首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two clusters of red-brown pigmented cell somata lie among other cell somata along the anterior margin of the cerebral ganglion in the crayfish Cherax destructor. Electron micrographs show these cells to contain round electron dense pigment granules and that the cell membranes of two or more adjacent cells fold together to form rhabdom-like structures. The pigmented cells specifically bind a monoclonal antibody against the major species of opsin in R1–7 retinula cells of the compound eye of Cherax. When stimulated with light, the pigmented cells respond with a receptor potential-like depolarization. The axons of the pigmented cells terminate in the neuropil of the protocerebral bridge, together with neuronal elements that label with antibodies against serotonin and substance P. We suggest that the brain photoreceptors of the crayfish are important in the entrainment of circadian rhythms.  相似文献   

2.
Mitotically active regions persist in the brains of decapod crustaceans throughout their lifetimes, as they do in many vertebrates. The most well-studied of these regions in decapods occurs within a soma cluster, known as cluster 10, located in the deutocerebrum. Cluster 10 in crayfish and lobsters is composed of the somata of two anatomically and functionally distinct classes of projection neurons: olfactory lobe (OL) projection neurons and accessory lobe (AL) projection neurons. While adult-generated cells in cluster 10 survive for at least a year, their final phenotypes remain unknown. To address this question, we combined BrdU labeling of proliferating cells with specific neuronal and glial markers and tracers to examine the differentiation of newborn cells in cluster 10 of the crayfish, Cherax destructor. Our results show that large numbers of adult-generated cells in cluster 10 differentiate into neurons expressing the neuropeptide crustacean-SIFamide. No evidence was obtained suggesting that cells differentiate into glia. The functional phenotypes of newborn neurons in cluster 10 were examined by combining BrdU immunocytochemistry with the application of dextran dyes to different brain neuropils. These studies showed that while the majority of cells born during the early postembryonic development of C. destructor differentiate in AL projection neurons, neurogenesis in adult crayfish is characterized by the addition of both OL and AL projection neurons. In addition to our examination of neurogenesis in the olfactory pathway, we provide the first evidence that adult neurogenesis is also a characteristic feature of the optic neuropils of decapod crustaceans.  相似文献   

3.
Crayfish farmers reported reduced tolerance of stress in specimens of Cherax quadricarinatus, which were formerly robust crayfish. Furthermore, one farmer reported a large reduction in yield with final harvest only equaling the stocking weight. Upon trapping, one-third of the crayfish regularly died overnight and a further one-third died on the sorting tray during sexing of juveniles (approximately 3 mo old). Histopathological examination revealed very light (1 or 2 cells per section) infections with Cherax giardiavirus and sometimes mild atrophy of hepatopancreatic cells. Gene probe analysis with a DIG-labeled spawner-isolated mortality virus (SMV) probe demonstrated extensive positive signals in nuclei of many tissues. The hepatopancreas, the midgut, glands associated with the midgut, the epithelium of seminal ducts and follicle cells surrounding oocytes gave the strongest positive signals. Nuclei of the heart, haemocytes, connective tissue and subcutis gave positive signals in some individuals. Although signals were intense and extensive, cytolysis of infected cells was very limited. The possibility of cross infections of SMV between prawns and freshwater crayfish is of international quarantine significance.  相似文献   

4.
Summary Examination of the ultrastructure of retinula cells of the Australian crayfish Cherax destructor at different times over a 24-hour cycle, together with patterns of anti-rhodopsin antigenicity, has lead to the formulation of a model of photoreceptor membrane turnover in these animals. Its main features are: (a) the existence of two bursts of rhabdomeral membrane breakdown; one, light-sensitive and synchronous, occurring at dawn, the other, constituting the first part of the membrane replacement phase itself, occurring during the afternoon and night, (b) the desynchronisation of the replacement phase of turnover between animals and to a lesser extent between cells of the same retina, (c) confinement of ultrastructurally detectable signs of photoreceptor membrane processing to the retinula cells themselves, and (d) replacement of a substantial part if not all of the rhabdomeral membrane daily. This model is compatible with many of the observations reported on the American crayfish Procambarus, and utilises the same basic mechanisms that are believed to operate in photoreceptor membrane turnover in many other arthropod compound eyes.  相似文献   

