首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4), which is an essential cofactor for key enzymes producing catecholamines, serotonin, and nitric oxide as well as phenylalanine hydroxylase. GFRP also mediates feed-forward stimulation of GTP cyclohydrolase I activity by phenylalanine at subsaturating GTP levels. These ligands, BH4 and phenylalanine, induce complex formation between one molecule of GTP cyclohydrolase I and two molecules of GFRP. Here, we report the analysis of ligand binding using the gel filtration method of Hummel and Dreyer. BH4 binds to the GTP cyclohydrolase I/GFRP complex with a Kd of 4 microM, and phenylalanine binds to the protein complex with a Kd of 94 microM. The binding of BH4 is enhanced by dGTP. The binding stoichiometrics of BH4 and phenylalanine were estimated to be 10 molecules of each per protein complex, in other words, one molecule per subunit of protein, because GTP cyclohydrolase I is a decamer and GFRP is a pentamer. These findings were corroborated by data from equilibrium dialysis experiments. Regarding ligand binding to free proteins, BH4 binds weakly to GTP cyclohydrolase I but not to GFRP, and phenylalanine binds weakly to GFRP but not to GTP cyclohydrolase I. These results suggest that the overall structure of the protein complex contributes to binding of BH4 and phenylalanine but also that each binding site of BH4 and phenylalanine may be primarily composed of residues of GTP cyclohydrolase I and GFRP, respectively.  相似文献   

2.
Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.6 A resolution crystal structure of rat GFRP shows that the protein forms a pentamer. This indicates a model for the interaction of mammalian GTP cyclohydrolase I with its regulator, GFRP. Kinetic investigations of human GTP cyclohydrolase I in complex with rat and human GFRP showed similar regulatory effects of both GFRP proteins.  相似文献   

3.
Inhibition of GTP cyclohydrolase I (GTPCH) has been used as a selective tool to assess the role of de novo synthesis of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) in a biological system. Toward this end, 2,4-diamino-6-hydroxypyrimidine (DAHP) has been used as the prototypical GTPCH inhibitor. Using a novel real-time kinetic microplate assay for GTPCH activity and purified prokaryote-expressed recombinant proteins, we show that potent inhibition by DAHP is not the result of a direct interaction with GTPCH. Rather, inhibition by DAHP in phosphate buffer occurs via an indirect mechanism that requires the presence of GTPCH feedback regulatory protein (GFRP). Notably, GFRP was previously discovered as the essential factor that reconstitutes inhibition of pure recombinant GTPCH by the pathway end product BH4. Thus, DAHP inhibits GTPCH by engaging the endogenous feedback inhibitory system. We further demonstrate that L-Phe fully reverses the inhibition of GTPCH by DAHP/GFRP, which is also a feature in common with inhibition by BH4/GFRP. These findings suggest that DAHP is not an indiscriminate inhibitor of GTPCH in biological systems; instead, it is predicted to preferentially attenuate GTPCH activity in cells that most abundantly express GFRP and/or contain the lowest levels of L-Phe.  相似文献   

4.
GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by proinflammatory cytokines and stimuli, which are known to induce GTP cyclohydrolase I expression. Recombinant human GFRP stimulated recombinant human GTP cyclohydrolase I in the presence of phenylalanine and mediated feedback inhibition by tetrahydrobiopterin. Levels of GFRP mRNA in human myelomonocytoma (THP-1) cells remained unaltered by treatment of cells with interferon-gamma or interleukin-1beta, but were significantly down-regulated by bacterial lipopolysaccharide (LPS, 1 microg/ml), without or with cotreatment by interferon-gamma, which strongly up-regulated GTP cyclohydrolase I expression and activity. GFRP expression was also suppressed in human umbilical vein endothelial cells treated with 1 microg/ml LPS, as well as in rat tissues 7 h post intraperitoneal injection of 10 mg/kg LPS. THP-1 cells stimulated with interferon-gamma alone showed increased pteridine synthesis by addition of phenylalanine to the culture medium. Cells stimulated with interferon-gamma plus LPS, in contrast, showed phenylalanine-independent pteridine synthesis. These results demonstrate that LPS down-regulates expression of GFRP, thus rendering pteridine synthesis independent of metabolic control by phenylalanine.  相似文献   

