cerasi (F.), M. hemerocallis Takahashi, and M. varians Davidson). Polymorphisms within the complex did not separate populations on the basis of host association (tobacco versus other host plants) or geographic origin (collections from the United States, Europe, and Japan). Similarly, while GC-MS analysis of cuticular hydrocarbon profiles revealed both developmental and inter-populational differences within the M. persicae complex, it did not separate populations of tobacco feeding aphids from those collected off non-tobacco hosts. Finally, with the exception of their responses to a choice between lettuce and collards, the host preference behavior of a green peach aphid population, a red tobacco aphid population, and a green tobacco aphid population was indistinguishable in host preference experiments. These results add to a growing body of evidence suggesting M. nicotianae and M. persicae are conspecific.  相似文献   

13.
The probing of Aphis fabae and Myzus persicae in the leaves of sugar beet with inherited resistance or susceptibility to aphids was studied by microscopic examination of samples of whole leaves, prepared after 48 h exposure to adult aphids at approximately three aphids cm-2.The density of saliva stylet-sheaths left by the aphids (cm-2) and the proportion reaching phloem differed between sugar beet stocks and were inversely associated. Differences in resistance between stocks could not, however, be related directly to either. All beet stocks examined were probed freely. Seasonal differences in sugar beet grown in the glasshouse affected the proportion of sheaths reaching the phloem, but the differences between beet stocks were similar at all times.The densities of sheaths left by different clones of M. persicae corresponded with the aphids' response to sugar beet as a host plant. Among aphid clones which readily colonize sugar beet, the densities of stylet sheaths which reached phloem suggested that the adults of both A. fabae and M. persicae gained sufficient access to sieve tubes to satisfy their nutritional needs. The phloem of sugar beet from the glasshouse was always within the estimated maximum depth to which the aphids probe; but, in leaves from the field, it appeared that the phloem might be inaccessible to young M. persicae in the sugar beet crop during late summer.
Zusammenfassung Das Proben von Aphis fabae und Myzus persicae in Blättern von Zuckerrüben mit erblicher Blattlausresistenz bzw.-anfälligkeit wurde untersucht durch mikroskopische Durchmusterung von Speichelscheiden in Proben von ganzen Blatt. Rübenblätter wurden mit genähert drei adulten Läusen cm-2 besetzt und nach 48 Stunden quergeschnittene Streifen der Blätter in Alkohol fixiert, gefärbt und mit der Unterseite nach oben auf Objektträgern eingeschlossen.23890 Speichelscheiden wurden registriert. Die Dichte der Scheiden von M. persicae (cm-2) und der Anteil der das Phloem erreichenden Scheiden (SRP) unterschieden sich signifikant zwischen den Rübenstämmen. Bei A. fabae ergaben sich entsprechende, aber nicht gesicherte Unterschiede. Scheidendichte und Prozentsatz SRP waren gegenläufig, zwei Rübenstämme zeigten eine hohe Scheidendichte, zwei andere hatten weniger Scheiden, aber einen höheren Prozentsatz SRP. Diese Gruppierung der Stämme korrespondierte aber nicht mit ihrer Blattlausresistenz. Aus der Scheidendichte ergab sich, dass M. persicae und A. fabae auf allen geprüften Rübenstämmen, resistenten und anfälligen, unbehindert probten, so dass jede Laus das Phloem durchschnittlich etwa viermal am Tag erreichte. Ein Klon von M. persicae, der sich an Rüben nicht entwickelt, hinterliess weniger Scheiden in den Blättern aller Stämme.Der Anteil von SRP war bei Prüfungen im März grösser als im November. Dieser Unterschied war besonders deutlich bei Scheiden von Larven, die im übrigen zu allen Zeiten das Phloem weniger oft erreichten als ihre Eltern. Messungen des Abstandes von der unteren Blattfläche zum Phloem ergaben, dass das Phloem den Läusen in Gewächshaus-Zuckerrüben immer zugänglich war. M. persicae-Larven konnten jedoch in Blättern von Freilandrüben das Phloem nicht erreichen.
  相似文献   

14.
The green peach aphid, Myzus persicae Sulzer (Hemiptera, Aphididae), is an important cosmopolitan pest. Real time qRT‐PCR has been used for target gene expression analysis on M. persicae. Using real time qRT‐PCR, the expression levels are normalized on the basis of the reliable reference genes. However, to date, the stability of available reference genes has been insufficient. In this study, we evaluated nine candidate reference genes from M. persicae under diverse experimental conditions. The tested candidate genes were comprehensively ranked based on five alternative methods (RefFinder, geNorm, Normfinder, BestKeeper and the comparative ΔCt method). 18s, Actin and ribosomal protein L27 (L27) were recommended as the most stable reference genes for M. persicae, whereas ribosomal protein L27 (L27) was found to be the least stable reference genes for abiotic studies (photoperiod, temperature and insecticide susceptibility). Our finding not only sheds light on establishing an accurate and reliable normalization of real time qRT‐PCR data in M. persicae but also lays a solid foundation for further studies of M. persicae involving RNA interference and functional gene research.  相似文献   

