首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The phosphorylation of intact calmodulin and of fragments obtained by trypsin digestion was studied, using a protein kinase partially purified from bovine brain. Brain extracts were made in the presence of the detergent CHAPS (3-[3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate). The protein kinase catalyzed the incorporation of nearly 1 mol of 32P from [gamma-32P]ATP into calmodulin fragment 1-106. Incorporation was exclusively into serine 101. With fragment 78-148, the extent of phosphorylation was somewhat less and 32P appeared mainly in threonine residues. Fragment 1-90 was also a fairly good substrate, but the phosphorylation of intact calmodulin never exceeded 0.01 mol per mol. Little or no phosphorylation was seen with parvalbumin, the brain Ca2+-binding protein (CBP-18) and intestinal calcium-binding protein. The protein kinase had no requirement for cAMP or phospholipids. High levels of Mg2+ (60-70 mM) stimulated phosphorylation of the fragments 20-fold. Millimolar concentrations of Ca2+ were inhibitory. It is suggested that the calmodulin fragments were in a conformation more favorable for phosphorylation than intact soluble calmodulin.  相似文献   

2.
A Ca2+-binding protein named CAB-27 was purified from bovine brain 100,000 g supernatant. The protein has a molecular mass of 27,000 Da as determined by SDS/polyacrylamide-gel electrophoresis and 35,500 Da by sedimentation-coefficient and Stokes-radius analysis. The protein contains about 26% Glx and Asx and 13% basic residues. The acidic nature of the molecule is confirmed by its pI of 4.80. In the presence of 3 mM-MgCl2 and 150 mM-KCl, CAB-27 binds 2.0 mol of Ca2+/mol of protein, with an apparent Kd of 0.2 microM. Ca2+-binding is unaffected by prior incubation of the protein at 80 degrees C for 2 min. Brain contains about 130 mg of CAB-27/kg. Immunoblotting identified CAB-27 in several bovine tissues; it appears to be particularly rich in brain and kidney. In addition, CAB-27 is identified as an inhibitor of bovine pancreas phospholipase A2 in vitro. The inhibitory activity of CAB-27 was 20-fold less potent than lipocortin. On the basis of the Ca2+-binding properties, intracellular concentration and tissue distribution of this protein, we suggest that CAB-27 may be an important intracellular Ca2+ receptor.  相似文献   

3.
Recent reports have shown that there exists in mammalian brain a number of heat-stable Ca2(+)-binding proteins that are distinct from calmodulin [McDonald & Walsh (1985) Biochem. J. 232, 559-567]. We have attempted to characterize equivalent Ca2(+)-binding proteins from Drosophila. Affigel-phenothiazine chromatography, which can be used to purify calmodulin and other Ca2(+)-binding proteins, allowed the identification of a possible heat-stable 23 kDa Ca2(+)-binding protein. A purification procedure for this protein has been devised. Purified 23 kDa protein shows characteristics typical of a Ca2(+)-binding protein; there is a mobility shift on SDS/polyacrylamide gels in the presence of EGTA, and Western blotting, followed by the use of the 45Ca2+ overlay technique, confirms that the 23 kDa protein does bind Ca2+. 45Ca2+ binding studies indicate that this protein binds 1 mol of Ca2+/mol of protein, with Kd 1.9 microM. A single band with pI 5.2 is obtained on isoelectric focusing. Analysis of Western blots of Drosophila tissues probed with antibodies to the Ca2(+)-binding protein indicates that it has a widespread distribution, but is absent from muscle tissue. The antibodies also cross-react with a protein of identical molecular mass in extracts of sheep brain. The possible similarity between this Drosophila Ca2(+)-binding protein and mammalian proteins is discussed, and comparison is made between this Drosophila protein and other Ca2(+)-binding proteins purified from vertebrates.  相似文献   

