首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study was to assess and compare the allorecognition requirements for eliciting Lyt-2+ helper and effector functions from primary T cell populations. By using interleukin 2 (IL 2) secretion as a measure of T helper (Th) function, and cytolytic T lymphocyte (CTL) generation as a measure of effector function, this study compared the responses of Lyt-2+ T cells from wild-type B6 mice against a series of H-2Kb mutant determinants. Although all Kbm determinants stimulated B6 Lyt-2+ T cells to become cytolytic effector cells, the various Kbm determinants differed dramatically in their ability to stimulate Lyt-2+ T cells to function as IL 2-secreting helper cells. For example, in contrast to Kbm1 determinants that stimulated both helper and effector functions, Kbm6 determinants only stimulated B6 Lyt-2+ T cells to become cytolytic and failed to stimulate them to secrete IL 2. The distinct functional responses of Lyt-2+ T cells to Kbm6 determinants was documented by precursor frequency determinations, and was not due to an inability of the Kbm6 molecule to stimulate Lyt-2+ Th cells to secrete IL 2. Rather, it was the specific recognition and response of Lyt-2+ T cells to novel mutant epitopes on the Kbm6 molecule that was defective, such that anti-Kbm6 Lyt-2+ T cells only functioned as CTL effectors and did not function as IL 2-secreting Th cells. The failure of Lyt-2+ anti-Kbm6 T cells to function as IL 2-secreting Th cells was a characteristic of all Lyt-2+ T cell populations examined in which the response to novel mutant epitopes could be distinguished from the response to other epitopes expressed on the Kbm6 molecule. The absence of significant numbers of anti-Kbm6 Th cells in Lyt-2+ T cell populations was examined for its functional consequences on anti-Kbm6 CTL responsiveness. It was found that primary anti-Kbm6 CTL responses could be readily generated in vitro, but unlike responses to most class I alloantigens that can be mediated by Lyt-2+ Th cells, anti-Kbm6 CTL responses were strictly dependent upon self-Ia-restricted L3T4+ Th cells. Because the restriction specificity of L3T4+ Th cells is determined by the thymus, in which their precursors had differentiated, anti-Kbm6 CTL responsiveness, unlike responsiveness to most class I alloantigens, was significantly influenced by the Ia phenotype of the thymus in which the responder cells had differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The ability of highly lytic herpes simplex virus (HSV) cytolytic T lymphocytes to modulate the interaction between the murine host (adult C57BL/6 [H-2b] mice) and HSV type 1 Patton resulting in acute infection in the footpad and latent infection in the sensory lumbosacral dorsal root ganglia (L6, L5, L4, and L3) innervating the footpad was investigated. Results indicated that a critical threshold level of infectious HSV was required to establish infection. The adoptive transfer of cytolytic T lymphocytes derived from in vitro cultures after restimulation with HSV-infected, syngeneic stimulator cells exhibiting class I H-2-restricted, L3T4- Lyt-2+ HSV-specific cytolytic activity immediately before infection with a high dose of HSV reduced the levels of infectious HSV recovered from the footpad tissue during acute infection and the levels of latent HSV reactivated from the dorsal root ganglia to levels expected from mice infected with a low dose. Depletion of Lyt-2+ cells from the transferred population abrogated the protective ability, while depletion of L3T4+ cells had little effect. These results suggest that functionally lytic HSV-specific cytolytic T lymphocytes present at the time of HSV infection have the potential to participate in the control of the acute infection and in the subsequent establishment of latent infection.  相似文献   

