首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimentally observed influence of regularly arriving tugs upon the AP discharge of the slowly-adapting stretch receptor organ (SAO) of crayfish was compared to a model of pacemaker excitatory synaptic interactions (Segundo and Kohn 1981). Criteria for compliance referred to facets as A) the excitation, B) the postulates, and C) the behavior. A) Excitation was implied primarily by the tug initially increasing the AP rate (it subsequently decreased it). B) The pacemaker AP discharges, and with more reason the electronically driven tugs, were considered acceptably regular sequence (postulate i). Tugs advanced the next AP (postulate ii); the "delay function" plots of delays vs. phases, i.e. interval shortenings vs. the time from the last AP to the tug, were close to the V of postulate iii, even though the shortest phases tended to postpone the next AP and the longest ones did not trigger immediately but with an around 5 ms latency. These effects were displayed also as "old phase vs. new phase" plots. The interval following that with the tug tended to be lengthened, but the pre-tug timing was not recovered. C) Behavior during a train of excitatory events, both in model and experiments, went through very similar initial settlings and eventual steady-states. The latter were characterized in the model by 1. an average excitatory vs. excited rate display formed by an endless number of segments with all positive rational slopes separated by negative-going discontinuities, 2. locking in the sense of preferential phases, and 3. periodic repetition of the same phases and inter-AP intervals. Experimental results were compatible with this. Such behavior was absent when the tug sequence was highly irregular. The initial settling, in the SAO as in the model, depended jointly on the first phase phi 1 and the intertug interval E. If the former was under lambda, it went through one or two monotonic phase-decreasing stages (one smaller, the other larger, than lambda), or through a single increasing one, depending on E being smaller or greater than, respectively, an estimated but never actually observed E leading to unstable lockings. If the initial phase was greater than lambda, settling with E's under rN + lambda involved jumps between larger than and smaller than lambda phases; with E's over rn + lambda, it involved an intermediate stable locking with phi = E-rN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The voltage clamp technique is frequently used to examine the strength and composition of synaptic input to neurons. Even accounting for imperfect voltage control of the entire cell membrane ("space clamp"), it is often assumed that currents measured at the soma are a proportional indicator of the postsynaptic conductance. Here, using NEURON simulation software to model somatic recordings from morphologically realistic neurons, we show that excitatory conductances recorded in voltage clamp mode are distorted significantly by neighboring inhibitory conductances, even when the postsynaptic membrane potential starts at the reversal potential of the inhibitory conductance. Analogous effects are observed when inhibitory postsynaptic currents are recorded at the reversal potential of the excitatory conductance. Escape potentials in poorly clamped dendrites reduce the amplitude of excitatory or inhibitory postsynaptic currents recorded at the reversal potential of the other conductance. In addition, unclamped postsynaptic inhibitory conductances linearize the recorded current-voltage relationship of excitatory inputs comprising AMPAR and NMDAR-mediated components, leading to significant underestimation of the relative contribution by NMDARs, which are particularly sensitive to small perturbations in membrane potential. Voltage clamp accuracy varies substantially between neurons and dendritic arbors of different morphology; as expected, more reliable recordings are obtained from dendrites near the soma, but up to 80% of the synaptic signal on thin, distant dendrites may be lost when postsynaptic interactions are present. These limitations of the voltage clamp technique may explain how postsynaptic effects on synaptic transmission could, in some cases, be attributed incorrectly to presynaptic mechanisms.  相似文献   

3.
The circadian locomotor rhythm of the cricketGryllus bimaculatus is primarily generated by a pair of optic lobe circadian pacemakers. The two pacemakers mutually interact to keep a stable temporal structure in the locomotor activity. The interaction has two principal effects on the activity rhythm, i.e., phase-dependent modulation of the freerunning period and phase-dependent suppression of activity driven by the partner pacemaker. Both effects were mediated by neural pathways, since they were immediately abolished after the optic stalk connecting the optic medulla to the lobula was unilaterally severed. The neural pathways were examined by recording locomotor activity, under a 13 h light to 13 h dark cycle, after the optic nerves were unilaterally severed and the contralateral optic stalk was partially destroyed near the lobula. When the dorsal half of the optic stalk was severed, locomotor rhythm mostly split into two components: one was readily entrained to the given light-dark cycle and the other freeran with a marked fluctuation in freerunning period, where the period of the freerunning component was lengthened or shortened when the onset of the entrained component occurred during its subjective night or day, respectively. The phase-dependent modulation of activity was also observed in both components. However, severance of the ventral half of the optic stalk resulted in appearance only of the freerunning component; neither the phase-dependent modulation of its freerunning period nor the change in activity level was observed. These results suggest that neurons driving the mutual interaction and the overt activity rhythm run in the ventral half of the proximal optic stalk that includes axons of large medulla neurons projecting to the cerebral lobe and the contralateral medulla.Abbreviations LD light dark cycle - freerunning period  相似文献   