4.
We have previously described the use of Ca2+-dependent hydrophobic-interaction chromatography to isolate the Ca2+ + phospholipid-dependent protein kinase (protein kinase C) and a novel heat-stable 21 000-Mr Ca2+-binding protein from bovine brain [Walsh, Valentine, Ngai, Carruthers & Hollenberg (1984) Biochem. J. 224, 117-127]. The procedure described for purification of the 21 000-Mr calciprotein to electrophoretic homogeneity has been modified to permit the large-scale isolation of this Ca2+-binding protein, enabling further structural and functional characterization. The 21 000-Mr calciprotein was shown by equilibrium dialysis to bind approx. 1 mol of Ca2+/mol, with apparent Kd approx. 1 microM. The modified large-scale purification procedure revealed three additional, previously unidentified, Ca2+-binding proteins of Mr 17 000, 18 400 and 26 000. The 17 000-Mr and 18 400-Mr Ca2+-binding proteins are heat-stable, whereas the 26 000-Mr Ca2+-binding protein is heat-labile. Use of the transblot/45CaCl2 overlay technique [Maruyama, Mikawa & Ebashi (1984) J. Biochem. (Tokyo) 95, 511-519] suggests that the 18 400-Mr and 21 000-Mr Ca2+-binding proteins are high-affinity Ca2+-binding proteins, whereas the 17 000-Mr Ca2+-binding protein has a relatively low affinity for Ca2+. Consistent with this observation, the 18 400-Mr and 21 000-Mr Ca2+-binding proteins exhibit a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, whereas the 17 000-Mr Ca2+-binding protein does not. The amino acid compositions of the 17 000-Mr, 18 400-Mr and 21 000-Mr Ca2+-binding proteins show some similarities to each other and to calmodulin and other members of the calmodulin superfamily; however, they are clearly distinct and novel calciproteins. In functional terms, none of the 17 000-Mr, 18 400-Mr or 21 000-Mr Ca2+-binding proteins activates either cyclic nucleotide phosphodiesterase or myosin light-chain kinase, both calmodulin-activated enzymes. However, the 17 000-Mr Ca2+-binding protein is a potent inhibitor of protein kinase C. It may therefore serve to regulate the activity of this important enzyme at elevated cytosolic Ca2+ concentrations.  相似文献   

5.
Pyruvate dehydrogenase phosphatase was purified to apparent homogeneity from bovine heart and kidney mitochondria. The phosphatase has a sedimentation coefficient (S20,w) of about 7.4 S and a molecular weight (Mr) of about 150 000 as determined by sedimentation equilibrium and by gel-permeation chromatography. The phosphatase consists of two subunits with molecular weights of about 97 000 and 50 000 as estimated by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. Phosphatase activity resides in the Mr 50 000 subunit, which is sensitive to proteolysis. The phosphatase contains approximately 1 mol of flavin adenine dinucleotide (FAD) per mol of protein of Mr 150 000. FAD is apparently associated with the Mr 97 000 subunit. The function of this subunit remains to be established. The phosphatase binds 1 mol of Ca2+ per mol of enzyme of Mr 150 000 at pH 7.0, with a dissociation constant (Kd) of about 35 microM as determined by flow dialysis. Use of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetate (EGTA) at pH 7.6 in conjunction with flow dialysis gave a Kd value for Ca2+ of about 8 microM. In the presence of both the phosphatase and the dihydrolipoyl transacetylase (E2) core of the pyruvate dehydrogenase complex, two equivalent and apparently non-interacting CA2+-binding sites were detected per unit of Mr 150 000, with a Kd value of about 24 microM in the absence and about 5 microM in the presence of EGTA. In the presence of 0.2 M KCl, which inhibits phosphatase activity about 95%, the phosphatase exhibited only one Ca2+-binding site, even in the presence of E2. The phosphatase apparently possesses an "intrinsic" Ca2+-binding site, and a second Ca2+-binding site is produced in the presence of E2. The second site is apparently altered by increasing the ionic strength. It is proposed that the second site may be at the interface between the phosphatase and E2, with Ca2+ acting as a bridging ligand for specific attachment of the phosphatase to E2.  相似文献   