3.
To understand the cellular basis for recovery from HSV infection, it is critical to identify functional interactions between HSV-specific T lymphocyte subpopulations involved in the generation of the optimal response. To this end, the requirement for CD4+ (L3T4+) T lymphocytes in the development of the primary and secondary CD8+ (Lyt-2+) cytolytic T lymphocyte (CTL) response following HSV infection in C57BL/6 mice was investigated. It was found that chronic depletion of CD4+ cells in vivo by treatment with the mAb GK1.5, which resulted in greater than 95% depletion of peripheral CD4+ T lymphocytes in treated animals, caused a profound decrease in the levels of cytolytic activity obtained during the primary response in the draining popliteal lymph nodes of mice responding to infection in the hind footpads. However, treatment did not affect the levels of in vivo secondary CTL activity in the popliteal lymph nodes, nor the in vitro secondary response in the spleen. The decreased CTL activity observed during the primary response was not due to an inability to prime HSV-specific CTL precursors (CTLp), as full cytolytic activity was obtained following culture of lymphocytes in the presence of exogenous IL-2 and antigen, and the response could be reconstituted by treatment with recombinant IL-2 in vivo. Analysis of the secondary CTL response in the spleen indicated that CD4+ cells were not required for either the generation or maintenance of this aspect of the response. However, blockade of IL-2 utilization by CTL using anti-IL-2R antibodies indicated that this lymphokine was absolutely essential for secondary CTL expansion in vitro. Finally, mice that had been infected 12 months previously exhibited a decreased ability to generate secondary HSV-specific CTL in vitro following CD4-depletion in vivo. Taken together, these results suggest two distinct stages of CTL development during the response: an early primary stage dependent upon the presence of CD4+ cells, and a later, CD4-independent stage operative during the secondary response, which decays with time postinfection.  相似文献   

4.
Monoclonal antibodies recognizing murine T lymphocyte cell surface structures implicated in T lymphocyte-mediated cytolysis, including Lyt-2, L3T4, LFA-1, and a cytolytic T lymphocyte (CTL) clonotypic determinant, were used as probes to investigate the role of these structures in lymphokine production by T cell clones induced by antigen or lectin. The clone-specific antibody 384.5 bound to and inhibited antigen-induced lymphokine production by the L3 CTL clone, but did not affect lymphokine production by other T cell clones. Antibodies against the T cell surface structures Lyt-2 or L3T4, which are expressed by mutually exclusive T cell subsets, inhibited antigen-induced lymphokine production by class I major histocompatibility complex (MHC) antigen-reactive CTL clones or an M1s-reactive helper T lymphocyte (HTL) clone, respectively. Antibody against the broadly distributed LFA-1 molecule inhibited antigen-induced lymphokine production by all of the clones tested. Lectin-induced lymphokine production by cloned T cells was not inhibited by the clonotypic antibody, anti-Lyt-2, or anti-LFA-1; slight inhibition of the HTL clone was observed with the anti-L3T4 antibody. None of these structures appear to be uniquely involved with a particular functional response. Our results suggest that each of these structures is involved with the interactions between the effector cell and the stimulating cell leading to lymphokine production.  相似文献   

5.
The immune response to B lymphocytes infected with Epstein-Barr virus (EBV) prevents their overgrowth in normal humans. A murine model is now described for analyzing the T cell immune response to Epstein-Barr virus genes expressed in murine lymphoblasts by gene transfer. In mice, a 60,000 dalton virus-encoded protein characteristically found in the plasma membrane of latently infected human lymphocytes readily induces both proliferative and cytolytic T lymphocytes specific for both the EBV protein and murine major histocompatibility proteins. Longterm cultures of L3T4+ cells, some of which were cytolytic, were found to be restricted by H-2I-Ed and the latent membrane protein. Similarly, Lyt-2+ cells were cytolytic and were restricted by H-2Ld and the lymphocyte membrane protein gene product. The similarity in murine and human effector cell responses suggests that this is a useful experimental model, and the EBV latent infection membrane protein may be an important antigen in the immune restriction of growth transformed latently infected lymphocytes.  相似文献   