5.
Freshwater crayfish invasions have been studied around the world, but less so in Africa, a continent devoid of native freshwater crayfish. The present study reviews historical and current information on alien freshwater crayfish species introduced into South Africa and aims to indicate which areas are at risk from invasion. As is the case elsewhere, South Africans have shown a keen interest in both farming and keeping freshwater crayfish as pets, which has resulted in Cherax cainii, Cherax destructor, Cherax quadricarinatus and Procambarus clarkii being introduced to the country. There is evidence of successful establishment in the wild for C. quadricarinatus and P. clarkii in different parts of the country. Species distribution models suggest that the eastern part of the country and parts of the Eastern and Western Cape are at higher risk of invasion. At present, illegal translocations represent the most likely pathway of crayfish spread in South Africa. A continued risk of invasion by freshwater crayfish species in South Africa is highlighted, which reinforces the need for more research, as well as for strong mitigation measures, such as stronger policing of existing regulations, management or eradication where feasible and public education.  相似文献   

6.
The sixth abdominal ganglion (6th AG) of the crayfish contains two photosensitive neurons. This caudal photoreceptor (CPR) displays spontaneous electrical activity and phasic-tonic responses to light pulses. In this paper, we analyzed the presence of serotonin in the 6th AG and its effects in the modulation of the activity of CPR. In the first part of our study, we identified serotonergic neurons in the 6th AG by immunostaining using an antibody against serotonin. Next, we quantified the serotonin contents in the 6th AG by using liquid chromatography. Finally, we searched for serotonergic modulation of the CPR electrical activity by using conventional extracellular recordings. We found 13 immunopositive neurons located in the ventral side of the 6th AG. The mean diameter of their somata was 23+/-9 microm. In addition, there was immunopositive staining in neuropilar fibers and varicosities. The contents of serotonin and its precursors in the 6th AG varied along the 24-h cycle. Its maximum value was reached by midday. Topic application of serotonin to ganglia kept in darkness increased the CPR spontaneous firing rate and reduced its light responsiveness. Both effects were dose-dependent within ED(50) approximately 1 microM and were blocked by the 5-HT antagonist methysergide. These observations support the role of serotonin as a neurotransmitter or neuromodulator in the CPR of the two species of crayfish Procambarus clarkii and Cherax quadricarinatus.  相似文献   

7.
The responses of individuals of Cherax destructor and Euastacus armatus to water containing stressed or unstressed crayfish were tested in the laboratory. Individuals of E. armatus showed only an increase in locomotion when stressed crayfish water was introduced. Individuals of C. destructor showed a decrease in the time spent in a lowered posture, an increase in the time spent in the raised posture and in grooming behaviour when stressed crayfish water was introduced. Individuals of C. destructor responded more strongly to heterospecific animals (Cherax rotundus and E. armatus) than to conspecifics. The levels of responses to the two heterospecific species were similar.  相似文献   

8.
The outcomes of agonistic interactions modulate access to resources and thereby affect fitness. Success in agonistic encounters may depend on intrinsic physical and physiological performance, and on social experience. Here we test the hypothesis that previous experience will override physical strength in determining the outcome of fights in the freshwater crayfish Cherax dispar. Between unfamiliar opponents, greater chelae closing force significantly increases the chances of winning. However, even when the chelae of the original winners were disabled, the winners kept on winning against the same opponents after 30min and 24h. This winner effect disappeared when previous winners encountered unfamiliar individuals. Similarly, a previous loss did not affect the outcomes of subsequent encounters with unknown crayfish. We suggest that this prolonged recognition of individuals and their relative fighting ability is a mechanism that can reduce the number of agonistic encounters experienced by individuals.  相似文献   

9.
Many crayfish species inhabit murky waters or have a crepuscular lifestyle, which forces them to rely on chemical and mechanical information rather than visual input. Information on how they use one form of mechanical information-tactile cues-to explore their local environment is limited. We observed the exploratory behavior of the crayfish Cherax destructor in a T-maze under red light. Animals moved forward along the long arm of the maze and then moved equally in one of two available directions. The arm chosen by one crayfish did not affect that selected by a second crayfish tested immediately after in an unwashed maze. Previous experience in the maze also did not affect the choice. We found, however, that crayfish with one antenna denervated or splinted back to the carapace turned more often toward the unaltered side. Our data support the hypothesis that crayfish bilaterally compare information from their antennae.  相似文献   