6.
A Ca2+-binding protein which is capable of activating mammalian Ca2+-activatable cyclic nucleotide phosphodiesterase has been purified from Lumbricus terrestris and characterized. This protein and the Ca2+-dependent protein modulator from bovine tissues have many similar properties. Both proteins have molecular weights of approximately 18,000, isoelectric points of about pH 4, similar and characteristic ultraviolet spectra, and similar amino acid compositions. Both proteins bind calcium ions with high affinity. However, the protein from Lumbricus terrestris binds 2 mol of calcium ions with equal affinity, Kdiss = 6 X 10(-6) M, whereas the Ca2+-dependent protein modulator from bovine tissues binds 4 mol of calcium ions with differing affinities. Although the Ca2+-binding protein of Lumbricus terrestris activates the Ca2+-activatable cyclic nucleotide phosphodiesterase from mammalian tissues, we have failed to detect the existence of a Ca2+-activatable phosphodiesterase activity in Lumbricus terrestris. The activation of phosphodiesterase by the Ca2+-binding protein from Lumbricus terrestris is inhibited by the recently discovered bovine brain modulator binding protein (Wang, J. H., and Desai, R. (1977) J. Biol. Chem. 252, 4175-4184). Since the modulator binding protein has been shown to associate with the mammalian protein modulator to result in phosphodiesterase inhibition, it can be concluded that the Lumbricus terrestris Ca2+-binding protein also associates with the bovine brain modulator binding protein. Attempts to demonstrate the existence of a similar modulator binding protein in Lumbricus terrestris have been unsuccessful.  相似文献   

7.
W-66 (N-(2-aminoethyl)-N-[2-(4-chlorocinnamylamino) ethyl]-5-isoquinolinesulfonamide), a newly synthesized isoquinolinesulfonamide, was shown to have a potent vasodilatory action and calmodulin (CaM)-antagonizing action. Using the W-66 affinity chromatographic technique, we purified two Ca(2+)-binding proteins from the EGTA-soluble fraction of bovine aorta. One was CaM and the other was an acidic protein with a molecular mass of 11 kDa. It was tentatively named "calvasculin." Calvasculin was a dimeric protein. Equilibrium dialysis showed that 1 mol of calvasculin (dimer) bound to 1.98 +/- 0.30 mol of Ca2+ in the presence of 10(-3) M Ca2+. Calvasculin failed to activate Ca2+/CaM-dependent enzymes such as myosin light chain kinase, Ca2+/CaM-dependent phosphodiesterase, or Ca2+/CaM-dependent protein kinase II and to inhibit the CaM stimulation of these enzymes. The partial amino acid sequence of calvasculin revealed a high homology to the predicted protein derived from mRNA, named pEL-98, 18A2, 42A, or p9Ka. We also examined the physicochemical and biochemical properties of calvasculin. Using the antibody specific for calvasculin, we obtained evidence that calvasculin is present in abundance in bovine aorta but not in brain, lung, heart, or testis.  相似文献   

8.
A new Ca2+-binding protein, different from calmodulin, has been detected in the cilium and cell body of Tetrahymena. This protein, designated as TCBP-10, has been purified from the cells to homogeneity. TCBP-10 is an acidic protein (pI = 4.5) which shows a Ca2+-dependent mobility shift in alkali-glycerol-polyacrylamide gel electrophoresis. The protein is resistant to heat and trichloroacetic acid. The molecular weight of the protein is 10,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 22,000 by Sephadex G-50 gel filtration, suggesting that the native form of the protein is a dimer. The protein has a molar extinction coefficient of 6,500 at 282 nm. Equilibrium dialysis experiments revealed that the protein binds 1 mol of Ca2+/mol of protein with a dissociation constant of 27 microM. The protein contains a relatively large quantity of acidic amino acids, single residues of cysteine, histidine, and tryptophan, and no methionine. These properties are similar to those of some low molecular weight Ca2+-binding proteins belonging to the calmodulin family. Thus, the cilium of Tetrahymena contains a second Ca2+-binding protein in addition to calmodulin. We consider that TCBP-10 and calmodulin may play important cooperative roles in the Ca2+-regulation of ciliary movement in Tetrahymena.  相似文献   