4.
A Baginskas  A Gutman 《Biofizika》1990,35(3):483-488
The influence of the clamped somatic potential on the excitatory synaptic current (EPSC) was studied in the model of the dendrite with N-shaped instantaneous stationary current--voltage curve. Proximal EPSC diminish and become narrower with decreasing hyperpolarization or modest depolarization, distal EPSC increase and become wider, intermediately distant EPSC change insignificantly. Under increasing depolarization all the EPSC become significantly wider and larger. EPSC facilitate stable depolarization of the dendrites. When the dendrite is stable depolarized EPSC becomes very small and narrow, but it becomes larger and wider as the soma is hyperpolarized. EPSC becomes especially large and wide when the soma is hyperpolarized just to terminate the stable depolarization of the dendrite branch where the active synapses are located. The model explains certain phenomena which are difficult to understand by the theory of ohmic dendrites. New phenomena are predicted.  相似文献   

5.
We found that nonadrenergic inhibitory synaptic potentials (ISP) induced by intramural stimulation in atropine-treated smooth muscles of the guinea-pig large intestine demonstrated no changes upon the influence of an activator of adenylate cyclase, forskolin. This indicates that cAMP-dependent pathways are not involved in the generation of ISP. However, in these muscles with no atropine pretreatment ISP were suppressed by forskolin; intramural stimulation evoked in these smooth muscle cells M-cholinergic excitatory synaptic potentials (ESP) instead of ISP. An increase in the intracellular cAMP concentration due to application of its membrane-penetrating form, dibutyryl-cAMP, did not mimic the above-described effect of forskolin. Hence, it can be supposed that the effect of forskolin on inhibitory synaptic transmission in the atropine-untreated smooth muscles is not related to changes in the intracellular cAMP level; this effect is determined by other mechanisms. The above differences between the effects of forskolin on ISP in the atropine-treated and atropine-untreated smooth muscle strips indicate that the interaction of intracellular signal pathways (probably, through protein Gq/11), which is observed with activation of adenylate cyclase, occurs under conditions of simultaneous activation of M cholinoreceptors and purinoreceptors. The pattern of adenylate cyclase-mediated modulation of inhibitory effects of purinergic neurons on smooth muscles does not allow us to rule out the possibility of involvement of interstitial cells of Cajal as a relay link providing this synaptic effect. Transmission of excitation from cholinergic nerve terminals to smooth muscles is realized without the participation of the interstitial cells of Cajal.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 438–445, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

6.
A mainly deductive kinematic model of the human knee is described. The modelling procedure is based upon the application of a four-bar mechanism. Emphasis has been laid upon elucidating the functional anatomical relationship between several morphological characteristics concerning the shape of the articular surfaces and the constellation of the cruciate ligaments. Starting from a simple planar model, which simulates motions in a sagittal plane only, a spatial model was developed, which allowed an additional longitudinal rotation of the tibia also. The conclusions drawn from this modelling procedure have been used to evaluate from an functional anatomical point of view the current designs of presently available endoprostheses for the knee.  相似文献   

7.
8.
Presynaptic inhibition of neurotransmitter release is thought to be mediated by a reduction of axon terminal Ca2+ current. We have compared the actions of several known inhibitors of evoked glutamate release with the actions of the Ca2+ channel antagonist Cd2+ on action potential-independent synaptic currents recorded from CA3 neurons in hippocampal slice cultures. Baclofen and adenosine decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) without affecting the distribution of their amplitudes. Cd2+ blocked evoked synaptic transmission, but had no effect on the frequency or amplitude of either mEPSCs or inhibitory postsynaptic currents (IPSCs). Inhibition of presynaptic Ca2+ current therefore appears not to be required for the inhibition of glutamate release by adenosine and baclofen. Baclofen had no effect on the frequency of miniature IPSCs, indicating that gamma-aminobutyric acid B-type receptors exert distinct presynaptic actions at excitatory and inhibitory synapses.  相似文献   

9.
10.
We propose a mathematical model for the synaptic basis of neuronal memory. The model incorporates non-linear effects in analogy with population growth problems of human beings, animals, biological species, crystal growth, etc., and provides a mechanism whereby the excitatory and inhibitory inputs produce alterations in a neurone which result in a long-lasting increase in transmitter release at a synapse.  相似文献   