10.
The eyestalks of crustaceans contain neurosecretory cells involved in the regulation of molting. In crayfish, bilateral ablation results in increased molting frequency and weight gain whereas unilateral ablation typically has no effect on molting frequency and weight gain. The effects of unilateral ablation were examined in juvenile Australian freshwater crayfish, Cherax quadricarinatus. As observed for other crayfish species, molting frequency and weight gain of unilateral ablated crayfish were not significantly different from control (intact) crayfish. Survival of unilateral ablated crayfish, however, was reduced compared to controls and was likely due to stress associated with the surgical procedure itself. Using radiolabeling techniques, protein synthesis was determined for neural tissues from the remaining eyestalk of ablated crayfish and compared to protein synthesis of neural tissues from eyestalks of control, non-ablated crayfish. Protein synthesis of ablated crayfish neural tissues was significantly higher (ca. 45%) than protein synthesis of control neural tissues. Electrophoretic analysis (SDS-PAGE and autoradiography) further demonstrated that protein synthesis increased linearly for all proteins in the remaining eyestalk of ablated crayfish. Together, these results suggest that a compensatory response occurred in unilateral ablated crayfish allowing normal physiological functions, particularly those involved in regulating growth cycles, to be maintained. J. Exp. Zool. 289:184-189, 2001.  相似文献   

11.
随着红螯螯虾(Cherax quadricarinatus)养殖业的发展,附着于红螯螯虾体表的切头涡虫及其危害已引起养殖业者的广泛关注。本文介绍了切头涡虫的分类地位和分布,详细描述了切头涡虫外部形态和内部构造,并对切头涡虫的共生特性、食性、生活史、运动方式等生物学特点进行了概述,对切头涡虫的危害和防治进行了总结和讨论。本综述可为红螯螯虾的养殖、切头涡虫病的了解与防治以及相关研究提供参考。  相似文献   

12.
This study sets out to provide a systematic analysis of the development of the primordial central nervous system (CNS) in embryos of two decapod crustaceans, the Australian crayfish Cherax destructor (Malacostraca, Decapoda, Astacida) and the parthenogenetic Marbled crayfish (Marmorkrebs, Malacostraca, Decapoda, Astacida) by histochemical labelling with phalloidin, a general marker for actin. One goal of our study was to examine the neurogenesis in these two organisms with a higher temporal resolution than previous studies did. The second goal was to explore if there are any developmental differences between the parthenogenetic Marmorkrebs and the sexually reproducing Australian crayfish. We found that in the embryos of both species the sequence of neurogenetic events and the architecture of the embryonic CNS are identical. The naupliar neuromeres proto-, deuto-, tritocerebrum, and the mandibular neuromeres emerge simultaneously. After this “naupliar brain” has formed, there is a certain time lag before the maxilla one primordium develops and before the more caudal neuromeres follow sequentially in the characteristic anterior–posterior gradient. Because the malacostracan egg-nauplius represents a re-capitulation of a conserved ancestral information, which is expressed during development, we speculate that the naupliar brain also conserves an ancestral piece of information on how the brain architecture of an early crustacean or even arthropod ancestor may have looked like. Furthermore, we compare the architecture of the embryonic crayfish CNS to that of the brain and thoracic neuromeres in insects and discuss the similarities and differences that we found against an evolutionary background.  相似文献   

13.
Summary

The Australian redclaw crayfish Cherax quadricarinatus hatches at an advanced stage. Two post-hatching stages rely on yolk reserves before the organism becomes a juvenile. After a juvenile appears, the yolk is depleted and young crayfish might spend a few days among female pleopods before starting to feed independently. During this phase, the juvenile organism needs alternative energy sources. Offspring from three females were analyzed with histological and histochemical techniques, from hatching until reaching the 2-week juvenile stage, to trace digestive system development and internal organ lipid and glycogen accumulation. Neutral lipids are stored in specialized cells of the hepatopancreatic tissue until the juvenile stage is reached. An increasing rate of accumulation was found. Glycogen was stored in hepatopancreas and tail muscle cells until post-embryo II, and no increasing or decreasing rate was found in storage functions.  相似文献   