9.
The cardiac troponin (Tn) complex, consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT), has been reconstituted from purified troponin subunits isolated from bovine heart muscle. The Ca2+-binding properties of cardiac Tn were determined by equilibrium dialysis using either EGTA or EDTA to regulate the free Ca2+ concentration. Cardiac Tn binds 3 mol Ca2+/mol and contains two Ca2+-binding sites with a binding constant of 3 X 10(8) M-1 and one binding site with a binding constant of 2 X 10(6) M-1. In the presence of 4 mM MgC12, the binding constant of the sites of higher affinity is reduced to 3 X 10(7) M-1, while Ca2+ binding to the site at the lower affinity is unaffected. The two high affinity Ca2+-binding sites of cardiac Tn are analogous to the two Ca2+-Mg2+ sites of skeletal Tn, while the single low affinity site is similar to the two Ca2+-specific sites of skeletal Tn (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4625-5633). The Ca2+-binding properties of the complex of TnC and TnI (1:1 molar ratio) were similar to those of Tn. Cardiac TnC also binds 3 mol of Ca2+/mol and contains two sites with a binding constant of 1 X 10(7) M-1 and a single site with a binding constant of 2 X 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the high affinity sites of TnC and Tn, the binding constants for Mg2+ were 0.7 and 3.0 X 10(3) M-1, respectively. The Ca2+ dependence of cardiac myofibrillar ATPase activity was similar to that of an actomyosin preparation regulated by the reconstituted troponin complex. Comparison by the Ca2+-binding properties of cardiac Tn and the cardiac myofibrillar ATPase activity as a function of [Ca2+] and at millimolar [Mg2+] suggests that activation of the ATPase occurs over the same range of [Ca2+] where the Ca2+-specific site of cardiac Tn binds Ca2+.  相似文献   

10.
A 21,000-dalton Ca(2+)-binding protein (Walsh, M.P., Valentine, K.A., Ngai, P.K., Carruthers, C.A., and Hollengerg, M.D. (1984) Biochem. J. 224, 117-127) was purified from the rat brain and through the use of oligonucleotide probe based on partial amino acid sequence, cDNA clones were obtained from rat brain cDNA library. The complete amino acid sequence deduced from the cDNA contains 191 residues and has a calculated molecular mass of 22,142 daltons. There are three potential Ca(2+)-binding sites like the EF hands in the sequence. It displays striking sequence homology with visinin and recoverin, retina-specific Ca(2+)-binding proteins. Northern blot analysis revealed that the protein is highly and specifically expressed in the brain.  相似文献   

11.
L Eichinger  M Schleicher 《Biochemistry》1992,31(20):4779-4787
Severin is a Ca(2+)-activated actin-binding protein that nucleates actin assembly and severs and caps the fast growing ends of actin filaments. It consists of three highly conserved domains. To investigate the domain structure of severin, we constructed genetically the N-terminal domain 1, the middle domain 2, and the tandem domains 2 + 3. Their interaction with actin, Ca2+, and lipids was characterized. Domain 1 contains the F-actin capping and a Ca(2+)-binding site [Eichinger, L., Noegel, A. A., & Schleicher, M. (1991) J. Cell Biol. 112, 665-676]. Binding of domain 2 to actin filaments was Ca(2+)-dependent and saturated at a 1:1 molar ratio. In the presence of Ca2+, about 1.5 mol of domains 2 + 3 bound per mole of F-actin subunit. Scatchard analysis gave a Kd of 18 microM for the interaction of domain 2 with F-actin subunits and a Kd of 1.6 microM for domains 2 + 3. Low-shear viscometry, electron microscopy, and low-speed sedimentation assays showed that domains 2 + 3 induced bundling of actin filaments. The influence of PIP2 micelles on the different activities of severin was assayed using native severin and N- and C-terminally truncated fragments. Severin contains at least two PIP2-binding sites since the activities of the two nonoverlapping severin fragments domain 1 and domains 2 + 3 were inhibited by PIP2. The specificity of severin-phospholipid interaction was investigated by studying the regulation of native severin by PIP2 and other pure or mixed phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A high affinity calcium binding site that is independent of the gamma-carboxyglutamic acid-rich amino-terminal region, has been demonstrated in bovine protein C, as well as in the other vitamin K-dependent proteins (except prothrombin) involved in blood coagulation. gamma-Carboxyglutamic acid-independent calcium binding in protein C is required for its rapid activation by the thrombin-thrombomodulin complex. We have now isolated a Ca2+-binding fragment from a tryptic digest of bovine protein C. The isolated fragment contains the two domains that are homologous to the epidermal growth factor precursor from the light chain of protein C, and a small disulfide bound peptide derived from the heavy chain. The isolated fragment bound 1 mol of Ca2+/mol of protein with a dissociation constant (Kd) of approximately 1 x 10(-4) M. This is similar to the Kd previously determined for binding of a single Ca2+ ion to protein C lacking the gamma-carboxyglutamic acid region. Immunochemical evidence indicated that Ca2+ binding induced a conformational change both in protein C lacking the gamma-carboxyglutamic acid region and in the isolated fragment.  相似文献   

