首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The mini-chromosome maintenance (MCM) complex is the presumptive replicative helicase in archaea and eukaryotes. In archaea, the MCM is a homo-multimer, in eukaryotes a heterohexamer composed of six related subunits, MCM 2-7. Biochemical studies using naked DNA templates have revealed that archaeal MCMs and a sub-complex of eukaryotic MCM 4, 6 and 7 have 3' to 5' helicase activity. Here, we investigate the influence of the major chromatin proteins, Alba and Sul7d, of Sulfolobus solfataricus (Sso) on the ability of the MCM complex to melt partial duplex DNA substrates. In addition, we test the effect of Sso SSB on MCM activity. We reveal that Alba represents a formidable barrier to MCM activity and further demonstrate that acetylation of Alba alleviates repression of MCM activity.  相似文献   

2.
Mini-chromosome maintenance (MCM) proteins form ring-like hexameric complexes that are commonly believed to act as the replicative DNA helicase at the eukaryotic/archaeal DNA replication fork. Because of their simplified composition with respect to the eukaryotic counterparts, the archaeal MCM complexes represent a good model system to use in analyzing the structural/functional relationships of these important replication factors. In this study the domain organization of the MCM-like protein from Sulfolobus solfataricus (Sso MCM) has been dissected by trypsin partial proteolysis. Three truncated derivatives of Sso MCM corresponding to protease-resistant domains were produced as soluble recombinant proteins and purified: the N-terminal domain (N-ter, residues 1-268); a fragment comprising the AAA+ and C-terminal domains (AAA+-C-ter, residues 269-686); and the C-terminal domain (C-ter, residues 504-686). All of the purified recombinant proteins behaved as monomers in solution as determined by analytical gel filtration chromatography, suggesting that the polypeptide chain integrity is required for stable oligomerization of Sso MCM. However, the AAA+-C-ter derivative, which includes the AAA+ motor domain and retains ATPase activity, was able to form dimers in solution when ATP was present, as analyzed by size exclusion chromatography and glycerol gradient sedimentation analyses. Interestingly, the AAA+-C-ter protein could displace oligonucleotides annealed to M13 single-stranded DNA although with a reduced efficiency in comparison with the full-sized Sso MCM. The implications of these findings for understanding the DNA helicase mechanism of the MCM complex are discussed.  相似文献   

3.
The Mini-Chromosome Maintenance (MCM) proteins are candidates of replicative DNA helicase in eukarya and archaea. Here we report a 2.8 Å crystal structure of the N-terminal domain (residues 1–268) of the Sulfolobus solfataricus MCM (Sso MCM) protein. The structure reveals single-hexameric ring-like architecture, at variance from the protein of Methanothermobacter thermoautotrophicus (Mth). Moreover, the central channel in Sso MCM seems significantly narrower than the Mth counterpart, which appears to more favorably accommodate single-stranded DNA than double-stranded DNA, as supported by DNA-binding assays. Structural analysis also highlights the essential role played by the zinc-binding domain in the interaction with nucleic acids and allows us to speculate that the Sso MCM N-ter domain may function as a molecular clamp to grasp the single-stranded DNA passing through the central channel. On this basis possible DNA unwinding mechanisms are discussed.  相似文献   

4.
The homomultimeric archaeal mini-chromosome maintenance (MCM) complex serves as a simple model for the analogous heterohexameric eukaryotic complex. Here we investigate the organization and orientation of the MCM complex of the hyperthermophilic archaeon Sulfolobus solfataricus (Sso) on model DNA substrates. Sso MCM binds as a hexamer and slides on the end of a 3'-extended single-stranded DNA tail of a Y-shaped substrate; binding is oriented so that the motor domain of the protein faces duplex DNA. Two candidate beta-hairpin motifs within the MCM monomer have partially redundant roles in DNA binding. Notably, however, conserved basic residues within these motifs have nonequivalent roles in the helicase activity of MCM. On the basis of these findings, we propose a model for the mechanism of the helicase activity of MCM and note parallels with SV40 T antigen.  相似文献   

