首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Paravertebral (superior cervical and stellate), prevertebral (coeliac-superior mesenteric, inferior mesenteric) and pelvic (hypogastric) sympathetic ganglia of the rat were investigated by enzyme histochemistry to ascertain the distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) activity. In the paravertebral ganglia the majority of the sympathetic neuronal perikarya contained lightly and homogeneously distributed formazan reaction product but there was a range of staining intensities amongst the neuron population. In contrast, in the prevertebral ganglia, intense NADPH-diaphorase staining was present in certain neurons. Firstly, a population of neurons of the coeliac-superior mesenteric ganglion complex were surrounded by densely NADPH-diaphorase-positive baskets of fibres and other stained fibres were seen in interstitial nerve bundles and in nerve trunks connected to the ganglion complex. Secondly, in both the inferior mesenteric ganglion and hypogastric ganglion there were many very intensely NADPH-diaphorase positive neurons. Stained dendritic and axonal processes emerged from these cell bodies. In both ganglia this population of neurons was smaller in size than the lightly stained ganglionic neurons and commonly had only one long (presumably axonal) process. The similarity of these highly NADPH-diaphorase-positive neurons with previously described postganglionic parasympathetic neurons in the hypogastric ganglion is discussed.  相似文献   

2.
The localization of sympathetic fibers on the floor of the cranium was studied in rats using amine fluorescence histochemistry, neuropeptide-Y (NPY) immunohistochemistry, and electron microscopy. The vast majority of amine fluorescent fibers joined the abducent nerve and were localized in the peripheral zone under the perineurium. After advancing along this nerve for some distance, the fibers diverged into many bundles that converged to form the cavernous plexus at a rostral end of the trigeminal ganglion. On the dorsal surface of the trigeminal ganglion, one or two medium-calibered fluorescent bundles ran inside or in close proximity to the trochlear nerve, while many small-calibered, brightly fluorescent bundles also extended longitudinally in the epidural connective tissue. In rats that had undergone nerve severance, NPY-immunoreactive fibers were detected at the cut ends of the abducent and trochlear nerve. The differing amounts of NPY accumulated at the rostral and the caudal stumps indicated the direction of the NPY-bearing fibers. Electron microscopy confirmed the presence of unmyelinated fibers in both the abducent and trochlear nerves.  相似文献   

3.
Synopsis Guanethidine is known to cause a loss of catecholamines from sympathetically innervated tissues and sympathetic ganglia in adult animals but its effect on newborn animals has not been examined.Newborn rats were injected daily with guanethidine (20 mg/kg body weight) for 8 days. They were killed when 1 month-old along with untreated litter mate controls. Catecholamines were demonstrated in the iris, in the pineal body and in sympathetic ganglia, using the formaldehyde-induced fluorescence method.In the guanethidine-treated rats there was a complete loss of fluorescent nerve fibres from the pineal body and an almost complete loss of similar fibres from the iris. The sympathetic ganglia were reduced to less than 10% of the control ganglia, and the number of nerve cell bodies per unit area was decreased in the ganglion remnants.It is concluded that guanethidine causes, in newborn rats, an irreversible destruction of most sympathetic neurons, i.e. a chemical sympathectomy closely resembling that obtainable in newborn animals by injections of 6-hydroxydopamine or antiserum to nerve growth factor.  相似文献   

4.
The myenteric plexus of the domestic fowl (Gallus domesticus) small intestine was studied by means of silver staining, glyoxylic acid-induced fluorescence, the modified Koelle-Friedenwald method for the detection of acetylcholinesterase, NADH-diaphorase techniques and the unlabelled antibody method involving the use of an antiserum raised against GABA conjugated by glutaraldehyde to bovine serum albumin. The majority of the perikarya were in the ganglia, with an average density of 3370 +/- 942 nerve cells/cm2. Cholinesterase-positive and a few GABA-immunoreactive nerve cell bodies were seen in the myenteric ganglia, while fluorescent ganglion cells were not observed. In addition to AChE and GABA-positive nerve fibres, a rich fluorescent network of varicose and nonvaricose nerve fibres was detected, pointing to the presence of an extrinsic aminergic system in the domestic fowl myenteric plexus. Electron microscopic observations on nerve cells, axon profiles and varicosites with various vesicle populations were in good agreement with the histochemical findings.  相似文献   