14.
Life‐long neurogenesis is a characteristic feature of many vertebrate and invertebrate species. In decapod crustaceans, new neurons are added throughout life to two cell clusters containing local (cluster 9) and projection (cluster 10) interneurons in the olfactory pathway. Adult‐born neurons in clusters 9 and 10 in crayfish have the anatomical properties and chemistry of mature neurons by 6 months after birth. Here we use 5‐bromo‐2′‐deoxyuridine (BrdU) incorporation to pulse label mitotically active cells in these cell clusters, followed by a survival time of up to 8 months, during which crayfish (Cherax destructor) were sacrificed at intervals and the numbers of BrdU‐labeled cells quantified. We find a decrease in the numbers of BrdU‐labeled cells in cell cluster 10 between the first and second weeks following BrdU exposure, suggesting a period of cell death shortly after proliferation. Additional delayed cell divisions in both cell clusters are indicated by increases in labeled cells long after the BrdU clearing time. The differentiation time of these cells into neurons was defined by detection of the first immunoreactivity for the transmitter SIFamide in cluster 10 BrdU‐labeled cells, which begins at 4 weeks after BrdU labeling; the numbers of SIFamide‐labeled cells continues to increase over the following month. Experiments testing whether proliferation and survival of Cluster 10 cells are influenced by locomotor activity provided no evidence of a correlation between activity levels and cell proliferation, but suggest a strong influence of locomotor activity on cell survival. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 602–615, 2014  相似文献   

15.
From sinus glands of the Australian crayfish Cherax destructor, two genetic variants of the crustacean hyperglycemic hormone (CHH) were isolated by HPLC and fully characterized by mass spectrometry and Edman sequencing. Both CHH A (8350.38 Da) and CHH B (8370.34 Da) consist of 72 amino acid residues, with pyroGlu as N-terminus and an amidated (Val-NH2) C-terminus. They differ in 14 residues (81% identity). Both sequences are significantly different from those of the hitherto known three CHHs of Astacoidea species (Northern hemisphere crayfish), which among themselves are extremely conserved. This may reflect the long, separate evolution of the Astacoidea lineage and the Parastacoidea (Southern hemisphere crayfish) lineage, to which Cherax belongs. CHH A and CHH B genes are expressed at comparable levels, as indicated by the similar amounts of mature peptides in the sinus gland. In addition to each of the major peptides, which share the identical N-terminal tripeptide pyroGlu-Val-L-Phe, one chiral isoform containing pyroGlu-Val-D-Phe was identified. Compared to the main peptides, the amounts of the D-isoforms are lower, but significant, amounting to 30-40% of L-isoforms. These results demonstrate that two genes can give rise to a total of four different peptides in the secretory terminals of the sinus gland. All peptides gave a highly significant hyperglycemic in vivo response in C. destructor.  相似文献   

16.
Aquatic animals generate electrical field potentials which may be monitored by predators or conspecifics. Many crustaceans use rapid, forceful contractions of the flexor and extensor muscles to curl and extend their abdomens during swimming in escape and locomotion. When crayfish swim they generate electrical field potentials that can be recorded by electrodes nearby in the water. In general, it is reasonable to assume that larger bodied crayfish will generate signals of greater amplitude because they have larger muscles. It is not known, however, how activity in particular muscles and nerves combines to produce the compound electrical waveform recorded during swimming. We therefore investigated the relationship between abdominal muscle, body size and the amplitude of nearby tailflip potentials in the freshwater crayfish (Cherax destructor). We found that amplitude was correlated positively with abdominal muscle mass. The mean amplitude recorded from the five smallest and five largest individuals differed by 440 microV, a difference sufficiently large to be of significance to predators and co-inhabitants in the wild.  相似文献   

17.
We have used specific antisera against protein-conjugated -aminobutyric acid (GABA) and rat-brain glutamic acid decarboxylase (GAD) in immunocytochemical preparations to study the distribution of putatively GABAergic neurons in the fused thoracic ganglion of the crab Eriphia spinifrons. In the thoracic neuromeres, about 2000 neurons with somata arranged in clusters or located singly in the cell cortex exhibited both GABA-like and GAD-like immunoreactivity. In addition, more than a hundred cells showed only GABA-like immunoreactivity. Fibrous immunoreactive staining to GAD and GABA was distributed throughout the neuropil of the thoracic ganglion, and several fiber tracts contained immunoreactive processes. Sets of serially homologous neurons exhibited GABA-like and GAD-like immunoreactivity in the thoracic neuromeres. Especially prominent were one medial and four ventro-lateral clusters of somata, together with thirteen individually recognized cells in each neuromere. Six of these cells in the ventro-medial cell cortex may be the somata of inhibitory motoneurons. The leg nerves contained three immunoreactive fibers, corresponding to the previously described common inhibitory motoneuron and the two specific inhibitors. The results present further evidence for GABA being the neurotransmitter of all inhibitory leg motorneurons, and suggest its presence and role as a neurotransmitter in a considerable number of interneurons in the thoracic ganglion of the crab.  相似文献   