6.
Cytotoxic lymphocyte (CTL) responses are not usually generated during primary mixed leukocyte culture (MLC) with H-2 identical cells. Thus NZB mice are unusual in that their spleen cells do mount CTL responses during primary MLC with H-2d identical stimulator cells; the predominant target antigen for these NZB responses is Qa-1b. Considering the numerous immunoregulatory defects in NZB mice, we postulated that these NZB anti-Qa-1 primary CTL responses were due to an abnormality in T suppressor cell activity. Cellular interactions capable of suppressing NZB anti-Qa-1 primary CTL responses were investigated by using one-way and two-way MLC with spleen cells from NZB mice and other H-2d strains. Although H-2d identical one-way MLC with the use of NZB responders resulted in substantial CTL responses, only minimal CTL responses were detected from two-way MLC with the use of NZB spleen cells plus nonirradiated spleen cells from other H-2d mice. Thus the presence of non-NZB spleen cells in the two-way H-2d identical MLC prevented the generation of NZB CTL. Noncytotoxic mechanisms were implicated in the suppression of the NZB CTL responses during two-way MLC, because only minimal CTL activity was generated when NZB spleen cells were cultured with semiallogeneic, H-2d identical (e.g., NZB X BALB) F1 spleen cells. The observed suppression could be abrogated with as little as 100 rad gamma-irradiation to the non-NZB spleen cells. The phenotype of these highly radiosensitive spleen cells was Thy-1+, Lyt-1+, Lyt-2-, L3T4+. The functional presence of these cells in the spleens of semiallogeneic, H-2d identical F1 mice indicated that their deficiency in NZB mice was a recessive trait. These data suggest that NZB mice lack an L3T4+ cell present in the spleens of normal mice that is capable of suppressing primary anti-Qa-1 CTL responses. This model system should facilitate additional investigations of the cellular interactions and immunoregulatory mechanisms responsible for controlling primary CTL responses against non-H-2K/D class I alloantigens. The model may also provide insight into the immunoregulatory defects of autoimmune NZB mice.  相似文献   

7.
Mice infected with herpes simplex virus develop little or no cytotoxic T lymphocyte (CTL) response. However, in lymph nodes (LN's) draining a local site infected with HSV, antigen-specific CTL precursors are sensitized, which upon transfer to in vitro culture conditions develop within 72 hr into effective CTL. The in vivo blockade of CTL differentiation can be overcome by cyclophosphamide, suggesting that a cyclophosphamide-sensitive mechanism blocks the in vivo generation of HSV-immune CTL. The cytolytic activity of HSV-immune CTL is H-2 restricted and antigen specific. Thus CTL sensitized toward HSV type 1 discriminate between syngeneic targets infected with either the immunologic HSV variant type 1 or type 2 (and vice versa). H-2-matched target cells exposed for 30 min to infectious HSV are lysed within 60 min of contact with CTL. Since HSV replication is believed to require more than 4 to 5 hr, the data suggest that either the expression of HSV-dependent "early proteins" takes place within 30 to 90 min or cell membrane-integrated HSV virion represents the target antigen of CTL.  相似文献   

8.
The effector T cell repertoire in experimental interstitial nephritis was examined in a variety of susceptible and nonsusceptible mice. We observed that L3T4+ effector T cells in disease-susceptible mice disappear soon after immunization in preference to the emergence of Lyt-2+ effector cells. These latter cells respond with delayed-type hypersensitivity to tubular antigen in the context of H-2K. Such cells also express idiotypes (RE-Id) shared with kidney-bound alpha TBM-Ab that are regulated by an interactional effect of genes in Igh-1 and H-2K. These Lyt-2+ effector cells can be removed from renal infiltrates, and the transfer of similar cells under the renal capsule of naive mice results, within 5 days, in local interstitial nephritis. Nonsusceptible mice, however, not having these immune response genes, produce either L3T4+, Lyt-1+, RE-Id- effector T cells, which only respond to tubular antigen in the context of I-A, or Lyt-2+, RE-Id- T cells, which may lack very fine specificity. These findings suggest that susceptible mice carry a unique set of immune response genes that promote a T cell selection process that operates after induction, during the differentiation and development of disease-producing effector T cells.  相似文献   