11.
S Hestrin 《Neuron》1992,9(5):991-999
Brief glutamate applications to membrane patches, excised from neurons in the rat visual cortex, were used to assess the role of desensitization in determining the AMPA/kainate receptor-mediated excitatory postsynaptic current (EPSC) time course. A brief (1 ms) application of glutamate (1-10 mM) produced a response that mimicked the time course of miniature EPSCs (mEPSCs). Direct evidence is presented that the rate of onset of desensitization is much slower than the decay rate of the response to a brief application of glutamate, implying that the decay of mEPSCs reflects channel closure into a state readily available for reactivation. Rapid application of glutamate combined with nonstationary variance analysis provided an estimate of the single-channel conductance and open probability, allowing an approximation of the number of available channels at a single synaptic site.  相似文献   

12.
Functional intercellular coupling has been demonstrated among networks of cardiac fibroblasts, as well as between fibroblasts and atrial or ventricular myocytes. In this study, the consequences of these interactions were examined by implementing the ten Tusscher model of the human ventricular action potential, and coupling it to our electrophysiological models for mammalian ventricular fibroblasts. Our simulations reveal significant electrophysiological consequences of coupling between 1 and 4 fibroblasts to a single ventricular myocyte. These include alterations in plateau height and/or action potential duration (APD) and changes in underlying ionic currents. Two series of simulations were carried out. First, fibroblasts were modeled as a spherical cell with a capacitance of 6.3 pF and an ohmic membrane resistance of 10.7 G Omega. When these "passive" fibroblasts were coupled to a myocyte, they caused slight prolongation of APD with no changes in the plateau, threshold for firing, or rate of initial depolarization. In contrast, when the same myocyte-fibroblast complexes were modeled after addition of the time- and voltage-gated K(+) currents that are expressed in fibroblasts, much more pronounced effects were observed: the plateau height of the action potential was reduced and the APD shortened significantly. In addition, each fibroblast exhibited significant electrotonic depolarizations in response to each myocyte action potential and the resting potential of the fibroblasts closely approximated the resting potential of the coupled ventricular myocyte.  相似文献   

13.
Proteins of synaptic vesicles involved in exocytosis and membrane recycling.   总被引:55,自引:0,他引:55  
T C Südhof  R Jahn 《Neuron》1991,6(5):665-677
  相似文献   

14.
Synapses are highly specialized structures designed to guarantee precise and efficient communication between neurons and their target cells. Molecules of the extracellular matrix have an instructive role in the formation of the neuromuscular junction, the best-characterized synapse. In this review, the molecular mechanisms underlying these instructive signals will be discussed with particular emphasis on the receptors involved. Additionally, recent evidence for the involvement of specific adhesion complexes in the formation and modulation of synapses in the central nervous system will be reviewed. Synapses are specialized junctions between neurons and their target cells where information is transferred from the pre- to the postsynaptic cell. At most vertebrate synapses, this transfer is accomplished by the release of a specific neurotransmitter from the presynaptic nerve terminal. The release of neurotransmitter is initiated by the action potential and the subsequent influx of Ca(2+) into the presynaptic nerve terminal. This results in the rapid fusion of vesicles with the nerve membrane and the release of the neurotransmitter into the synaptic cleft. The neurotransmitter then diffuses across the cleft and binds to specific postsynaptic receptors, resulting in a change in the membrane potential of the postsynaptic cell. This can result in the generation of an action potential. The high precision of synaptic transmission requires that pre- and postsynaptic structures are both highly organized and in juxtaposition to each other. In addition, alterations in synaptic transmission are the basis of learning and memory and are likely to be accompanied by the remodeling of synaptic structures (Toni et al., 1999). Thus, the study of how synapses are formed during development is also of relevance for the understanding of the cellular and molecular processes involved in learning and memory. This review focuses on the molecular mechanisms involved in the formation and the function of synapses.  相似文献   

15.
A key learning outcome for undergraduate biochemistry classes is a thorough understanding of the principles of protein structure. Traditional approaches to teaching this material, which include two‐dimensional (2D) images on paper, physical molecular modeling kits, and projections of 3D structures into 2D, are unable to fully capture the dynamic 3D nature of proteins. We have built a virtual reality application, Peppy, aimed at facilitating teaching of the principles of protein secondary structure. Rather than attempt to model molecules with the same fidelity to the underlying physical chemistry as existing, research‐oriented molecular modelling approaches, we took the more straightforward approach of harnessing the Unity video game physics engine. Indeed, the simplicity and limitations of our model are strengths in a teaching context, provoking questions and thus deeper understanding. Peppy allows exploration of the relative effects of hydrogen bonding (and electrostatic interactions more generally), backbone φ/ψ angles, basic chemical structure, and steric effects on a polypeptide structure in an accessible format that is novel, dynamic, and fun to use. Apart from describing the implementation and use of Peppy, we discuss the outcomes of deploying Peppy in undergraduate biochemistry courses.  相似文献   