15.
Chromosome segregation of the parental chromosomes was studied in 20 interspecific hybrid clones obtained by fusion of Mus musculus embryonic stem cells with Mus caroli splenocytes. FISH analysis with labeled species specific probes and microsatellite markers was used for identification of the parental chromosomes. Cytogenetic analysis has shown significant intra- and interclonal variability in chromosome numbers and ratios of the parental chromosomes in the hybrid cells: six clones contained all M. caroli chromosomes, nine clones showed moderate segregation of M. caroli chromosomes (from 1 to 7), and five clones showed extensive loss of M. caroli chromosomes (from 12 to complete loss of all M. caroli autosomes). Both methods demonstrated cryptic segregation of the somatic partner chromosomes. For instance, five clones with near-tetraploid chromosome sets contained only few M. caroli chromosomes (from 1 to 8). The data obtained suggest that the tetraploid chromosome set per se is not a sufficient criterion for conclusion on the absence of chromosome loss in the hybrid cells. Note that cryptic chromosome segregation occurred at a high frequency in the examined hybrid clones. Thus, cryptic segregation should be borne in mind for assessing pluripotency and genome reprogramming of embryonic stem hybrid cells.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 151–158.Original Russian Text Copyright © 2005 by Pristyazhnyuk, Temirova, Menzorov, Kruglova, Matveeva, Serov.  相似文献   

16.
Most evolutionary research on biological invasions has focused on changes seen between the native and invaded range for a particular species. However, it is likely that species that live in human‐modified habitats in their native range might have evolved specific adaptations to those environments, which increase the likelihood of establishment and spread in similar human‐altered environments. From a quantitative genetic perspective, this hypothesis suggests that both native and introduced populations should reside at or near the same adaptive peak. Therefore, we should observe no overall changes in the G (genetic variance–covariance) matrices between native and introduced ranges, and stabilizing selection on fitness‐related traits in all populations. We tested these predictions comparing three populations of the worldwide pest Myzus persicae from the Middle East (native range) and the UK and Chile (separately introduced ranges). In general, our results provide mixed support for this idea, but further comparisons of other species are needed. In particular, we found that there has been some limited evolution in the studied traits, with the Middle East population differing from the UK and Chilean populations. This was reflected in the structure of the G ‐matrices, in which Chile differed from both UK and Middle East populations. Furthermore, the amount of genetic variation was massively reduced in Chile in comparison with UK and Middle East populations. Finally, we found no detectable selection on any trait in the three populations, but clones from the introduced ranges started to reproduce later, were smaller, had smaller offspring, and had lower reproductive fitness than clones from the native range.  相似文献   

17.
Abstract This paper deals with the karyotype of green peach aphid, Myzus persicae (Sulzer), with three different life cycles in different regions of China. The results showed that four types of karyotype were found in the natural populations of red form and brown form aphids. Four types of karyotype are as follows: 2n = 12 with autosomes 1, 3 translocated (T1–3); 3n = 18 normal triploid; 3n = 18 with T1–3 translocation; and 2n = 11. However, in the yellowish‐green aphids there were only two types of karyotype, normal karyotype 2n= 12 (NK) and 2n = 12 with T1–3 translocation. There was no significant difference in the relative lengths of chromosomes in 2n = 12 karyotype among different color forms and groups from different regions.  相似文献   

18.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

19.
Abstract: Three questions regarding possible benefits of mixed diets for the specialist aphid predator, Coccinella septempunctata larvae were investigated. (1) Do aphids species from different host plants complement each other nutritionally? (2) Is a mixed diet of high‐quality aphids beneficial? (3) How does the quality of mixed diets depend on the quality of constituent species? All mix‐combinations of aphid species of high (Metopolophium dirhodum), intermediate (Myzus persicae), and poor food quality (Aphis sambuci), and the three single‐species diets were compared. A mixed diet of two high‐quality species (Sitobion avenae and M. dirhodum) was also compared with single‐species diets. Larvae that were given pure A. sambuci and a mixed diet of A. sambuci + M. persicae died within 18 days and none of the larvae developed to fourth instar. Metopolophium dirhodum was generally of higher quality as food than M. persicae, whereas the mixed diet of M. dirhodum + M. persicae was intermediate. Sitobion avenae and M. dirhodum were found to have approximately the same food value. Coccinella septempunctatam larvae that were offered a mixed diet of these two high‐quality aphids gained no extra advantage. Overall, no benefit from mixing of aphid species was found. The quality of mixed diets depended on the quality of the constituent species.  相似文献   

20.
Sugarcane cultivars are polyploid, aneuploid clones derived from interspecific hybridization between Saccharum officinarum and S. spontaneum. Their genome has recently started to be unravelled as a result of the development of molecular markers. We constructed an AFLP genetic map based on a selfing population of a specific cultivar, R570.Using 37 AFLP primer pairs, we detected 1,185 polymorphic markers of which 939 were simplex (segregated 3:1); these were used to construct the map. Of those 939, 887 were distributed on 120 cosegregation groups (CGs) based on linkages in coupling, while 52 remained unlinked. The cumulative length of all the groups was 5,849 cM, which is probably around one-third of the total genome length. Comparison with reference S. officinarum clones enabled us to assign 11 and 79 CGs to S. spontaneum and S. officinarum,respectively, whereas 11 CGs were probably derived from recombination between chromosomes of the two ancestral species. The patchy size of the groups, which ranges from 1 to 232 cM, illustrates the difficulty to access large portions of chromosomes, particularly those inherited from S. officinarum. Repulsion phase linkages suggested a high preferential pairing for 13 CG pairs. Out of the 120 CGs, 34 could be assigned to one of the 10 homo(eo)logy groups already defined in a previous RFLP map owing to the use of a small common marker set. The genome coverage was significantly increased in the map reported here. Implications for quantitative trait loci (QTL) research and marker-assisted breeding perspectives are discussed. Received: 31 August 2000 / Accepted: 16 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号