9.
Thy-1+, Lyt-1-,2+, asialo GM1+ cytotoxic T lymphocyte (CTL) clones have been isolated from the intestinal mucosa of mice primed with alloantigens. Two different types of cytotoxic clones have been obtained. The first type is functionally similar to most splenic and lymph node-derived CTL clones in that they are strictly antigen specific with respect to proliferation and cytolytic activity. The second type of CTL clone has several unique characteristics. Although these clones are also antigen specific with regard to proliferation, they are not cytolytic under standard growth conditions in medium containing 4% rat concanavalin A-induced spleen cell supernatant. After culture for 4 days in the presence of high concentrations of interleukin 2, cells become activated and exhibit broad lytic potential. Moreover, during the activation process, these CTL begin to express a murine T cell surface antigen, CT-1, which is associated with activated cytotoxic cells. The findings reported in this report should now allow us to precisely define, both phenotypically and functionally, specific lymphocyte populations that make up the gut-associated lymphoid tissues. These data also describe a new type of effector CTL that differs from other cytotoxic cells reported to date, because it is antigen dependent for proliferation, but requires signals mediated by lymphokines for lytic activation.  相似文献   

10.
The present study investigates the distinctiveness of Class I H-2 alloantigen-reactive Lyt-2+ helper/proliferative T cell subset in the aspect of tolerance induction. Primary mixed lymphocyte reactions (MLR) revealed that Lyt-2+ and L3T4+ T cell subsets from C57BL/6 (B6) mice were exclusively capable of responding to class I H-2 [B6-C-H-2bm1 (bm1)]- and class II H-2 [B6-C-H-2bm12 (bm12)]-alloantigens, respectively. Anti-bm12 MLR was not affected by i.v. injection of bm12 spleen cells into recipient B6 mice. In contrast, a single i.v. administration of bm1 spleen cells into B6 mice resulted in the abrogation of the capacity of recipient B6 spleen and lymph node cells to give anti-bm1 MLR. This suppression was bm1 alloantigen-specific, since lymphoid cells from B6 mice i.v. presensitized with bm1 cells exhibited comparable anti-bm12 primary MLR to that obtained by normal B6 lymphoid cells. Such tolerance was rapidly (24 h after the i.v. injection of bm1 cells) inducible and lasting for at shortest 3 wk. Addition of lymphoid cells from anti-bm1-tolerant B6 mice to cultures of normal B6 lymphoid cells did not suppress the proliferative responses of the latter cells, indicating that the tolerance is not due to the induction of suppressor cells but attributed to the elimination or functional impairment of anti-bm1 proliferative clones. The tolerance was also demonstrated by the failure of tolerant lymphoid cells to produce IL-2. It was, however, found that anti-bm1 CTL responses were generated by tolerant lymphoid cells which were unable to induce the anti-bm1 MLR nor to produce detectable level of IL-2. These results demonstrate that class I H-2 alloantigen-reactive Lyt-2+ Th cell subset exhibits a distinct property which is expressed by neither Lyt-2+ CTL directed to class I H-2 nor L3T4+ Th cells to class II H-2 alloantigens.  相似文献   

11.
Lyt-2 molecules play a role in antigen recognition by cytotoxic T lymphocytes (CTL). In an attempt to determine whether Lyt-2 molecules play a similar role in suppressor T cell (Ts) functions, the effect of anti-Lyt-2 antibodies on Ts generation and effector activity was studied. Allospecific Ts were induced in allogeneic mixed lymphocyte cultures (MLC). Anti-Lyt-2 antibodies added to MLC in the absence of complement abolished CTL generation, but had no effect on concomitant induction of Ts. In a different experimental system, allospecific Ts were induced in cultures treated with pyrilamine, which blocks generation of CTL but allows differentiation of Ts. The addition of anti-Lyt-2 antibodies to pyrilamine-treated MLC resulted in unaffected induction of Ts. It was further demonstrated that the effector activity of Ts was as resistant to anti-Lyt-2 antibodies as their induction, in contrast to the cytolytic activity of CTL, which was inhibited by the same antibodies. Ts in the present experimental system were Lyt-2+ antigen-specific cells. It therefore appears that Lyt-2 molecules, although expressed on both CTL and Ts, are involved in CTL activity, but do not play an essential role in Ts function.  相似文献   