13.
A novel Ca2+-binding protein (CaBP) was identified in Ehrlich-ascites-tumour cells and purified to homogeneity. The molecular mass of this protein is about 10.5 kDa as estimated by polyacrylamide-gel electrophoresis in the presence of SDS. CaBP has two Ca2+-binding sites that bind Ca2+ with a dissociation constant of about 3 x 10(-6)M. Ca2+ binding to CaBP decreases its electrophoretic mobility in urea/polyacrylamide gels, changes its u.v. spectrum, increases the intrinsic tyrosine fluorescence intensity and strengthens hydrophobic interaction with the phenyl-Sepharose matrix.  相似文献   

14.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

15.
Ca2+-binding of S-100 protein was studied using a Ca2+ electrode at pH 6.80. In the presence of 0.1 M KCl and 10 mM MgCl2 (ionic strength 0.13), Ca2+-binding to S-100 protein occurred in three steps with positive cooperativity. The numbers of bound Ca2+ ions in the three steps were 2, 2, and 4. The Ca2+-binding constants were 6.9 x 10(3) M-1, 2.9 x 10(3) M-1, and 3.7 x 10(2) M-1, respectively. The Ca2+-binding constants of the first and second steps obtained in the presence of 33.3 mM MgCl2 or 0.1 M KCl (ionic strength 0.10) were 1.4 times larger than those described above. This suggests that Mg2+ does not inhibit Ca2+-binding of S-100 protein. The increase of KCl concentration from 0.1 to 0.2 M caused a decrease of the Ca2+-binding constants to ca. 50%.  相似文献   

16.
The amino acid sequence of a new Ca2+-binding protein (CaVP) from Amphioxus muscle (Cox, J. A., J. Biol. Chem. 261, 13173-13178) has been determined. The protein contains 161 amino acid residues and has a molecular weight of 18,267. The N terminus is blocked by an acetyl group. The two functional Ca2+-binding sites have been localized based on homology with known Ca2+-binding domains, on internal homology and on secondary structure prediction, and appear to be the domains III and IV. The C-terminal half of CaVP, which contains the two Ca2+-binding sites, shows a remarkable similarity with human brain calmodulin (45%) and with rabbit skeletal troponin C (40%). Functional domain III contains 2 epsilon-N-trimethyllysine residues in the alpha-helices flanking the Ca2+-binding loop. Sequence determination revealed two abortive Ca2+-binding domains in the N-terminal half of CaVP with a similarity of 24 and 30% as compared with calmodulin and troponin C, respectively. This half is also characterized by the presence of a disulfide bridge linking the N-terminal helix of domain I to the C-terminal helix of domain II. This disulfide bond is very resistant to reduction in the native state, but not in denatured CaVP. The optically interesting aromatic chromophores (2 tryptophan and 1 tyrosine residues) are all located in the nonfunctional domain II.  相似文献   

17.
The isotypes of sarcoplasmic Ca2+ binding protein (SCP) were purified from shrimp tail muscle. SCP exists in a dimeric form. One sample of shrimp contained only alpha A chain, whereas another contained alpha B and beta chains, and a heterodimer of alpha B beta which was not analyzed precisely. The amino acid sequences of the two alpha chains were determined. The two alpha chains are composed of 190 and 192 amino acid residues, respectively. The sequences of the two alpha chains differed in only four amino acids out of 192 residues. The sequences indicate that the alpha chain has three Ca2+-binding sites which are common to EF-hand type Ca2+-binding protein. In the absence of added Ca2+ and Mg2+, the amounts of bound Ca2+ in alpha A, alpha B, and beta chains were 3.0, 3.3, and 2.4 mol/22,000 g protein, respectively. Thus, it is suggested that all three isotypes of shrimp SCP have three Ca2+-binding sites which have high affinity to Ca2+. The sequence homology of shrimp SCP with other EF-hand type Ca2+-binding proteins is very low. The protein having the greatest homology with this SCP was cod parvalbumin; the sequence homology is 18%.  相似文献   