18.
Posture control by statocysts is affected by leg condition in decapod crustaceans. We investigated how, in the crayfish brain, the synaptic response of local interneurons to statocyst stimulation was affected by leg movements on and off a substratum. The magnetic field stimulation method permitted sustained stimulation of statocyst receptors by mimicking body rolling. The statocyst-driven local interneurons were classified into four morphological groups (Type-I–IV). All interneurons except Type-IV projected their dendritic branches to the parolfactory lobe of the deutocerebrum where statocyst afferents project directly. Type-I interneurons having somata in the ventral-paired lateral cluster responded invariably to statocyst stimulation regardless of the leg condition, whereas others having somata in the ventral-unpaired posterior cluster showed response enhancement or suppression, depending on the cell, during leg movements on a substratum, but no response change during free leg movements off the substratum. The synaptic responses of Type-II and IV interneurons were also affected differently by leg movements depending on the substratum condition, whereas those of Type-III remained unaffected. These findings suggest that the statocyst pathway in the crayfish brain is organized in parallel with local circuits that are affected by leg condition and those not affected.  相似文献   

19.
In the summer of 1999/2000, an epizootic occurred in cultured juvenile redclaw crayfish Cherax quadricarinatus on one commercial crayfish farm in northern Queensland, Australia. Mortalities occurred over 4 wk, with up to 96% cumulative mortalities in 2 earthen ponds stocked with juveniles. The crayfish were weak, anorexic and lethargic. A transmission trial was conducted, using filtered, cell-free extract prepared from infected crayfish as inoculum. The disease was reproduced, with on-going mortalities occurring in inoculated crayfish over 55 d. Experimentally inoculated crayfish showed gross signs of malaise, anorexia and disorientation before dying. Two types of intranuclear inclusion bodies (INIBs) were seen in tissues of endodermal, ectodermal and mesodermal origin by light microscopy with haematoxylin and eosin (H&E) stained sections. 'Early'-stage INIBs were eosinophilic, rounded and located centrally within slightly enlarged nuclei while 'late'-stage INIBs were well-rounded and deeply basophilic. The gills, cuticular epithelium and epithelial cells of the foregut, midgut and hindgut were the most heavily infected tissues. By transmission electron microscopy, virions with an average diameter of 19.5 nm were seen within electron-dense granular inclusion bodies within enlarged nuclei of both naturally and experimentally infected crayfish. The size of the virions and cytopathology are consistent with characteristics of viruses in the Family Parvoviridae. This is the first reported case of mass mortality caused by a parvo-like virus infection in C. quadricarinatus.  相似文献   

20.
The freshwater crayfish Cherax quadricarinatus is a tropical species of great interest for aquaculture. Vitellogenin (Vg), a lipoprotein precursor of the vitellum accumulated in spawned eggs, can be synthesized in the ovary and/or hepatopancreas of most crustaceans, being the hemolymph the way for transporting Vg throughout the reproductive cycle. Concentration of Vg in hemolymph, ovary and hepatopancreas of Cherax quadricarinatus adult females was measured by means of ELISA, specifically developed after purifying the native Vg. Measurements were made at four periods of the reproductive cycle: pre-reproductive, mid-reproductive, late reproductive and post-reproductive. Besides, both hepatosomatic (HSI) and gonadosomatic (GSI) indexes were determined in each period. Significant variations in Vg levels were detected in both hemolymph and hepatopancreas, being the highest values observed during the mid-reproductive period. Besides, such variations were positively correlated to the HSI. A positive correlation between Vg levels in hepatopancreas and ovary was also seen. These results support previous evidences about the central role of the hepatopancreas as a site of Vg synthesis in the studied species, together with the relevancy of hemolymph for transporting Vg from the hepatopancreas to the ovary. For aquaculture purposes, Vg monitoring in hemolymph could be used as a non-injurious method, to check the reproductive activity of C. quadricarinatus females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号