12.
In vitro expanded T cell lines were used to determine whether antigen-specific cytolytic T lymphocytes are generated after infection with the intracellular bacterium, Listeria monocytogenes. Spleen cells from infected mice were cultured in the presence of syngeneic accessory cells, listerial antigen, and interleukin 2 containing supernatants. Cell lines were greater than 98% Thy-1+, L3T4-, Lyt-2+. Bone-marrow macrophages were used as target cells in two in vitro cytolytic assay systems. The Lyt-2+ T cells killed bone marrow macrophages only when infected with L. monocytogenes as assessed in a 4-hr 51Cr release assay and in an 18-hr neutral red uptake assay. Cytolysis was blocked by anti-LFA-1 and anti-Lyt-2 monoclonal antibodies. These cytolytic T cells produced interferon-gamma after co-stimulation with antigen, accessory cells, and recombinant interleukin 2. Bone marrow macrophages infected with Mycobacterium bovis were not killed by T cells from L. monocytogenes-infected mice but by T cell lines from M. bovis-infected mice, indicating that cytolysis was antigen specific. L. monocytogenes-infected target cells of different haplotype were lysed by the Lyt-2+ T cells. By using a low cell density split culture system, antigen-specific, H-2-restricted cytolytic T cells could be identified. These findings demonstrate that during infection with intracellular bacteria, Lyt-2+ T cells with cytolytic activity are generated that may be involved in antibacterial protection.  相似文献   

13.
We have studied the maturation of cytotoxic T-lymphocytes (CTL) following primary and anamnestic responses in vivo and in vitro. Parameters evaluated included: frequency of effector CTL, specificity of binding to and lysis of target cells, killing and recycling ability of individual CTL, and the avidity of effector-target conjugation. While the frequency of effector CTL in the peritoneal cavity of BALB/c mice immunized against leukemia EL4 of C57BL/6 origin increases from 0 to 35% in 11 days of priming, a paradoxically lower frequency has been observed usually after 2 degrees and repeatedly after 3 degrees immunizations both in the peritoneal cavity and in the spleen. The H-2 haplotype and H-2 sub-loci specificity of CTL is preserved upon repeated immunizations. Likewise, the rate of killing and recycling of individual CTL do not change throughout immunizations, suggesting that the cytolytic activity of individual effector CTL is discrete ("quantal") and not subject to maturation upon repeated immunizations. On the other hand, inhibition of conjugate formation and of lysis by antibodies against target major histocompatibility complex (MHC) or effector Lyt-2 determinants is consistently less effective with 3 degrees CTL, suggesting an increase in avidity of effector/target interaction upon repeated immunizations. A striking increase in apparent avidity has been observed during CTL priming in mixed lymphocyte reaction, as deduced from blocking by target cell MHC antibodies. These results suggest that alloimmune CTL undergo maturation with respect to their ability to interact with the target, and that the composition of the responding population is subject to moderate selective processes driven by repeated antigenic stimuli.  相似文献   