5.
Cdc6 proteins play an essential role in the initiation of chromosomal DNA replication in Eukarya. Genes coding for putative homologs of Cdc6 have been also identified in the genomic sequence of Archaea, but the properties of the corresponding proteins have been poorly investigated so far. Herein, we report the biochemical characterization of one of the three putative Cdc6-like factors from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (SsoCdc6-1). SsoCdc6-1 was overproduced in Escherichia coli as a His-tagged protein and purified to homogeneity. Gel filtration and glycerol gradient ultracentrifugation experiments indicated that this protein behaves as a monomer in solution (molecular mass of about 45 kDa). We demonstrated that SsoCdc6-1 binds single- and double-stranded DNA molecules by electrophoretic mobility shift assays. SsoCdc6-1 undergoes autophosphorylation in vitro and possesses a weak ATPase activity, whereas the protein with a mutation in the Walker A motif (Lys-59 --> Ala) is completely unable to hydrolyze ATP and does not autophosphorylate. We found that SsoCdc6-1 strongly inhibits the ATPase and DNA helicase activity of the S. solfataricus MCM protein. These findings provide the first in vitro biochemical evidence of a functional interaction between a MCM complex and a Cdc6 factor and have important implications for the understanding of the Cdc6 biological function.  相似文献   

6.
Minichromosome maintenance proteins (MCMs) form a family of conserved molecules that are essential for initiation of DNA replication. All eukaryotes contain six orthologous MCM proteins that function as heteromultimeric complexes. The sequencing of the complete genomes of several archaebacteria has shown that MCM proteins are also present in archaea. The archaea Methanobacterium thermoautotrophicum contains a single MCM-related sequence. Here we report on the expression and purification of the recombinant M. thermoautotrophicum MCM protein (MtMCM) in both Escherichia coli and baculovirus-infected cells. We show that purified MtMCM protein assembles in large macromolecular complexes consistent in size with being double hexamers. We demonstrate that MtMCM contains helicase activity that preferentially uses dATP and DNA-dependent dATPase and ATPase activities. The intrinsic helicase activity of MtMCM is abolished when a conserved lysine in the helicase domain I/nucleotide binding site is mutated. MtMCM helicase unwinds DNA duplexes in a 3' --> 5' direction and can unwind up to 500 base pairs in vitro. The kinetics, processivity, and directionality of MtMCM support its role as a replicative helicase in M. thermoautotrophicum. This strongly suggests that this function is conserved for MCM proteins in eukaryotes where a replicative helicase has yet to be identified.  相似文献   

7.
The initiation of DNA replication starts from origins and is controlled by a multiprotein complex, which involves about twenty protein factors. One of the important factors is hetrohexameric minichromosome maintenance (MCM2-7) protein complex which is evolutionary conserved and functions as essential replicative helicase for DNA replication. Here we report the isolation and characterization of a single subunit of pea MCM protein complex, the MCM6. The deduced amino acid (827) sequence contains all the known canonical MCM motifs including zinc finger, MCM specific Walker A and Walker B and arginine finger. The purified recombinant protein contains ATP-dependent 3′–5′ DNA helicase, ATP-binding and ATPase activities. The helicase activity was stimulated by replication fork like substrate and anti-MCM6 antibodies curtail all the enzyme activities of MCM6 protein. In vitro it self-interacts and forms a homohexamer which is active for DNA helicase and ATPase activities. The complete protein is required for self-interaction as the truncated MCM6 proteins were unable to self-interact. Western blot analysis and in vivo immunostaining followed by confocal microscopy showed the localization of MCM6 both in the nucleus and cytosol. These findings provide first direct evidence that single subunit MCM6 contains DNA helicase activity which is unique to plant MCM6 protein, as this activity was only reported for heteromultimers of MCM proteins in animal system. This discovery should make an important contribution to a better understanding of DNA replication in plants.  相似文献   

8.
Replicative DNA helicases are ring-shaped hexamers that play an essential role in chromosomal DNA replication. They unwind the two strands of the duplex DNA and provide the single-stranded (ss) DNA substrate for the polymerase. The minichromosome maintenance (MCM) proteins are thought to function as the replicative helicases in eukarya and archaea. The proteins of only a few archaeal organisms have been studied and revealed that although all have similar amino acid sequences and overall structures they differ in their biochemical properties. In this report the biochemical properties of the MCM protein from the archaeon Thermoplasma acidophilum is described. The enzyme has weak helicase activity on a substrate containing only a 3′-ssDNA overhang region and the protein requires a forked DNA structure for efficient helicase activity. It was also found that the helicase activity is stimulated by one of the two T.acidophilum Cdc6 homologues. This is an interesting observation as it is in sharp contrast to observations made with MCM and Cdc6 homologues from other archaea in which the helicase activity is inhibited when bound to Cdc6.  相似文献   

