首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The pineal complex of the teleost, Phoxinus phoxinus L., was studied light-microscopically by the use of the indirect immunocytochemical antiopsin reaction and the histochemical acetylcholinersterase (AChE) method.Opsin-immunoreactive outer segments of photoreceptor cells were demonstrated in large numbers in all divisions of the pineal end-vesicle and in the pineal stalk. Moreover, they were found in the roof of the third ventricle, adjacent to the orifice of the pineal recess as well as scattered in the parapineal organ. These immunocytochemical observations provide direct evidence of the presence of an opsin associated with a photopigment in the photosensory cells of the pineal and parapineal organs of Phoxinus. By means of the AChE reaction (Karnovsky and Roots 1964) inner segments of pineal photoreceptors, intrinsic nerve cells, several intrapineal bundles of nerve fibers, and a prominent pineal tract were specifically marked. The pineal neurons can be divided into two types: one is located near the pineal lumen, the other near the basal lamina. The latter perikarya bear stained processes directed toward the photoreceptor layer. A rostral aggregation of two types of AChE-positive nerve cells occurs in the ventral wall of the pineal end-vesicle. The main portion of the AChE-positive pineal tract, which lies within the dorsal wall of the pineal stalk, can be followed to the posterior commissure where some of the nerve fibers course laterally. A few AChE-positive pineal nerve fibers run toward the lateral habenular nucleus via the habenular commissure. In the region of the subcommissural organ single AChE-positive neurons accompany the pineal tract. The nerve cells of the parapineal organ exhibit a moderate AChE activity.These findings extend the structural basis for the remarkable light-dependent activity of the pineal organ of Phoxinus phoxinus. To the memory of Professor Karl von Frisch, pioneer and master in the field of photoneuroendocrine systemsThis investigation was supported by grants from the Deutsche Forschungsgemeinschaft to A.O. (Ok 1/24; 1/25: Mechanismen biologischer Uhren) and to H.-W. K. (Ko 758/1; 758–2)On leave from the 2nd Department of Anatomy, SOTE, Budapest, Hungary  相似文献   

2.
Summary Various types of synaptic formations on pinealocytes and pineal neurons were found in the pineal body of Macaca fuscata. Axo-somatic synapses of the Gray type-II category were detected on the pinealocyte cell body. Gap junctions and ribbon synapses were observed between adjacent pinealocytes. About 70 nerve-cell bodies were detected in one half of the whole pineal body bisected midsagittally. They were localized exclusively deep in the central part. When examined electron-microscopically, they were found to receive ribbon-synapse-like contacts from pinealocytic processes. They also received synaptic contacts of the Gray type-I category on their dendrites, and those of the Gray type-II category on their cell bodies from nerve terminals of unknown origin. All these synapse-forming axon terminals contained small clear vesicles. Thus, the pineal neurons of the monkey, at least in part, are suggested to be derived from the pineal ganglion cells in the lower vertebrates and not from the postganglionic parasympathetic neurons. The functional significance of these observations is discussed in relation to the innervation of the pineal body of the monkey.  相似文献   

3.
Summary 150–190 photoreceptor cells form a basic structural component of the pineal organ of Ambystoma tigrinum. Most of the outer and inner segments of these cells project into the lumen horizontally. Only 10 percent of the total number of photoreceptor cells are located within the pineal roof which is composed of a single cell layer. The photoreceptor cells are connected with nerve cells by synapses displaying characteristic ribbons. Different types of synaptic contacts, i.e. simple, tangential, dyad, triad and invaginated, are found. They are embedded in extended neuropil zones. A particular type of synapse indicates the presence of interneurons. The basal processes of some photoreceptor cells leave the pineal organ and make synaptic contacts with nervous elements located within the area of the subcommissural organ. Employing the method of Karnovsky and Roots (1964) for histochemical demonstration of acetylcholinesterase (AChE) approximately 70 neurons (intrapineal neurons) can be discerned in the pineal organ of Ambystoma tigrinum. In analogy to the distribution of photoreceptor cells only few nerve cells are observed in the roof portion of the pineal organ. Evidently, two different types of AChE-positive intrapineal neurons are present. About 40–50 AChE-positive neurons (extrapineal neurons) are scattered in the area of the subcommissural organ. In this area two types of nerve cells can be distinguished: 1) neurons which send pinealofugal (afferent) axons toward the posterior commissure and 2) neurons which emit pinealopetal (efferent) axons into or toward the pineal organ.The nervous pathways connecting the pineal organ with the diencephalomesencephalic border area are represented by a distinct pineal pedicle and several accessory pineal tracts.Granular nerve fibers run within the posterior commissure and establish synaptic contacts in the commissural region adjacent to the pineal organ. Some of these granular elements enter the pineal organ.The morphology of the nervous apparatus of the pineal organ of Ambystoma tigrinum is discussed in context with evidence from physiological experiments.In partial fulfillment of the requirements for the degree of Dr. med., Faculty of Medicine, Justus Liebig University, GiessenThe author is indebted to Professors A. Oksche and M. Ueck for their interest in this study. Thanks are due to Professor Ch. Baumann, Giessen, and Professor H. Langer, Bochum, for stimulating discussions. The technical assistance of Miss R. Liesner is gratefully acknowledgedDedicated to Professor Berta Scharrer on the occasion of her 70th birthday. Supported by grants from the Deutsche Forschungsgemeinschaft to A.O. and M.U.  相似文献   