5.
GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.  相似文献   

6.
GTP cyclohydrolase I (GTPCHI) is the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin, a key cofactor necessary for nitric oxide synthase and for the hydroxylases that are involved in the production of catecholamines and serotonin. In animals, the GTPCHI feedback regulatory protein (GFRP) binds GTPCHI to mediate feed-forward activation of GTPCHI activity in the presence of phenylalanine, whereas it induces feedback inhibition of enzyme activity in the presence of biopterin. Here, we have reported the crystal structure of the biopterin-induced inhibitory complex of GTPCHI and GFRP and compared it with the previously reported phenylalanine-induced stimulatory complex. The structure reveals five biopterin molecules located at each interface between GTPCHI and GFRP. Induced fitting structural changes by the biopterin binding expand large conformational changes in GTPCHI peptide segments forming the active site, resulting in inhibition of the activity. By locating 3,4-dihydroxy-phenylalanine-responsive dystonia mutations in the complex structure, we found mutations that may possibly disturb the GFRP-mediated regulation of GTPCHI.  相似文献   

7.
GTP cyclohydrolase I is the rate-controlling enzyme in the production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide (NO) synthase. Here we show that GTP cyclohydrolase I mRNA was present in unstimulated hepatocytes and was up-regulated 2- to 3-fold concurrently with iNOS induction induced in vivo by LPS injection and in vitro by stimulation with LPS and inflammatory cytokines tumor necrosis factor alpha, interleukin-1 beta, and interferon-gamma. Hepatocyte GTP cyclohydrolase I enzyme activity increased 2-fold in vivo after LPS. This coinduction of GTP cyclohydrolase I resulted in increased total intracellular biopterin which supported induced NO synthesis. The addition of a GTP cyclohydrolase I inhibitor to the stimulated hepatocytes decreased intracellular biopterin levels and resulted in a decrease in NO production. The results show that GTP cyclohydrolase I is up-regulated by certain acute inflammatory conditions. Further, the results indicate that biopterin is essential as a cofactor for induced NO synthase activity in hepatocytes.  相似文献   

8.
The kinetic and regulatory properties of GTP cyclohydrolase I were investigated using an improved enzyme assay and direct determination of the product, dihydroneopterin triphosphate. The enzyme was purified from Escherichia coli to absolute homogeneity as demonstrated by N-terminal sequencing of up to 50 amino acid residues. A 30-residue internal fragment showed 42% similarity with rat liver GTP cyclohydrolase I. The enzyme did not obey Michaelis-Menten kinetics or show a sigmoid reaction curve. The substrate saturation kinetics were found to be slow with low response to minor changes in GTP concentrations. GTP cyclohydrolase I has a relatively high apparent Km. The values are slightly different for enzyme purified by GTP-agarose (100 microM) and UTP-agarose (110 microM). Low turnover numbers of 12/min and 19/min were calculated for the respective enzyme preparations. GTP-cyclohydrolase-I activity was modulated in Vmax by K+, divalent cations, UTP and tetrahydrobiopterin. Divalent cations, such as Mg2+, had an activating effect with an optimum at 8 mM Mg2+. A different catalytic function and formation of a new, unidentified product by GTP cyclohydrolase I was observed in the presence of Ca2+. In the presence of 1 mM EDTA and Mg2+, GTP-cyclohydrolase-I activity was strongly inhibited by chelate complexes. UTP proved not to be a competitive inhibitor, but a positive modulator. The inhibition by chelate complexes was totally abolished by UTP. Tetrahydrobiopterin showed an inhibitory effect, with 50% inhibition at 100 microM tetrahydrobiopterin. UTP was able to reduce the inhibition by tetrahydrobiopterin. Using monoclonal antibody 1F11 (related to the GTP-binding site), and monoclonal antibody NS7 (mimicking tetrahydrobiopterin), different binding sites were demonstrated for GTP and tetrahydrobiopterin on each enzyme subunit. Western-blot competition analysis revealed a UTP-binding site different from the binding sites of GTP and tetrahydrobiopterin. Based on the kinetic behaviour and the kind of modulations observed we defined GTP cyclohydrolase I as an M-class allosteric enzyme.  相似文献   