9.
The biological role of archaeal proteins, homologous to the eukaryal replication initiation factors of cell division control (Cdc6) and origin recognition complex (ORC1), has not yet been clearly established. The hyperthermophilic crenarchaeon Sulfolobus solfataricus (referred to as Sso) possesses three Cdc6/ORC1-like factors, which are named Sso Cdc6-1, Cdc6-2 and Cdc6-3. This study is a report on the biochemical characterization of Sso Cdc6-1 and Cdc6-3. It has been found that either Sso Cdc6-1 or Cdc6-3 behave as monomers in solutions by gel filtration analyses. Both factors are able to bind to various single-stranded and double-stranded DNA ligands, but Sso Cdc6-3 shows a higher DNA-binding affinity. It has also been observed that either Sso Cdc6-1 or Cdc6-3 inhibit the DNA unwinding activity of the S. solfataricus homo-hexameric mini-chromosome maintenance (MCM)-like DNA helicase (Sso MCM); although they strongly stimulate the interaction of the Sso MCM with bubble-containing synthetic oligonucleotides. The study has also showed, with surface plasmon resonance measurements, that Sso Cdc6-2 physically interacts with either Sso Cdc6-1 or Sso Cdc6-3. These findings may provide important clues needed to understand the biological role that is played by each of these three Cdc6 factors during the DNA replication initiation process in the S. solfataricus cells.  相似文献   

10.
Induction of Epstein-Barr virus (EBV) lytic replication blocks chromosomal DNA replication notwithstanding an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. We report here that the phosphorylated form of MCM4, a subunit of the MCM complex essential for chromosomal DNA replication, increases with progression of lytic replication, Thr-19 and Thr-110 being CDK2/CDK1 targets whose phosphorylation inactivates MCM4-MCM6-MCM7 (MCM4-6-7) complex-associated DNA helicase. Expression of EBV-encoded protein kinase (EBV-PK) in HeLa cells caused phosphorylation of these sites on MCM4, leading to cell growth arrest. In vitro, the sites of MCM4 of the MCM4-6-7 hexamer were confirmed to be phosphorylated with EBV-PK, with the same loss of helicase activity as with CDK2/cyclin A. Introducing mutations in the N-terminal six Ser and Thr residues of MCM4 reduced the inhibition by CDK2/cyclin A, while EBV-PK inhibited the helicase activities of both wild-type and mutant MCM4-6-7 hexamers, probably since EBV-PK can phosphorylate MCM6 and another site(s) of MCM4 in addition to the N-terminal residues. Therefore, phosphorylation of the MCM complex by redundant actions of CDK and EBV-PK during lytic replication might provide one mechanism to block chromosomal DNA replication in the infected cells through inactivation of DNA unwinding by the MCM4-6-7 complex.  相似文献   

11.
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.  相似文献   

12.
The minichromosome maintenance (MCM) complex is the replicative helicase responsible for unwinding DNA during archaeal and eukaryal genome replication. To mimic long helicase events in the cell, a high-temperature single-molecule assay was designed to quantitatively measure long-range DNA unwinding of individual DNA helicases from the archaeons Methanothermobacter thermautotrophicus (Mth) and Thermococcus sp. 9°N (9°N). Mth encodes a single MCM homolog while 9°N encodes three helicases. 9°N MCM3, the proposed replicative helicase, unwinds DNA at a faster rate compared to 9°N MCM2 and to Mth MCM. However, all three MCM proteins have similar processivities. The implications of these observations for DNA replication in archaea and the differences and similarities among helicases from different microorganisms are discussed. Development of the high-temperature single-molecule assay establishes a system to comprehensively study thermophilic replisomes and evolutionary links between archaeal, eukaryal, and bacterial replication systems.  相似文献   