14.
Continuous gastric intubation of mice with the T cell-dependent antigen sheep erythrocytes (SRBC) leads to a state of systemic unresponsiveness to parenteral SRBC challenge, a state termed oral tolerance. The systemic unresponsiveness of mice rendered orally tolerant to SRBC, however, is converted to humoral immune responsiveness by adoptive transfer of effector T contrasuppressor (Tcs) cells. In this study, the authors have isolated and characterized the Tcs cell subset, from the spleens of orally immunized mice, which abrogates oral tolerance. This Tcs cell is a novel cell type, which can be separated from functional T suppressor (Lyt-2+) and T helper (L3T4+) cells, and the effector Tcs cell exhibits a Lyt-1+, 2-, L3T4- phenotype. Furthermore, contrasuppression is not mediated by B cells, including those of the Lyt-1+ phenotype. Adoptive transfer of splenic Lyt-1+, 2-, L3T4- T cells from C3H/HeJ mice given oral SRBC for 21 to 28 days and splenic Lyt-1+, 2-, L3T4- T cells of C3H/HeN mice orally immunized for a shorter interval abrogated oral tolerance. Furthermore, separation of Lyt-1+ T cells into L3T4+ and L3T4- subsets by flow cytometry resulted in Lyt-1+, L3T4+ T cells with helper but not contrasuppressor function, whereas the Lyt-1+, L3T4- T cell fraction abrogated oral tolerance even though it was without helper activity. This Tcs cell subset was also effective when added to cultures of tolerized spleen cells derived from SRBC-fed mice. The effector Tcs cells are antigen-specific, because Tcs cells from SRBC-immunized mice reverse tolerance to SRBC but not to horse erythrocytes (HRBC), and Tcs cells from HRBC-immunized mice reverse tolerance to HRBC but not to SRBC. When splenic T3 (CD3)-positive T cells (Lyt-1+, 2-, and L3T4-) were separated into Vicia villosa-adherent and nonadherent subpopulations, active contrasuppression was associated with the T3-positive and Vicia villosa-adherent T cell fraction. Thus, a distinct Lyt-1+, 2-, L3T4- T cell subset that contains a T3-T cell receptor complex, which can regulate oral tolerance, is present in spleens of orally immunized mice.  相似文献   

15.
The inoculation of B6D2F1 mice with T lymphocytes from the C57BL/6 parental strain induces an "immunosuppressive" graft-vs-host reaction (B6 GVH), whereas inoculation of T cells from the other, DBA/2 parental strain induces an "immunostimulatory" GVH reaction and a lupus-like disease (DBA GVH). The present study compares cytotoxic T lymphocyte (CTL) function in the spleens of these GVH mice as well as differences in the donor inoculum that could account for these different types of GVH. We observed that the B6 GVH induces an immunodeficiency that encompasses CTL precursors (and possibly T helper cells) and results in suppressor cells that abrogate responses to both trinitrophenyl (TNP)-modified self and third party alloantigens. In contrast, the DBA GVH induces only a T helper cell immunodeficiency and results in suppressor cells selective for class II restricted L3T4+ T helper cells. Chimeric T cells were detected in both types of GVH. In the B6 GVH both L3T4+ and Lyt-2+ donor cells were observed, although Lyt-2+ cells predominated. In the DBA GVH, donor T cells were almost exclusively of the L3T4+ phenotype. The lack of appreciable donor Lyt-2+ cells in the DBA GVH can be explained by a defect in the DBA donor inoculum manifested by a naturally occurring two-fold reduction in Lyt-2+ cell numbers as well as a nine-fold reduction in CTL precursors with anti-F1 specificity. T cells in the DBA inoculum, therefore, are predominantly L3T4+. A similar defect induced in B6 donor cells by anti-Lyt2 antibody and complement not only converted the suppressive GVH to a stimulatory GVH, as measured by anti-DNA antibodies, but also resulted in a T cell immune deficiency characteristic of the DBA GVH, i.e., a selective loss of the TNP-self CTL response. Thus the presence or absence of adequate numbers of functioning Lyt-2+ cells in the donor inoculum is correlated with the development of either a suppressive or stimulatory GVH, respectively. That donor Lyt-2+ cells mediate a suppressive GVH through cytolytic mechanisms is evidenced by greater than 70% reduction in B6 GVH spleen cell numbers and readily demonstrable anti-F1 CTL activity by these spleen cells despite an inability to generate anti-allogeneic or anti-TNP self CTL activity even in the presence of added T helper factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Class I MHC-restricted, HSV-1-specific CD8(+) cytolytic T lymphocyte (CTL) function is rarely detected in lymphocytes isolated directly from the lymph node draining the site of infection. However, culture in vitro for 24 to 72 h in the absence of exogenous antigen results in the development of easily detectable levels of HSV-1-specific CTL effectors. The inability to detect virus-specific CTL in HSV-1-infected mice is not well understood. However, since the in vitro culture of HSV-1-immune lymphocytes results in the transition to CTL function, studies of the changes occurring to the CD8(+) T cell subpopulation may provide important insights into the development of virus-specific CTL. Therefore, the phenotypic changes taking place in the CD8(+) population of T cells from draining popliteal lymph nodes of HSV-1-infected C57BL/6 (B6) mice were investigated, focusing on changes in the expression of cell surface markers associated with T lymphocyte activation. The results demonstrate an increase in the percentage of CD8(+) T cells expressing the activation markers CD44 and CD25 in parallel with the acquisition of HSV-specific CTL effector function. Cytolytic function was found exclusively within the CD8(+) CD44(hi) CD25(hi) fraction of cells in culture, but, surprisingly, was not detectable in CD8(+) CD44(hi) CD25(lo) T cells. This suggested that the acquisition of high levels of the high-affinity IL-2 receptor was closely linked to cytolytic function and may define an important developmental stage in the transition from noncytolytic to cytolytic effector cell. In support of this, CD8(+) CD25(hi) T cells isolated from the regional lymph node exhibited direct ex vivo cytolytic function, indicating that cytolytic effector cells were present in the lymph node, but must emigrate rapidly after attaining this level of differentiation.  相似文献   