9.
GTP cyclohydrolase II structure and mechanism   总被引:1,自引:0,他引:1  
GTP cyclohydrolase II converts GTP to 2,5-diamino-6-beta-ribosyl-4(3H)-pyrimidinone 5'-phosphate, formate and pyrophosphate, the first step in riboflavin biosynthesis. The essential role of riboflavin in metabolism and the absence of GTP cyclohydrolase II in higher eukaryotes makes it a potential novel selective antimicrobial drug target. GTP cyclohydrolase II catalyzes a distinctive overall reaction from GTP cyclohydrolase I; the latter converts GTP to dihydroneopterin triphosphate, utilized in folate and tetrahydrobiopterin biosynthesis. The structure of GTP cyclohydrolase II determined at 1.54-A resolution reveals both a different protein fold to GTP cyclohydrolase I and distinctive molecular recognition determinants for GTP; although in both enzymes there is a bound catalytic zinc. The GTP cyclohydrolase II.GMPCPP complex structure shows Arg(128) interacting with the alpha-phosphonate, and thus in the case of GTP, Arg(128) is positioned to act as the nucleophile for pyrophosphate release and formation of the proposed covalent guanylyl-GTP cyclohydrolase II intermediate. Tyr(105) is identified as playing a key role in GTP ring opening; it is hydrogen-bonded to the zinc-activated water molecule, the latter being positioned for nucleophilic attack on the guanine C-8 atom. Although GTP cyclohydrolase I and GTP cyclohydrolase II both use a zinc ion for the GTP ring opening and formate release, different residues are utilized in each case to catalyze this reaction step.  相似文献   

10.
11.
The addition of 8-bromo cyclic AMP, forskolin, theophylline, and 3-isobutyl-1-methylxanthine to the medium of PC 12 cells resulted in an increase in GTP cyclohydrolase I activity, but had no effect on dihydropteridine reductase activity, except theophylline which caused a decrease in dihydropteridine reductase activity at 96 h. GTP cyclohydrolase I activity peaked at 24 h and returned to normal 96 h after drug treatment. Cycloheximide decreased GTP cyclohydrolase I activity at 48 and 96 h, but had little effect on dihydropteridine reductase activity. The addition of reserpine selectively increased only GTP cyclohydrolase I activity. The addition of tetrahydrobiopterin and sepiapterin, however, coordinately inhibited both GTP cyclohydrolase I and dihydropteridine reductase activities. It appears that GTP cyclohydrolase I activity in PC 12 cells is regulated by cyclic AMP stimulation and by end-product inhibition, whereas dihydropteridine reductase activity is only subject to pterin inhibition.  相似文献   

12.
GTP cyclohydrolase I exhibits a positive homotropic cooperative binding to GTP, which raises the possibility of a role for GTP in regulating the enzyme reaction (Hatakeyama, K., Harada, T., Suzuki, S., Watanabe, Y., and Kagamiyama, H. (1989) J. Biol. Chem. 264, 21660-21664). We examined whether or not the intracellular GTP level is within the range of affecting GTP cyclohydrolase I activity, using PC-12 rat pheochromocytoma and IMR-32 human neuroblastoma cells. Since GTP cyclohydrolase I was the rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in these cell lines, the intracellular activities of this enzyme were reflected in the tetrahydrobiopterin contents. We found that the addition of guanine or guanosine increased GTP but not tetrahydrobiopterin in these cells. On the other hand, three IMP dehydrogenase inhibitors, tiazofurin, 2-amino-1,3,4-thiadiazole, and mycophenolic acid, decreased both GTP and tetrahydrobiopterin in a parallel and dose-dependent manner, and these effects were reversed by the simultaneous addition of guanine or guanosine. There was no evidence suggesting that these inhibitors inhibited other enzymes involved in the biosynthesis and regeneration of tetrahydrobiopterin. Comparing intracellular activities of GTP cyclohydrolase I in the inhibitor-treated cells with its substrate-velocity curve, we estimated that the intracellular concentration of free GTP is 150 microM at which point the activity of GTP cyclohydrolase I is elicited at its maximum velocity. Below this GTP concentration, GTP cyclohydrolase I activity is rapidly decreased. Therefore GTP can be a regulator for tetrahydrobiopterin biosynthesis.  相似文献   