13.
Methanobacterium thermoautotrophicum MCM (mtMCM) is a helicase required for DNA replication. Previous electron microscopy studies have shown mtMCM in several oligomeric forms. However, biochemical studies suggest that mtMCM is a dodecamer, likely a double hexamer (dHex). The crystal structure of the N-terminal fragment of mtMCM reveals a stable dHex architecture. To further confirm that the dHex is not an artifact of crystal packing of two hexamers, we investigated the relevance of the dHex by disrupting the hexamer-hexamer interactions seen in the crystal structure via site-directed mutagenesis and examining various biochemical activities of the mutants in vitro. Using a combination of biochemical and structural assays, we demonstrated that changing arginine to alanine at amino acid position 161 or the insertion of a six-aminoacid peptide at the hexamer-hexamer interface disrupted dHex formation and produced stable single hexamers (sHex). Furthermore, we showed that the sHex mutants retained wild-type level of ATPase and DNA binding activities but had decreased helicase activity when compared with the wild type dHex protein. These biochemical properties of mtMCM are reminiscent of those of SV40 large T antigen, suggesting that the dHex form of mtMCM may be the active helicase for DNA unwinding during the bidirectional DNA replication.  相似文献   

14.
Herein we report the identification of amino acids of the Sulfolobus solfataricus mini-chromosome maintenance (MCM)-like DNA helicase (SsoMCM), which are critical for DNA binding/remodeling. The crystallographic structure of the N-terminal portion (residues 2-286) of the Methanothermobacter thermoautotrophicum MCM protein revealed a dodecameric assembly with two hexameric rings in a head-to-head configuration and a positively charged central channel proposed to encircle DNA molecules. A structure-guided alignment of the M. thermoautotrophicum and S. solfataricus MCM sequences identified positively charged amino acids in SsoMCM that could point to the center of the channel. These residues (Lys-129, Lys-134, His-146, and Lys-194) were changed to alanine. The purified mutant proteins were all found to form homo-hexamers in solution and to retain full ATPase activity. K129A, H146A, and K194A SsoMCMs are unable to bind DNA either in single- or double-stranded form in band shift assays and do not display helicase activity. In contrast, the substitution of lysine 134 to alanine affects only binding to duplex DNA molecules, whereas it has no effect on binding to single-stranded DNA and on the DNA unwinding activity. These results have important implications for the understanding of the molecular mechanism of the MCM DNA helicase action.  相似文献   

15.
Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.  相似文献   

16.
The minichromosome maintenance (MCM) helicase complex is essential for the initiation and elongation of DNA replication in both the eukaryotic and archaeal domains. The archaeal homohexameric MCM helicase from Sulfolobus solfataricus serves as a model for understanding mechanisms of DNA unwinding. In this report, the displaced 5'-tail is shown to provide stability to the MCM complex on DNA and contribute to unwinding. Mutations in a positively charged patch on the exterior surface of the MCM hexamer destabilize this interaction, alter the path of the displaced 5'-tail DNA and reduce unwinding. DNA footprinting and single-molecule fluorescence experiments support a previously unrecognized wrapping of the 5'-tail. This mode of hexameric helicase DNA unwinding is termed the steric exclusion and wrapping (SEW) model, where the 3'-tail is encircled by the helicase while the displaced 5'-tail wraps around defined paths on the exterior of the helicase. The novel wrapping mechanism stabilizes the MCM complex in a positive unwinding mode, protects the displaced single-stranded DNA tail and prevents reannealing.  相似文献   