17.
The cytotoxic response of splenic Lyt-2+ T cells to class I H-2 alloantigen-bearing stimulator cells was analyzed under limiting dilution conditions. One of 50 to one of 200 nylon wool-nonadherent (FACS-purified), small Lyt-2+ spleen cells of B6 origin gave rise in vitro to a cytotoxic T lymphocyte clone that specifically lysed targets bearing bm1 alloantigen. This population of alloantigen-specific cytotoxic lymphocyte precursors (CLP) was activated by different types of bm1 stimulator cells with different efficiency: 2 X 10(5) nonfractionated spleen cells, 5000 normal peritoneal cells, 400 to 10(4) L3T4+ helper T blasts, or 2000 to 10(4) Lyt-2+ T blasts induced clonal growth of this CLP pool. Irradiated or mitomycin-treated small (L3T4+ or Lyt-2+) bm1-derived T cells were inefficient stimulator cells for this response. Supplementation of culture medium with (recombinant) interleukin 2 was necessary and sufficient to support clonal development of alloantigen-triggered CLP in the presence of allogeneic T blasts. Under these limiting dilution conditions, we observed comparable cloning efficiencies for (wild-type) Kb-allospecific splenic Lyt-2+ CLP from bm1 mice generated in response to either irradiated B6 spleen cells or inactivated B6-derived T cell lines (EL4 and RBL-5 lymphoma cells). The data indicate that normal T lymphoblasts as well as tumor T cell lines stimulate clonal development in vitro of class I H-2-allospecific cytotoxic T lymphocytes in the presence of interleukin 2.  相似文献   

18.
Hybridoma H129 .19 was derived by fusion between spleen cells of a Lou / Ws1 rat immunized with an Lyt-1+,2- anti-I-Ak cytolytic T lymphocyte (CTL) clone and the nonsecreting myeloma X63-Ag8.653. The monoclonal antibody (mAb) H129 .19 (IgG2a, kappa) was selected for its capacity to inhibit the lytic potential of the immunizing clone. H129 .19 identified a monomorphic determinant on a 55 m.w. murine T cell differentiation antigen, which appeared to be homologous to the human T4 molecule in that: 1) H129 .19 reacted with 80% adult thymocytes, with a subset of splenic T cells, and with the interleukin 2 (IL 2)-producing EL4 thymoma; 2) The mAb bound to and inhibited the IL 2 production and the proliferation of various allo- or soluble antigen-reactive T cell clones that recognized restriction or activating determinants on the I-A or I-E molecules, respectively; 3) H129 .19 did not inhibit the proliferation and/or cytolysis of Lyt-2,3+ T cells specific for class I MHC antigen; and 4) Among six anti-Iak CTL clones examined in this study, the mAb H129 .19 reacted with two I-Ak-specific, Lyt-2,3- clones on which it exerted strong cytolysis inhibiting effect at the effector cell level. By contrast, two other anti-I-Ak and two anti-I-Ek CTL clones were found to express the Lyt-2,3+,T4- cell surface phenotype. The cytolytic potential of the latter clones was not inhibited by anti-Lyt-2,3 mAb. These studies strongly suggest that the mouse T4 molecule facilitates the recognition of class II MHC antigen by most but not all T cells.  相似文献   