16.
A theoretical model is proposed to describe the heat capacity function and the phase behavior of binary mixtures of phospholipids and cholesterol. The central idea is that the liquid-ordered state (Lo) is a thermodynamic state or an ensemble of conformations of the phospholipid, characterized by enthalpy and entropy functions that are intermediate between those of the solid and the liquid-disordered (Ld) states. The values of those thermodynamic functions are such that the Lo state is not appreciably populated in the pure phospholipid, at any temperature, because either the solid or the Ld state have much lower free energies. Cholesterol stabilizes the Lo state by nearest-neighbor interactions, giving rise to the appearance of the Lo phase. The model is studied by Monte Carlo simulations on a lattice with nearest-neighbor interactions, which are derived from experiment as much as possible. The calculated heat capacity function closely resembles that obtained by calorimetry. The phase behavior produced by the model is also in agreement with experimental data. The simulations indicate that separation between solid and Lo phases occurs below the melting temperature of the phospholipid (Tm). Above Tm, small Ld and Lo domains do exist, but there is no phase separation.  相似文献   

17.
Neurons receive a continual stream of excitatory and inhibitory synaptic inputs. A conductance-based neuron model is used to investigate how the balanced component of this input modulates the amplitude of neuronal responses. The output spiking rate is well described by a formula involving three parameters: the mean and variance of the membrane potential and the effective membrane time constant Q. This expression shows that, for sufficiently small Q, the level of balanced excitatory-inhibitory input has a nonlinear modulatory effect on the neuronal gain.  相似文献   

18.
The model of simultaneous interrelated modification in the efficacy of synaptic inputs to different neurons of the olivary-cerebellar network is developed. The model is based on the following features of the network: simultaneous activation of the input layer (granule) cells and the output layer (deep cerebellar nuclei) cells by mossy fibers; simultaneous activation of Purkinje cells and cerebellar cells of the input and output layers by climbing fibers and their collaterals; the existence of local feedback excitatory, inhibitory, and disinhibitory circuits. The rise (decrease) of posttetanic Ca2+ concentration in reference to the level produced by previous stimulation causes the decrease (increase) in cGMP-dependent protein kinase G activity, and increase (decrease) inprotein phosphatase 1 activity. Subsequent dephosphorylation (phosphorylation) of ionotropic receptors results in simultaneous LTD (LTP) of the excitatory input together with the LTP (LTD) of the inhibitory input to the same neuron. The character of interrelated modifications of synapses at different cerebellar levels strongly depends on the olivary cell activity. In the presence (absence) of the signal from the inferior olive LTD (LTP) of the output cerebellar signal can be induced.  相似文献   

19.
Synapse-associated protein 97 (SAP97) and postsynaptic density 95 (PSD-95) are closely related membrane-associated guanylate kinase homologs (Maguks) implicated in the synaptic targeting and anchoring of alpha-amino-5-methyl-3-hydroxy-4-isoxazolepropionic acid (AMPA)-selective glutamate receptors. Prompted by accumulating evidence for an oligomeric nature of Maguks, we examined the potential of SAP97 and PSD-95 to form heteromeric complexes. SAP97 and PSD-95 coimmunoprecipitated from rat brain detergent extracts and subsequent glutathione S-transferase pull-down and immunoprecipitation experiments showed that the interaction is mediated by binding of the N-terminal segment of SAP97 (SAP97(NTD)) to the Src homology 3 domain of PSD-95 (PSD-95(SH3)). In cultured hippocampal neurons, expression of green fluorescent protein-tagged PSD-95 triggered accumulation of SAP97 in synaptic spines, which was totally inhibited by coexpression of PSD-95(SH3). Furthermore, overexpression of green fluorescent protein-PSD-95 induced dendritic clustering of GluR-A subunit-containing AMPA receptors, which was strongly inhibited by cotransfection with SAP97(NTD) and PSD-95(SH3) constructs. Our results demonstrated a direct interaction between SAP97 and PSD-95 and suggested that this association may play a functional role in the trafficking and clustering of AMPA receptors.  相似文献   

20.
The asiatic acid, a triterpenoids isolated from Centella asiatica was used to delineate its inhibitory effect on acetylcholinesterase (AChE) properties, excitatory post synaptic potential (EPSP) and locomotor activity. This study is consistent with asiatic acid having an effect on AChE, a selective GABA(B) receptor agonist and no sedative effect on locomotor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号