5.
A bright yellow-green specific fluorescence is induced by formaldehyde histochemistry for monoamines in the secretory nerve trunks of the Octopus vulgaris posterior salivary duct, and in their ramification in the gland tubules. In contrast, the motor nerve trunks of the duct contain few fluorescent elements. The muscular and connective coat of the duct is provided with fluorescent globular and varicose structures, of various sizes and colours, which become numerous in the duct branches. At least some of these peripheral structures belong to varicose monoamine nerve fibres. In the gland, on the contrary, the muscle cells surrounding the tubules are not supplied with fluorescent nerve fibres.  相似文献   

6.
Vasoactive intestinal peptide immunoreactive (VIP-IR) nerve fibres and terminals, neurons and small granule containing cells were observed in human lumbal sympathetic ganglia. Electron-microscopically VIP-IR was localized in the large dense-cored vesicles in nerve terminals and on the membranes of the Golgi complexes in the neurons. A small population of principal ganglion cells was surrounded by VIP-IR nerve terminals. Most of these neurons contained acetylcholinesterase (AChE) enzyme but were not tyrosine hydroxylase-immunoreactive (TH-IR). All VIP-IR ganglion cells and most of the nerve fibres contained AChE but not TH-IR. It appears that in human sympathetic ganglia VIP is localized in the cholinergic neurons and nerve fibres and that the VIP-IR nerve terminals innervate mainly the cholinergic subpopulation of the sympathetic neurons.  相似文献   

7.
Summary Vasoactive intestinal peptide immunoreactive (VIP-IR) nerve fibres and terminals, neurons and small granule containing cells were observed in human lumbal sympathetic ganglia. Electron-microscopically VIP-IR was localized in the large dense-cored vesicles in nerve terminals and on the membranes of the Golgi complexes in the neurons. A small population of principal ganglion cells was surrounded by VIP-IR nerve terminals. Most of these neurons contained acetycholinesterase (AChE) enzyme but were not tyrosine hydroxylase-immnoreactive (TH-IR). All VIP-IR ganglion cells and most of the nerve fibres contained AChE but not TH-IR. It appears that in human sympathetic ganglia VIP is localized in the cholingergic neurons and nerve fibres and that the VIP-IR nerve terminals innervate mainly the cholinergic subpopulation of the sympathetic neurons.  相似文献   

8.
Summary A detailed study of the origin and distribution of sympathetic fibres in the distal colon of the guinea-pig has been made using the fluorescent histochemical method for localizing catecholamines. The extrinsic adrenergic fibres of the colonie sympathetic nerves follow the inferior mesenteric artery and its branches to the colon. Some of the extrinsic adrenergic fibres are associated with the parasympathetic fibres of the pelvic nerves near the colon. Complete adrenergic denervation follows the removal of the inferior mesenteric ganglion or the destruction of the nerves running with the inferior mesenteric artery.No fluorescent fibres, other than those associated with blood vessels, were observed in air-dried stretch preparations of the isolated longitudinal muscle. However, a substantial number of varicose, terminal fibres, not associated with blood vessels, were observed in the circular muscle. Some varicose fibres, apart from those associated with ganglion cells, were observed in the myenteric plexus. These fibres were seen in the bundles of nerves running between the nodes of the plexus and also as single fibres which branched from the plexus to end in areas free of ganglion cells.Three plexuses of adrenergic nerve fibres have been distinguished in the submucosa: a dense plexus of terminal fibres innervating both the veins and arteries; a plexus consisting of innervated nodes of ganglion cells, connected by bundles of fluorescent and non-fluorescent nerves; and a plexus of varicose and non-varicose fibres, which is not associated with ganglion cells. Some groups of ganglion cells in the submucosa were without adrenergic innervation.A plexus of varicose fibres forms a meshwork in the lamina propria of the mucosa. The muscularis mucosae is sparsely innervated. Most of the blood vessels in the mucosa are not associated with adrenergic fibres.  相似文献   

