首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionotropic glutamate receptor (iGluR) gene family has been widely studied in animals and is determined to be important in excitatory neurotransmission and other neuronal processes. We have previously identified ionotropic glutamate receptor-like genes (GLRs) in Arabidopsis thaliana, an organism that lacks a nervous system. Upon the completion of the Arabidopsis genome sequencing project, a large family of GLR genes has been uncovered. A preliminary phylogenetic analysis divides the AtGLR gene family into three clades and is used as the basis for the recently established nomenclature for the AtGLR gene family. We performed a phylogenetic analysis with extensive annotations of the iGluR gene family, which includes all 20 Arabidopsis GLR genes, the entire iGluR family from rat (except NR3), and two prokaryotic iGluRs, Synechocystis GluR0 and Anabaena GluR. Our analysis supports the division of the AtGLR gene family into three clades and identifies potential functionally important amino acid residues that are conserved in both prokaryotic and eukaryotic iGluRs as well as those that are only conserved in AtGLRs. To begin to investigate whether the three AtGLR clades represent different functional classes, we performed the first comprehensive mRNA expression analysis of the entire AtGLR gene family. On the basis of RT-PCR, all AtGLRs are expressed genes. The three AtGLR clades do not show distinct clade-specific organ expression patterns. All 20 AtGLR genes are expressed in the root. Among them, five of the nine clade-II genes are root-specific in 8-week-old Arabidopsis plants.  相似文献   

2.
Excitatory synaptic transmission in the brain is mediated by ligand-gated ion channels (iGluRs) activated by glutamate. Distinct from other neurotransmitter receptors, the extracellular domains of iGluRs are loosely packed assemblies with two clearly distinct layers, each of which has both local and global 2-fold axes of symmetry. By contrast, the iGluR transmembrane segments have 4-fold symmetry and share a conserved pore loop architecture found in tetrameric voltage-gated ion channels. The striking layered architecture of iGluRs revealed by the 3.6?? resolution structure of an AMPA receptor homotetramer likely arose from gene fusion events that occurred early in evolution. Although this modular design has greatly facilitated biophysical and structural studies on individual iGluR domains, and suggested conserved mechanisms for iGluR gating, recent work is beginning to reveal unanticipated diversity in the structure, allosteric regulation, and assembly of iGluR subtypes.  相似文献   

3.
The plant Glutamate-Like Receptors (GLRs) are homologs of animal ionotropic glutamate receptors (iGluRs), and are hypothesized to be potential amino acid sensors in plants. Genetic studies of proteins from this family implicate individual GLRs in a diversity of physiological roles in plants. Recently, amino-acid gated channel activities have been proven for a few plant GLRs, suggesting that at least some of the functional mechanisms are conserved between plant GLRs and animal iGluRs. Animal iGluRs generally form heterotetramers, and the ligand-binding specificity and channel functionality is determined by interaction between the subunits. In order to investigate whether plant GLRs interact with each other, a modified yeast-2-hybrid system (mbSUS) approach was taken on 15 of the 20 Arabidopsis GLRs to identify potential interaction partners. Using this approach, we have successfully identified GLR subunits that are capable of interacting with multiple other GLRs. Unlike iGluRs, sequence similarity between the subunit was not correlated with the likelihood of interaction among 2 given subunits. Interactions between selected GLRs (GLR1.1, 2.9, 3.2, and 3.4) were further tested in another heterologous expression system, mammalian HEK293 cells, using Förster resonance energy transfer (FRET). Two separate approaches (sensitized FRET and acceptor photobleaching) indicated that GLRs 1.1 and 3.4 are capable of forming homomers, whereas other combinations did not result in detectable FRET between the subunits.  相似文献   

4.
Ionotropic glutamate receptors (iGluRs) play important roles in neurotransmission in animals. There is growing evidence that iGluRs also play important roles in plants. Using a chemical genetics approach, which combined a pH-homeostasis mutant of Arabidopsis thaliana (de-etiolated3), several different iGluR agonists, molecular modelling, and reporter gene expression in transgenic plants, we provide evidence that iGluR agonism can induce dramatic changes in plant development and metabolism. Systematic hypothesis testing revealed a signalling circuit that integrates amino acid and sugar signals to affect elongation growth and the deposition of carbon into starch and lignins. The data show that aminoglycoside antibiotics, such as kanamycin, and polyamines impinge upon this circuit. These findings provide a mechanism for the conversion of amino acid and sugar signals into an appropriate response at the gene expression level, and underline the similarities in iGluR agonism between animals and plants.  相似文献   