13.
The enzyme GTP cyclohydrolase I, which catalyzes the first step in the pteridine biosynthetic pathway, has been purified by at least 4400-fold from Drosophila melanogaster. The active complex has an apparent molecular mass of 575,000 daltons, as estimated from gel filtration. This high molecular mass complex appears to be composed of a number of 39,000-dalton subunits. A polyspecific antiserum generated against the active complex has been used to identify this polypeptide as being severely affected by mutations in Punch, the structural gene for GTP cyclohydrolase. Enzyme activity is inhibited by divalent cations and high ionic strength buffers. No cofactors have been demonstrated to be required for enzyme activity. The enzyme displays positive cooperativity in phosphate buffer, a Hill number of 2.1, but only slight cooperativity in Tris buffer, a Hill number of 1.2.  相似文献   

14.
We report that GTP cyclohydrolase (GCH1), the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis, is a key modulator of peripheral neuropathic and inflammatory pain. BH4 is an essential cofactor for catecholamine, serotonin and nitric oxide production. After axonal injury, concentrations of BH4 rose in primary sensory neurons, owing to upregulation of GCH1. After peripheral inflammation, BH4 also increased in dorsal root ganglia (DRGs), owing to enhanced GCH1 enzyme activity. Inhibiting this de novo BH4 synthesis in rats attenuated neuropathic and inflammatory pain and prevented nerve injury-evoked excess nitric oxide production in the DRG, whereas administering BH4 intrathecally exacerbated pain. In humans, a haplotype of the GCH1 gene (population frequency 15.4%) was significantly associated with less pain following diskectomy for persistent radicular low back pain. Healthy individuals homozygous for this haplotype exhibited reduced experimental pain sensitivity, and forskolin-stimulated immortalized leukocytes from haplotype carriers upregulated GCH1 less than did controls. BH4 is therefore an intrinsic regulator of pain sensitivity and chronicity, and the GTP cyclohydrolase haplotype is a marker for these traits.  相似文献   

15.
Nitric oxide (NO) regulates the biological activity of many enzymes and other functional proteins as well as gene expression. In this study, we tested whether pretreatment with NO regulates NO production in response to cytokines in cultured rat hepatocytes. Hepatocytes were recovered in fresh medium for 24 h following pretreatment with the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) and stimulated to express the inducible NO synthase (iNOS) with interleukin-1beta and interferon-gamma or transfected with the human iNOS gene. NO pretreatment resulted in a significant increase in NO production without changing iNOS expression for both conditions. This effect, which did not occur in macrophages and smooth muscle cells, was inhibited when NO was scavenged using red blood cells. Pretreatment with oxidized SNAP, 8-Br-cGMP, NO(2)(-), or NO(3)(-) did not increase the cytokine-induced NO production. SNAP pretreatment increased cytosolic iNOS activity measured only in the absence of exogenous tetrahydrobiopterin (BH(4)). SNAP pretreatment suppressed the level of GTP cyclohydrolase I (GTPCHI) feedback regulatory protein (GFRP) and increased GTPCHI activity without changing GTPCHI protein level. SNAP pretreatment also increased total cellular levels of biopterin and active iNOS dimer. These results suggest that SNAP pretreatment increased NO production from iNOS by elevating cellular BH(4) levels and promoting iNOS subunit dimerization through the suppression of GFRP levels and subsequent activation of GTPCHI.  相似文献   