9.
【目的】揭示绿盲蝽Apolygus lucorum腹神经节的组成结构。【方法】采用免疫组织化学染色方法,利用突触蛋白抗体对绿盲蝽成虫的腹神经节进行免疫标记,激光共聚焦扫描显微镜扫描照相获得原始数据,用图像分析软件进行标记,构建三维结构模型。【结果】绿盲蝽成虫腹神经节位于腹神经索的末端,与其前方的后胸神经节和中胸神经节紧密融合,形成后部神经节。与脑和胸神经节类似,腹神经节由周围的细胞体和内部的神经髓构成。腹神经节的神经纤维束主要包括位于腹侧的两条纵向神经连索和向两侧发出的9束神经纤维。9束神经纤维连接着9个神经原节,即富含突触联系的神经髓。这些神经原节紧密融合,无明显的边界,最后两节形成膨大的末端腹神经节。两侧的神经原节由横向的神经连锁连接起来。腹神经节外周的细胞体数量较多,排列紧密,大小一致,仅在前端背侧中间和后端腹侧中间位置分别有2个和5个体积较大的细胞体。【结论】本研究结果明确了绿盲蝽腹神经节的结构,为进一步研究昆虫的行为调控及神经系统发育和演化奠定一定的形态学基础。  相似文献   

10.
The pineal tract of rainbow trout from the pineal end vesicle to the posterior commissure was studied by light and electron microscopy. Five types of nerve fibres (photoreceptor basal process, ganglion cell dendrite, electron-lucent fibre and synaptic vesicles, myelinated and unmyelinated axons) and two modes of synapses (photoreceptor basal process ganglion cell dendrite and axon terminal with synaptic vesicles-photoreceptor basal process synapses) are distinguishable in the proximal region of end vesicle. The two distinct synaptic associations with the photoreceptor basal process suggest two different (excitatory and inhibitory) control of pineal sensory activity. At the distal portion of stalk about two thousand nerve fibres converge into dorsal and ventral bundles. Posterior to the habenular commissure several small branches run out laterally from the ventral bundles to the basal margin of the ependyma, but not into the habenular commissure. The dorsal bundle passes through the dorsal side of the subcommissural organ and runs ventral to the posterior commissure. The pineal tract is composed of unmyelinated axons, electron-lucent nerve fibres and myelinated axons. The number of fibres increases throughout the stalk and reaches the maximum number at the opening of pineal lumen to IIIrd ventricle, however, the number of fibres then decreases through the subcommissural organ and posterior commissure. This increase and decrease of nerve fibres suggest the continuous participation of axonal fibres of pineal nerve cells and the ramification or branching of pineal tract, respectively.  相似文献   

11.
The neuron morphology and distribution of four putative transmitters were investigated in the myenteric plexus of frog (Rana esculenta) midgut. The gross morphology was revealed by NADH-diaphorase histochemistry, and the shape of the neurons by silver impregnation. Nerve cells had heterogeneous distribution: they either formed ganglia or placed as solitary neurons in the duodenum, while in the rest of the midgut only solitary neurons were observed. Three morphologically distinct cell types were revealed by silver impregnation: mainly type I and type II neurons cells were seen in the duodenum, while the rest of the intestine contained type II and III cells. Catecholamine fluorescence was revealed in nerve fibres in the duodenum, while few small nerve cells were observed in the small intestinal region. Acetylcholinesterase histochemistry showed strongly reactive nerve cells that were associated with the main fibre bundles in the duodenum. Only longitudinally oriented fibres and occasionally stained neurons were seen in the small intestine. Substance P immunocytochemistry revealed an extensive plexus, which contained a moderate number of stained perikarya in the full length of the midgut. Gamma-aminobutyric acid showed non-uniform distribution in the two parts of the midgut: a stronger and more regular fibre staining was found in the duodenum then in the rest of the intestine. Ultrastructural observations demonstrated that intrinsic neurons received synaptic inputs from the profiles contained agranular vesicles, while "P"-type profiles established close contacts with neurons. Both profile types formed close contacts with the smooth muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Summary The localization of sympathetic fibers on the floor of the cranium was studied in rats using amine fluorescence histochemistry, neuropeptide-Y (NPY) immunohistochemistry, and electron microscopy. The vast majority of amine fluorescent fibers joined the abducent nerve and were localized in the peripheral zone under the perineurium. After advancing along this nerve for some distance, the fibers diverged into many bundles that converged to form the cavernous plexus at a rostral end of the trigeminal ganglion. On the dorsal surface of the trigeminal ganglion, one or two medium-calibered fluorescent bundles ran inside or in close proximity to the trochlear nerve, while many small-calibered, brightly fluorescent bundles also extended longitudinally in the epidural connective tissue. In rats that had undergone nerve severance, NPY-immunoreactive fibers were detected at the cut ends of the abducent and trochlear nerve. The differing amounts of NPY accumulated at the rostral and the caudal stumps indicated the direction of the NPY-bcaring fibers. Electron microscopy confirmed the presence of unmyelinated fibers in both the abducent and trochlear nerves.Dedicated to Professor Dr. T. H. Schiebler on the occasion of his 65th birthday.  相似文献   