5.
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are the predominant neuroreceptors in the mammalian brain. Genes with high sequence similarity to animal iGluRs have been identified in Arabidopsis. To understand the role of Arabidopsis glutamate receptor-like (AtGLR) genes in plants, we have taken a pharmacological approach by examining the effects of BMAA [S(+)-beta-methyl-alpha, beta-diaminopropionic acid], a cycad-derived iGluR agonist, on Arabidopsis morphogenesis. When applied to Arabidopsis seedlings, BMAA caused a 2- to 3-fold increase in hypocotyl elongation and inhibited cotyledon opening during early seedling development. The effect of BMAA on hypocotyl elongation is light specific. Furthermore, BMAA effects on early morphogenesis of Arabidopsis can be reversed by the simultaneous application of glutamate, the native iGluR agonist in animals. To determine the targets of BMAA action in Arabidopsis, a genetic screen was devised to isolate Arabidopsis mutants with a BMAA insensitive morphology (bim). When grown in the light on BMAA, bim mutants exhibited short hypocotyls compared with wild type. bim mutants were grouped into three classes based on their morphology when grown in the dark in the absence of BMAA. Class-I bim mutants have a normal, etiolated morphology, similar to wild-type plants. Class-II bim mutants have shorter hypocotyls and closed cotyledons when grown in the dark. Class-III bim mutants have short hypocotyls and open cotyledons when grown in the dark, resembling the previously characterized constitutively photomorphogenic mutants (cop, det, fus, and shy). Further analysis of the bim mutants should help define whether plant-derived iGluR agonists target glutamate receptor signaling pathways in plants.  相似文献   

6.
Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling. Using tobacco cells, we first provide evidence supporting the activity of iGluRs as calcium channels and their involvement in NO production as reported in animals. Thereafter, iGluRs were shown to be activated in response to cryptogein, a well studied elicitor of defence response, and partly responsible for cryptogein-induced NO production. However, other cryptogein-induced calcium-dependent events including anion efflux, H2O2 production, MAPK activation and hypersensitive response (HR) did not depend on iGluRs indicating that different calcium channels regulate different processes at the cell level. We have also demonstrated that cryptogein induces efflux of glutamate in the apoplast by exocytosis. Taken together, our results demonstrate for the first time, an involvement of a putative iGluR in plant defence signaling and NO production, by mechanisms that show homology with glutamate mode of action in mammals.  相似文献   

7.
Jackson AC  Nicoll RA 《Neuron》2011,70(2):178-199
Ionotropic glutamate receptors (iGluRs) underlie rapid, excitatory synaptic signaling throughout the CNS. After years of intense research, our picture of iGluRs has evolved from them being companionless in the postsynaptic membrane to them being the hub of dynamic supramolecular signaling complexes, interacting with an ever-expanding litany of other proteins that regulate their trafficking, scaffolding, stability, signaling, and turnover. In particular, the discovery that transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that are critical determinants of their trafficking, gating, and pharmacology has changed the way we think about iGluR function. Recently, a number of novel transmembrane proteins have been uncovered that may also serve as iGluR auxiliary proteins. Here we review pivotal developments in our understanding of the role of TARPs in AMPA receptor trafficking and gating, and provide an overview of how newly discovered transmembrane proteins expand our view of iGluR function in the CNS.  相似文献   

8.
9.
Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment.  相似文献   

10.
Ionotropic glutamate receptors (iGluRs) are ligand gated ion channels that mediate excitatory synaptic transmission in the brain of vertebrates. A rapidly growing body of crystal structures for isolated iGluR extracellular domains, and more recently a full length AMPA receptor, combined with data from electrophysiological experiments and MD simulations, provides a framework that makes it possible to investigate the molecular basis for assembly, gating and modulation. These unprecedented advances in structural biology are constantly challenged by novel functional properties that emerge despite decades of functional analysis, and by a growing family of auxiliary proteins that modulate iGluR activity and assembly.  相似文献   