16.
Catecholamine biosynthesis is regulated by tyrosine hydroxylase (TH) requiring tetrahydrobiopterin (BH4) as the cofactor. We found four (human TH type 1–4) and two isoforms (TH type 1 and 2) in humans and monkeys, while non-primate animals have a single TH corresponding to human TH type 1. BH4 is synthesized from GTP, and GTP cyclohydrolase I (GCH) is the first and regulatory enzyme. Mutations in GCH gene were found to cause both GCH deficiency with autosomal recessive trait and hereditary progressive dystonia with marked diurnal fluctuation (HPD) (Segawa's disease)/or DOPA-responsive dystonia (DRD) with autosomal dominant trait. When GCH activity is decreased to less than 20% of the normal value, the activity of TH in the nigrostriatal dopaminergic neurons may be first decreased resulting in decreases in TH activity and dopamine level, and in the symptoms of HPD/DRD. In contrast to HPD/DRD, juvenile parkinsonism (JP) have normal GCH activity. In Parkinson's disease (PD), GCH, TH, and dopamine in the striatum may decrease in parallel, as the secondary effects caused by cell death. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

17.
18.
Human liver GTP cyclohydrolase I: purification and some properties   总被引:2,自引:0,他引:2  
R S Shen  A Alam  Y X Zhang 《Biochimie》1989,71(3):343-349
Human liver guanosine triphosphate (GTP) cyclohydrolase I has been purified more than 1,700-fold to what appears to be homogeneity. The active enzyme complex has an estimated molecular weight of 453,000 +/- 11,500 by gel filtration chromatography. It consists of a polypeptide of 149,000 +/- 4,000 mol wt by SDS-polyacrylamide gel electrophoresis. The activity of the enzyme is heat stable and is inhibited by di- and trivalent cations. The enzyme has an optimum pH of 7.7 in sodium phosphate buffer. It uses GTP as a sole substrate, with a Km of 116 microM.  相似文献   

19.
GTP cyclohydrolase I (E.C. 3.5.4.16) is a homodecameric protein that catalyzes the conversion of GTP to 7,8- dihydroneopterin triphosphate (H(2)NTP), the initial step in the biosynthesis of pteridines. It was proposed that the enzyme complex could be composed of a dimer of two pentamers, or a pentamer of tightly associated dimers; then the active site of the enzyme was located at the interface of three monomers (Nar et al. 1995a, b). Using mutant enzymes that were made by site-directed mutagenesis, we showed that a decamer of GTP cyclohydrolase I should be composed of a pentamer of five dimers, and that the active site is located between dimers, as analyzed by a series of size exclusion chromatography and the reconstitution experiment. We also show that the residues Lys 136, Arg139, and Glu152 are of particular importance for the oligomerization of the enzyme complex from five dimers to a decamer.  相似文献   

20.
GTP cyclohydrolase I (GCH) is the rate-limiting enzyme for the synthesis of tetrahydrobiopterin and its activity is important in the regulation of monoamine neurotransmitters such as dopamine, norepinephrine and serotonin. We have studied the action of divalent cations on the enzyme activity of purified recombinant human GCH expressed in Escherichia coli. First, we showed that the enzyme activity is dependent on the concentration of Mg-free GTP. Inhibition of the enzyme activity by Mg2+, as well as by Mn2+, Co2+ or Zn2+, was due to the reduction of the availability of metal-free GTP substrate for the enzyme, when a divalent cation was present at a relatively high concentration with respect to GTP. We next examined the requirement of Zn2+ for enzyme activity by the use of a protein refolding assay, because the recombinant enzyme contained approximately one zinc atom per subunit of the decameric protein. Only when Zn2+ was present was the activity of the denatured enzyme effectively recovered by incubation with a chaperone protein. These are the first data demonstrating that GCH recognizes Mg-free GTP and requires Zn2+ for its catalytic activity. We suggest that the cellular concentration of divalent cations can modulate GCH activity, and thus tetrahydrobiopterin biosynthesis as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号