13.
The pedal ganglion is a peripheral ganglion which gives rise to the innervation for both the somatic and visceral organs of the Mytilus foot. In the present study, different histofluorescence methods for the demonstration of monamines (formaldehyde-glutaraldehyde followed by polyethylene glycol embedding; aluminium-formaldehyde; Falck) and acetylcholinesterase histochemistry were applied in order to characterize the neuronal population of the ganglion. The fluorescence methods employed showed that the cortical region of the pedal ganglion is composed of roundish cells; these mainly contained an orange autofluorescent pigment. Yellow-fluorescing cells were scattered in the anterior region of the cortex, but they were more numerous and arranged in clusters in the posterior region. Green-fluorescing cells were mainly located at the border between the cortex and neuropile and in the neuropile itself, where a rich plexus of beaded green-fluorescing fibres was also present. Of the three methods, that using formaldehyde-glutaraldehyde followed by embedding in polyethylene glycol gave the best preservation of morphological details. Acetylcholinesterase histochemistry showed the presence of positive cells and fibres mainly in the anterior region of the ganglion.  相似文献   

14.
Summary In order to compare the structure of a teleost sympathetic ganglion with those of other vertebrates, light, fluorescence histochemical and electron microscopy were carried out on the coeliac ganglion of the scorpion fish, Myoxocephalus scorpius. In common with studies on other vertebrates, fluorescence histochemistry distinguished two cell types: a) principal neurones which exhibited low levels of specific catecholamine fluorescence and comprise the majority of neurones in the ganglia, and b) smaller intensely fluorescent cells, some of which had processes tens of micrometers long.With the electron microscope, the principal cells were seen to make axodendritic and axosomatic synapses with axons containing mainly 30 nm agranular vesicles at the synaptic site while in other vertebrates usually only one or other synaptic association is present.Both the somata and the processes of intensely fluorescent cells contain 300–600 nm diameter vesicles many of which have electron dense cores. These cells are also innervated by axons containing 30 nm agranular vesicles.  相似文献   

15.
Summary The pedal ganglion is a peripheral ganglion which gives rise to the innervation for both the somatic and visceral organs of the Mytilus foot. In the present study, different histofluorescence methods for the demonstration of monamines (formaldehyde-glutaraldehyde followed by polyethylene glycol embedding; aluminium-formaldehyde; Falck) and acetylcholinesterase histochemistry were applied in order to characterize the neuronal population of the ganglion. The fluorescence methods employed showed that the cortical region of the pedal ganglion is composed of roundish cells; these mainly contained an orange autofluorescent pigment. Yellow-fluorescing cells were scattered in the anterior region of the cortex, but they were more numerous and arranged in clusters in the posterior region. Greenfluorescing cells were mainly located at the border between the cortex and neuropile and in the neuropile itself, where a rich plexus of beaded green-fluorescing fibres was also present. Of the three methods, that using formaldehydeglutaraldehyde followed by embedding in polyethylene glycol gave the best preservation of morphological details. Acetylcholinesterase histochemistry showed the presence of positive cells and fibres mainly in the anterior region of the ganglion.  相似文献   