11.
Acher FC  Bertrand HO 《Biopolymers》2005,80(2-3):357-366
A motif foramino acid recognition by proteins or domains of the periplasmic binding protein-like I superfamily has been identified. An initial pattern of 5 residues was based on a multiple sequence alignment of selected proteins of that fold family and on common structural features observed in the crystal structure of some members of the family [leucine isoleucine valine binding protein (LIVBP), leucine binding protein (LBP), and metabotropic glutamate receptor type 1 (mGlu1R) amino terminal domain)]. This pattern was used against the PIR-NREF sequence database and further refined to retrieve all sequences of proteins that belong to the family and eliminate those that do not belong to it. A motif of 8 residues was finally selected to build up the general signature. A total of 232 sequences were retrieved. They were found to belong to only three families of proteins: bacterial periplasmic binding proteins (PBP, 71 sequences), family 3 (or C) of G-protein coupled receptor (GPCR) (146 sequences), and plant putative ionotropic glutamate receptors (iGluR, 15 sequences). PBPs are known to adopt a bilobate structure also named Venus flytrap domain, or LIVBP domain in the present case. Family 3/C GPCRs are also known to hold such a domain. However, for plant iGluRs, it was previously detected by classical similarity searches but not specifically described. Thus plant iGluRs carry two Venus flytrap domains, one that binds glutamate and an additional one that would be a modulatory LIVBP domain. In some cases, the modulator binding to that domain would be an amino acid.  相似文献   

12.
Previous studies showed that a variety of bone cells express protein components necessary for neuronal-like glutamatergic signaling and implicated glutamate as having a role in mechanically induced bone remodeling. Initial functional studies concentrated on the role of glutamate signaling in bone resorption and provided compelling evidence to suggest that glutamate signaling through functional NMDA type ionotropic glutamate receptors (iGluRs) is a prerequisite for in vitro osteoclastogenesis. Originally, effects of iGluR antagonists seen in co-cultures were attributed to antagonists acting directly on osteoclast precursors. However, in the light of recent osteoblast studies it now seems likely that the observed effects on osteoclastogenesis are an indirect effect of modulating the function of pre-osteoblast present within these cultures. The presence of iGluRs in osteoblasts suggests a role for them in bone formation and this paper reviews and discusses the emerging data relating to the role of glutamate signaling in osteoblasts. A number of recently published studies have shown that osteoblasts not only express a wide number of 'pre-synaptic' glutamatergic proteins but also possess the ability to both regulate glutamate release and actively recycle extracellular glutamate. The functionality of osteoblastic 'post-synaptic' glutamatergic components has also been shown as both primary and clonal osteoblasts express electrophysiologically active iGluRs, metabotropic type glutamate receptors (mGluRs) along with a variety of glutamate receptor associated signaling proteins. There is, however, little published data regarding the actual role of glutamatergic signaling in osteoblastic bone formation. In vivo and in vitro studies performed provide evidence that glutamatergic signaling is a necessity for normal osteoblast function. In a number of different models of in vitro bone formation, the addition of non-competitive antagonists of iGluRs prevents the formation of mineralized bone, moreover antagonizing some sub-types of iGluR mediates the differentiation of pre-osteoblasts. iGluR antagonists modulate osteoblast function in a manner that correlates with the previously reported data regarding in vitro osteoclastogenesis. Interestingly iGluR mediated glutamate signaling appears to function differently in osteoblasts derived from flat and long bones. This implies the components of osteoblastic glutamatergic signaling may be adapted in vivo possibly to reflect the differential function of osteoblasts in those regions of the skeleton.  相似文献   

13.
Chronic cocaine use in humans and animal models is known to lead to pronounced alterations in glutamatergic function in brain regions associated with reinforcement. Previous studies have examined ionotropic glutamate receptor (iGluR) subunit protein level changes following acute and chronic experimenter-administered cocaine or after withdrawal periods from experimenter-administered cocaine. To evaluate whether alterations in expression of iGluRs are associated with cocaine reinforcement, protein levels were assessed after binge (8 h/day, 15 days; 24-h access, days 16-21) cocaine self-administration and following 2 weeks of abstinence from this binge. Western blotting was used to compare levels of iGluR protein expression (NR1-3B, GluR1-7, KA2) in the ventral tegmental area (VTA), substantia nigra (SN), nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) of rats. iGluR subunits were altered in a time-dependent manner in all brain regions studied; however, selective alterations in certain iGluR subtypes appeared to be associated with binge cocaine self-administration and withdrawal in a region-specific manner. In the SN and VTA, alterations in iGluR protein levels compared with controls occurred only following binge access, whereas in the striatum and PFC, iGluR alterations occurred with binge access and following withdrawal. In the NAc, GluR2/3 levels were increased following withdrawal compared with binge access, and were the only changes observed in this region. Because subunit composition determines the functional properties of iGluRs, the observed changes may indicate alterations in the excitability of dopamine transmission underlying long-term biochemical and behavioral effects of cocaine.  相似文献   