17.
Masai H  You Z  Arai K 《IUBMB life》2005,57(4-5):323-335
DNA replication is a key event of cell proliferation and the final target of signal transduction induced by growth factor stimulation. It is also strictly regulated during the ongoing cell cycle so that it occurs only once during S phase and that all the genetic materials are faithfully duplicated. DNA replication may be arrested or temporally inhibited due to a varieties of internal and external causes. Cells have developed intricate mechanisms to cope with the arrested replication forks to minimize the adversary effect on the stable maintenance of genetic materials. Helicases play a central role in DNA replication. In eukaryotes, MCM (minichromosome maintenance) protein complex plays essential roles as a replicative helicase. MCM4-6-7 complex possesses intrinsic DNA helicase activity which translocates on single-stranded DNA form 3' to 5'. Mammalian MCM4-6-7 helicase and ATPase activities are specifically stimulated by the presence of thymine-rich single-stranded DNA sequences onto which it is loaded. The activation appears to depend on the thymine content of this single-strand, and sequences derived from human replication origins can serve as potent activators of the MCM helicase. MCM is a prime target of Cdc7 kinase, known to be essential for activation of replication origins. We will discuss how the MCM may be activated at the replication origins by template DNA, phosphorylation, and interaction with other replicative proteins, and will present a model of how activation of MCM helicase by specific sequences may contribute to selection of replication initiation sites in higher eukaryotes.  相似文献   

18.
The archaeal minichromosome maintenance protein MCM forms a homohexameric complex that functions as the DNA replicative helicase and serves as a model system for its eukaryotic counterpart. Here, we applied single molecule fluorescence resonance energy transfer methods to probe the substrate specificity and binding mechanism of MCM from the hyperthermophilic Archaea Sulfolobus solfataricus on various DNA substrates. S. solfataricus MCM displays a binding preference for forked substrates relative to partial or full duplex substrates. Moreover, the nature of MCM binding to Y-shaped substrates is distinct in that MCM loads on the 3'-tail while interacting with the 5'-tail likely via the MCM surface. These results provide the first elucidation of a dynamic nature of interaction between a ring-shaped helicase interacting with an opposing single-stranded DNA tail. This interaction contributes to substrate selectivity and increases the stability of the forked DNA-MCM complex, with possible implications for the MCM unwinding mechanism.  相似文献   

19.
RecQ DNA helicases act in conjunction with heterologous partner proteins to catalyze DNA metabolic activities, including recombination initiation and stalled replication fork processing. For the prototypical Escherichia coli RecQ protein, direct interaction with single-stranded DNA-binding protein (SSB) stimulates its DNA unwinding activity. Complex formation between RecQ and SSB is mediated by the RecQ winged-helix domain, which binds the nine C-terminal-most residues of SSB, a highly conserved sequence known as the SSB-Ct element. Using nuclear magnetic resonance and mutational analyses, we identify the SSB-Ct binding pocket on E. coli RecQ. The binding site shares a striking electrostatic similarity with the previously identified SSB-Ct binding site on E. coli exonuclease I, although the SSB binding domains in the two proteins are not otherwise related structurally. Substitutions that alter RecQ residues implicated in SSB-Ct binding impair RecQ binding to SSB and SSB/DNA nucleoprotein complexes. These substitutions also diminish SSB-stimulated DNA helicase activity in the variants, although additional biochemical changes in the RecQ variants indicate a role for the winged-helix domain in helicase activity beyond SSB protein binding. Sequence changes in the SSB-Ct element are sufficient to abolish interaction with RecQ in the absence of DNA and to diminish RecQ binding and helicase activity on SSB/DNA substrates. These results support a model in which RecQ has evolved an SSB-Ct binding site on its winged-helix domain as an adaptation that aids its cellular functions on SSB/DNA nucleoprotein substrates.  相似文献   

20.
Maiorano D  Cuvier O  Danis E  Méchali M 《Cell》2005,120(3):315-328
MCM2-7 proteins are replication factors required to initiate DNA synthesis and are currently the best candidates for replicative helicases. We show that the MCM2-7-related protein MCM8 is required to efficiently replicate chromosomal DNA in Xenopus egg extracts. MCM8 does not associate with the soluble MCM2-7 complex and binds chromatin upon initiation of DNA synthesis. MCM8 depletion does not affect replication licensing or MCM3 loading but slows down DNA synthesis and reduces chromatin recruitment of RPA34 and DNA polymerase-alpha. Recombinant MCM8 displays both DNA helicase and ATPase activities in vitro. Reconstitution experiments show that ATP binding in MCM8 is required to rescue DNA synthesis in MCM8-depleted extracts. MCM8 colocalizes with replication foci and RPA34 on chromatin. We suggest that MCM8 functions in the elongation step of DNA replication as a helicase that facilitates the recruitment of RPA34 and stimulates the processivity of DNA polymerases at replication foci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号