16.
The receptor mechanism mediating the avoidance behaviour of flying noctuid moths in response to brief ultrasonic pulses may require only a single pair of acoustic sense cells, one A1 cell in each tympanic organ (Roeder, 1966c). Introduction of the fluorescent dye, procion yellow, into the nerve fibres leaving the tympanic organ has allowed the reconstruction of the central morphology of A1, the more sensitive of the two acoustic cells. The A1 axon follows a superficial course for the first ~100 μ auterior to its dorsal root of entry (3N1) into the thoracic ganglia, then plunges ventrally into the posterior mesothoracic neuropil where it branches. The posterior part reaches through two-thirds of the metathoracic ganglion. The anterior branch bifurcates in the anterior mesothoracic ganglion to give rise to a posteriorly directed branch extending through the ventral mesothoracic neuropil and an anterior branch which passes through the connective into the posterior half of the prothoracic ganglion. Here it ramifies along the midline. The cell remains strictly ipsi-lateral with numerous processes extending right up to the midline in the ventral neuropil of all three ganglia. This morphology correlates well with the map of sites from which A1 acoustic responses can be recorded in the central nervous system.  相似文献   

17.
18.
Summary The projections of ocellar fibres within the brain and thorax of the honey bee, Apis mellifera, were established using a modified cobalt sulphide technique, supplemented by serial sectioning of the brain for the light microscope.The results are: 5 large fibres in each lateral nerve and 12 in the median nerve have wide-field terminal arborisations in ocellar association areas on either side of the posterior slope area. 9 medium-sized fibres in each lateral nerve and 12 in the median nerve form a second ocellar association area on each side of the perioesophageal foramen. A group of fine fibres, stained via the ocellar nerves, arborise just below and anterior to the protocerebral bridge. 10 medium-sized fibres run from the level of the ocellar nerve tracts to the first and second thoracic ganglia, branching in a number of discrete areas within each ganglion. These fibres also form a restricted ocellar association area within the suboesophageal ganglion. A few fibres run between the higher-order optic centres and the ocellar tract. The large- and mediumsized fibres give off short, stout spines from their axons within the ocellar tracts.  相似文献   

19.
本研究应用乙醛酸诱发儿茶酚胺(CA)荧光技术观察大鼠肾上腺素(NA)能神经在脊神经节内的分布;并应用HRP顺、逆行追踪技术对脊神经节内NA能神经纤维的起源及其与脊神经节神经元的关系进行了探讨。荧光组织化学观察发现、有些神经节神经元胞体周围分布有带膨体的NA能神经末梢;有的紧密围绕脊神经节细胞——卫星细胞复合体。颈上交感神经节内注射霍乱毒素B亚单位结合HRP(CB┐HRP),在同侧C3~6节段脊神经节内可见标记的点状纤维末梢紧邻于节细胞旁。T11~L2节段脊神经节内注射HRP后,在同侧椎旁交感链(T9~L1)内可见标记的交感节后神经元胞体。上述实验结果表明,交感节后神经元发出节后纤维可直接到达脊神经节内,与节细胞发生接触。本研究提示、交感神经在脊神经节水平可能参与躯体初级传入信息的调制  相似文献   

20.
Summary The uterine paracervical ganglion (Frankenhauser's ganglion) contains the terminal neurons of the cholinergic sacral parasympathetic, the short adrenergic sympathetic and the peptideric (vasoactive intestinal polypeptide-containing) nerves of the internal genitalia. Previous studies have shown that either the number of cells or transmitter content of each of these neuronal systems is altered by variations in steroid hormones. Furthermore, our recent study showed that some component of the rat paracervical ganglion was capable of metabolizing [3H]oestradiol to oestrone and the 2-OH and 4-OH forms of oestrone and oestradiol. The present study employs the peroxidase-anti-peroxidase immunohistochemical method to localize oestradiol in rat paracervical ganglia. Specific reaction product was identified in (1) cytoplasm and some nuclei of principal ganglion cells, (2) cytoplasm of large vacuolated ganglion cells, (3) cytoplasm of'small intensely fluorescent' cells and (4) some nerve fibres in ganglia from animals in oestrus. The cytoplasm of principal neurons and some nerve fibres exhibited specific staining for oestradiol in dioestrus and pro-oestrus. No oestradiol was localized in ganglia excised from animals in metoestrus. Preincubation in oestradiol before fixation was necessary for specific localization of oestradiol; treatment of tissues with oestradiol after fixation was not required. These results are not consistent with binding of oestradiol to the classical oestrogen receptor. The resistance of oestradiol to organic solvent extraction suggests that oestradiol is covalently bound to tissue proteins. Such covalently bound oestradiol has been reported as a by-product of tissue metabolism of oestradiol via P-450 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号