14.
Ionotropic glutamate receptor (iGluR) channels control synaptic activity. The crystallographic structure of GluA2, the prototypical iGluR, reveals a clamshell-like ligand-binding domain (LBD) that closes in the presence of glutamate to open a gate on the pore lining α-helix. How LBD closure leads to gate opening remains unclear. Here, we show that bending the pore helix at a highly conserved alanine residue (Ala-621) below the gate is responsible for channel opening. Substituting Ala-621 with the smaller more flexible glycine resulted in a basally active, nondesensitizing channel with ∼39-fold increase in glutamate potency without affecting surface expression or binding. On GluA2(A621G), the partial agonist kainate showed efficacy similar to a full agonist, and competitive antagonists CNQX and DNQX acted as a partial agonists. Met-629 in GluA2 sits above the gate and is critical in transmitting LBD closure to the gate. Substituting Met-629 with the flexible glycine resulted in reduced channel activity and glutamate potency. The pore regions in potassium channels are structurally similar to iGluRs. Whereas potassium channels typically use glycines as a hinge for gating, iGluRs use the less flexible alanine as a hinge at a similar position to maintain low basal activity allowing for ligand-mediated gating.  相似文献   

15.
Ionotropic glutamate receptors (iGluRs) are an important class of heteromeric ligand-gated receptor complexes that mediate a large portion of the excitatory neurotransmission in the vertebrate CNS. Since the cloning of the first iGluR subunit in 1989, the study of this receptor family has rapidly developed in mammals and expanded to include the study of conserved glutamate receptors in simpler invertebrate systems, including the fruit fly Drosophila melanogaster and the soil nematode Caenorhabditis elegans. These model organisms have enabled the genetic analysis of glutamate receptors in the context of a simpler nervous system and provided new insights into receptor function and regulation. In this review we will focus on recent studies that have used genetic, behavioral, and electrophysiological techniques to study the function of iGluRs in C. elegans.  相似文献   

16.
In newborn pigs, vasodilation of pial arterioles in response to glutamate is mediated via carbon monoxide (CO), a gaseous messenger endogenously produced from heme degradation by a heme oxygenase (HO)-catalyzed reaction. We addressed the hypothesis that ionotropic glutamate receptors (iGluRs), including N-methyl-D-aspartic acid (NMDA)- and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA)/kainate-type receptors, expressed in cortical astrocytes mediate glutamate-induced astrocyte HO activation that leads to cerebral vasodilation. Acute vasoactive effects of topical iGluR agonists were determined by intravital microscopy using closed cranial windows in anesthetized newborn pigs. iGluR agonists, including NMDA, (±)1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD), AMPA, and kainate, produced pial arteriolar dilation. Topical L-2-aminoadipic acid, a gliotoxin that selectively disrupts glia limitans, reduced vasodilation caused by iGluR agonists, but not by hypercapnia, bradykinin, or sodium nitroprusside. In freshly isolated and cultured cortical astrocytes constitutively expressing HO-2, iGluR agonists NMDA, cis-ACPD, AMPA, and kainate rapidly increased CO production two- to threefold. Astrocytes overexpressing inducible HO-1 had high baseline CO but were less sensitive to glutamate stimulation of CO production when compared with HO-2-expressing astrocytes. Glutamate-induced astrocyte HO-2-mediated CO production was inhibited by either the NMDA receptor antagonist (R)-3C4HPG or the AMPA/kainate receptor antagonist DNQX. Accordingly, either antagonist abolished pial arteriolar dilation in response to glutamate, NMDA, and AMPA, indicating functional interaction among various subtypes of astrocytic iGluRs in response to glutamate stimulation. Overall, these data indicate that the astrocyte component of the neurovascular unit is responsible for the vasodilation response of pial arterioles to topically applied glutamate via iGluRs that are functionally linked to activation of constitutive HO in newborn piglets.  相似文献   