18.
Treatment of cardiac or skeletal muscle sarcoplasmic reticulum vesicles with 0.1 M sodium carbonate selectively extracts both the Ca2+-binding protein calsequestrin and the two "intrinsic glycoproteins," while leaving the Ca2+-dependent ATPase membrane bound. Phenyl-Sepharose chromatography in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and high salt (0.5 M NaCl) readily fractionates these solubilized proteins into a Ca2+-elutable fraction, which contains purified calsequestrin, and a low ionic strength elutable fraction, which contains one of the two intrinsic glycoproteins. Elution of calsequestrin from phenyl-Sepharose occurs near 1 mM Ca2+. Copurifying with calsequestrin are an homologous set of high molecular weight proteins, which like calsequestrin stain blue with Stains-All. These proteins are present in trace amounts and do not correspond to any sarcoplasmic reticulum proteins previously identified. Elution of calsequestrin from phenyl-Sepharose is consistent with the Ca2+-binding protein losing its hydrophobic character in the presence of millimolar Ca2+. This behavior is converse to that observed for several calmodulin-like proteins, which are eluted from hydrophobic gels in the presence of EGTA. The high yield and purity of calsequestrin prepared by this method makes possible a unique system for studying what may be a distinct class of Ca2+-binding proteins.  相似文献   

19.
Human brain S100b (beta beta) protein was purified using zinc-dependent affinity chromatography on phenyl-Sepharose. The calcium- and zinc-binding properties of the protein were studied by flow dialysis technique and the protein conformation both in the metal-free form and in the presence of Ca2+ or Zn2+ was investigated with ultraviolet spectroscopy, sulfhydryl reactivity and interaction with a hydrophobic fluorescence probe 6-(p-toluidino)naphthalene-2-sulfonic acid (TNS). Flow dialysis measurements of Ca2+ binding to human brain S100b (beta beta) protein revealed six Ca2+-binding sites which we assumed to represent three for each beta monomer, characterized by the macroscopic association constants K1 = 0.44 X 10(5) M-1; K2 = 0.1 X 10(5) M-1 and K3 = 0.08 X 10(5) M-1. In the presence of 120 mM KCl, the affinity of the protein for calcium is drastically reduced. Zinc-binding studies on human S100b protein showed that the protein bound two zinc ions per beta monomer, with macroscopic constants K1 = 4.47 X 10(7) M-1 and K2 = 0.1 X 10(7) M-1. Most of the Zn2+-induced conformational changes occurred after the binding of two zinc ions per mole of S100b protein. These results differ significantly from those for bovine protein and cast doubt on the conservation of the S100 structure during evolution. When calcium binding was studied in the presence of zinc, we noted an increase in the affinity of the protein for calcium, K1 = 4.4 X 10(5) M-1; K2 = 0.57 X 10(5) M-1; K3 = 0.023 X 10(5) M-1. These results indicated that the Ca2+- and Zn2+-binding sites on S100b protein are different and suggest that Zn2+ may regulate Ca2+ binding by increasing the affinity of the protein for calcium.  相似文献   

20.
Two major brain microtubule-associated proteins (MAPs), MAP2 and tau, were found to bind to the intermediate filaments reassembled from neurofilament 70-kDa subunit protein (= 70-kDa filaments). The binding was saturable. The apparent dissociation constant (KD) for the binding of MAP2 to the 70-kDa filaments was estimated to be 4.8 X 10(-7) M, and the maximum binding reached 1 mol of MAP2/approximately 30 mol of 70-kDa protein. The apparent KD for the tau binding was 1.6 X 10(-6) M, and the maximum binding was 1 mol of tau/approximately 3 mol of 70-kDa protein. It was also found that MAP2 and tau did not compete with each other for binding to the 70-kDa filaments. Most interestingly, calmodulin, a ubiquitous Ca2+-binding protein in eukaryotic cells, was found to inhibit the binding of MAP2 and tau to the 70-kDa filaments. The inhibition by calmodulin was regulated by changes in Ca2+ concentration around 10(-6) M, and was canceled by trifluoperazine, a calmodulin inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号