19.
By using two different syngeneic tumors, Meth A sarcoma and RL male 1 lymphoma of BALB/c origin, the present study was designed to investigate the subset(s) of T cells mediating in vivo antitumor immune responses and some of the effector mechanisms of in vivo protective immunity in BALB/c mice immunized against tumor or bearing tumor. Spleen cells from the mice immunized against Meth A tumor or bearing Meth A tumor inhibited the growth of Meth A tumor in the Winn assay. In the Meth A-immunized mice, L3T4+ (CD4+) cells played a major role in mediating the inhibitory activity against Meth A tumor growth, whereas in the Meth A-bearing mice, the antitumor protective immunity was mediated by both L3T4+ and Lyt-2+ (CD8+) cells. Spleen cells from the Meth A-immunized or Meth A-bearing mice were not able to generate cytotoxic T lymphocytes (CTL) directed against Meth A tumor after the in vitro restimulation of spleen cells with mitomycin C (MMC)-treated Meth A cells, while fresh spleen cells from the Meth A-immunized or Meth A-bearing mice were able to induce the strong delayed-type hypersensitivity (DTH) responses to Meth A tumor. The DTH response to Meth A tumor was mediated by L3T4+ cells in the Meth A-immunized mice and by both L3T4+ and Lyt-2+ cells in the Meth A-bearing mice. In the similar experiments performed in the RL male 1 lymphoma, the antitumor activity in spleen cells from the RL male 1-immunized or RL male 1-bearing mice depended on Lyt-2+ but not L3T4+ cells in the Winn assay. When spleen cells from the RL male 1-immunized or RL male 1-bearing mice were cultured with MMC-treated RL male 1 cells for 5 days, an appreciable CTL response to RL male 1 tumor was induced. These results suggest that the nature of tumor and/or tumor antigens determines which T cell subset is required to exhibit the protective immunity against tumor and thus the different effector mechanisms could be induced in the different tumor models. Furthermore, these data support the conclusion that antitumor T cell responses are affected by the immune state of host to tumor.  相似文献   

20.
Our study investigates the effect of a prior graft-vs-host (GVH) reaction on the subsequent ability of irradiated, bone marrow-re-populated mice to develop T cell function. The results indicate that such GVH-bone marrow transplanted (BMT) mice do not generate CTL responses to trinitrophenyl-modified syngeneic cells (TNP-self), but do generate strong CTL activity to H-2 alloantigens. This selective deficiency in TNP-self CTL response potential appeared as early as 10 days after GVH, and required both L3T4+ and Lyt-2+ donor T cells. The in vitro addition of either soluble Th factors or L3T4-enriched spleen cells from normal mice circumvented the defect in the TNP-self response in GVH-BMT mice. These results indicate that T effector function was not defective, and instead suggest a Th defect. Cell depletion and antibody-blocking, as well as IL-2 production experiments, indicate that the Th defect was selective for L3T4+ Th population and not for Lyt-2+ Th population. This defect in L3T4 Th function is not accounted for by the approximate twofold reduction in L3T4 cell numbers in GVH-BMT mice, because IL-2 production and CTL generation to L3T4-dependent Ag were at least eightfold below control levels. Rather, defective L3T4 Th function appears to be the consequence of a GVH-induced defect in thymic maturation because the defect was corrected in vivo by a neonatal parental thymus graft before irradiation and bone marrow transplantation. This system may be useful for elucidating the role of the thymus in the maturation of Th cells. Our findings raise the possibility that impaired development of T cell function occurring in marrow grafted patients who have undergone a GVH reaction could be partly due to a GVH-induced thymic defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号