17.
A role for glycine in the gating of plant NMDA-like receptors   总被引:2,自引:0,他引:2  
The amino acid glycine has a well-established role in signalling in the mammalian central nervous system. For example, glycine acts synergistically with the major excitatory neurotransmitter, glutamate, to regulate the influx of ions such as calcium, through N-methyl-d-aspartate (NMDA) receptors. Plants possess NMDA-like receptors, generically referred to as glutamate receptors (GLRs), named on the basis of their presumed ligand, glutamate. Previously, glycine has not been implicated in plant GLR activity or any other aspect of plant signalling. Using transgenic Arabidopsis seedlings expressing aequorin to monitor ligand-mediated changes in the cytosolic concentration of Ca2+ ([Ca2+]cyt), the data presented herein show that glutamate and glycine act synergistically to control ligand-mediated gating of calcium in plants. Glutamate and glycine synergism also regulates hypocotyl elongation. Transient increases in [Ca2+]cyt mediated by glutamate and glycine, as well as hypocotyl elongation, were inhibited by 6,7-dinitroquinoxaline-2,3 dione (DNQX), a competitive inhibitor of animal GLRs. Using a multiscale docking algorithm in combination with a molecular model of the ligand-binding domain of plant GLRs, evidence is provided indicating that glycine, and not glutamate, is likely to be the natural ligand for most plant GLR subunits. These findings uncover a hitherto unconsidered role for glycine signalling in plants, and suggest that the synergistic action of glutamate and glycine at NMDA-like receptors predates the divergence of plants and animals.  相似文献   

18.
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate (NMDA) iGluRs are consistent with a rigid body that facilitates receptor assembly but suggest an additional dynamic role that could modulate signaling. Here, we moved beyond spatial and temporal limitations of conventional protein single-molecule spectroscopy by employing correlation analysis of extrinsic oxazine fluorescence fluctuations. We observed nanosecond (ns)-to-microsecond (μs) motions of loop segments and helices within a region of an AMPA-type iGluR NTD, which has been identified previously to be structurally variable. Our data reveal that the AMPA receptor NTD undergoes rapid conformational fluctuations, suggesting an inherent allosteric capacity for this domain in addition to its established assembly function.  相似文献   

19.

Background

Cycads are ancient seed plants (living fossils) with origins in the Paleozoic. Cycads are sometimes considered a 'missing link' as they exhibit characteristics intermediate between vascular non-seed plants and the more derived seed plants. Cycads have also been implicated as the source of 'Guam's dementia', possibly due to the production of S(+)-beta-methyl-alpha, beta-diaminopropionic acid (BMAA), which is an agonist of animal glutamate receptors.

Results

A total of 4,200 expressed sequence tags (ESTs) were created from Cycas rumphii and clustered into 2,458 contigs, of which 1,764 had low-stringency BLAST similarity to other plant genes. Among those cycad contigs with similarity to plant genes, 1,718 cycad 'hits' are to angiosperms, 1,310 match genes in gymnosperms and 734 match lower (non-seed) plants. Forty-six contigs were found that matched only genes in lower plants and gymnosperms. Upon obtaining the complete sequence from the clones of 37/46 contigs, 14 still matched only gymnosperms. Among those cycad contigs common to higher plants, ESTs were discovered that correspond to those involved in development and signaling in present-day flowering plants. We purified a cycad EST for a glutamate receptor (GLR)-like gene, as well as ESTs potentially involved in the synthesis of the GLR agonist BMAA.

Conclusions

Analysis of cycad ESTs has uncovered conserved and potentially novel genes. Furthermore, the presence of a glutamate receptor agonist, as well as a glutamate receptor-like gene in cycads, supports the hypothesis that such neuroactive plant products are not merely herbivore deterrents but may also serve a role in plant signaling.
  相似文献   

20.
Ferritin, a protein widespread in nature, concentrates iron ∼1011–1012-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n= 7) is higher than in animals (n= 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling. Received: 25 July 1995 / Accepted: 3 October 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号