4.
The pineal organ of Ensatina eschscholtzi, a terrestrial and secretive species of salamander of the family Plethodontidae, is a photoreceptive structure lying on the dorsal surface of the diencephalon. The pineal is flattened with a broad lumen and consists of three cell types: photoreceptors, supportive cells, and neurons. Pineal photoreceptors are typical vertebrate photoreceptors and possess outer segment formations which, however, are frequently contorted and disorganized. Sloughing of apical portions of outer segments and vesiculation along the lateral edges of outer segment membrane disks are consistently observed and presumed to represent mechanisms of outer segment membrane recycling. Photoreceptors have basal processes which synapse with neural dendrites. Synapses between photoreceptor basal processes are occasionally observed. All synapses are characterized by synaptic ribbon structures of variable number, size, and configuration. Dense-core vesicles are occasionally observed mingled with clear synaptic vesicles within photoreceptor basal processes. Supportive cells within the pineal function in phagocytosis and recycling of shed outer segment membrane material, and neurons are localized at the lateral margins of the organ. The latter send axons into the ipsilateral side of the dorsal diencephalon. The pineal organ of Ensatina shows marked variation in overall size (cell total), cell type proportions, absolute neuron number, and ratio of photoreceptor number to neuron number for individual pineals. None of these morphological parameters is correlated with body size, sex, or season, and it is assumed that such variability represents significant variation in photosensory capabilities. It is suggested that the pineal organ of Ensatina is a partially degenerate photoreceptive structure.  相似文献   

5.
Summary Synaptic connections were studied by means of electron microscopy in the sensory pineal organ of the ayu, Plecoglossus altivelis, a highly photosensitive teleost species. Three types of specific contacts were observed in the pineal end-vesicle: 1) symmetrically organized gap junctions between the basal processes of adjacent photoreceptor cells; 2) sensory synapses endowed with synaptic ribbons, formed by basal processes of photoreceptor cells and dendrites of pineal neurons; 3) conventional synapses between pineal neurons, containing both clear and dense-core vesicles at the presynaptic site. Based on these findings, the following interpretations are given: (i) The gap junctions may be involved in an enhancement of electric communication and signal encoding between pineal photoreceptor cells. (ii) The sensory synapses transmit photic signals from the photoreceptor cells to pineal nerve cells. (iii) The conventional synapses are assumed to be involved in a lateral interaction and/or summation of information in the sensory pineal organ. A concept of synaptic relationships among the sensory and neuronal elements in the pineal organ of the ayu is presented.Fellow of the Alexander von Humboldt Foundation, Federal Republic of Germany  相似文献   

6.
Summary Free-running, naked axons (diameter 2000 to 7000 Å) can be found in the lumen of the pineal organ. Their axoplasm contains microtubules, mitochondria as well as synaptic (diameter 350 to 450 Å) and granulated vesicles (diameter 500 to 1500 Å). In Pleurodeles waltlii, the axons in the pineal lumen form synapses on the free, apical surface of the pineal ependyma which is supplied with microvilli. In addition to usual cytoplasmic elements the innervated ependymal cells contain myeloid bodies and accumulations of glycogen granules. Without forming synapses these axons pass by and occasionally contact the inner and/or outer segments of the pinealocytes. The synapses found on the pineal ependymal cells furnish evidence of a neuronal control of these glial elements.The nerve fibers of the pineal lumen are being compared with known CSF contacting axons; they resemble one another in their ultrastructure and synaptic connections. Therefore and since in amphibians the pineal lumen communicates with the 3rd ventricle, the axons of the pineal lumen are considered to represent CSF contacting axons and to belong to the so-called CSF contacting axon system of the brain.In addition, the pineal CSF contacting axons are being compared with the following nerve fibers and terminals found in the pineal tissue: 1) axons containing large, granulated vesicles (diameter 1300 to 1500 Å) and terminating on the dendrites of nerve cells situated among the basal processes of the pinealocytes; 2) the synaptic ribbons-containing pinealocyte processes forming likewise synapses on the nerve cells; 3) the neurohormonal, synaptic semidesmosomes of pinealocytic processes on the lamina basalis separating the connective tissue spaces of the pia mater from the proper nervous tissue of the pineal organ; 4) the perivasal, autonomic nerve fibers of the pial septa. Though granulated vesicles of various diameters are present in all these terminals the greatest morphological similarity is found between the pineal CSF contacting axons and those nerve fibers containing large, granulated vesicles and forming axo-dendritic synapses on the pineal nerve cells. A similar nature and origin of both axons are suggested.
Zusammenfassung Im Lumen des Pinealorgans können frei verlaufende, nackte Axone (Durchmesser 2000–7000 Å) beobachtet werden. Ihr Axoplasma enthält Mikrotubuli, Mitochondrien, synaptische (Durchmesser 350–450 Å) und granulierte Vesikel (Durchmesser 500–1500 Å). Bei Pleurodeles waltlii bilden die im Lumen des Pinealorgans verlaufenden Axone Synapsen auf der freien, apikalen Oberfläche der pinealen Ependymzellen. In den innervierten Ependymzellen kommen neben sonstigen Zytoplasmabestandteilen Myeloidkörper und Anhäufungen von Glykogengranula vor. Die Axone verlaufen am Innen- und Außenglied der Pinealozyten vorbei, können diese berühren, bilden aber dort keine Synapsen. Die auf den pinealen Ependymzellen nachgewiesenen Synapsen beweisen eine neuronale Kontrolle dieser Gliaelemente.Die Nervenfasern des pinealen Lumens wurden mit bekannten Liquorkontaktaxonen verglichen. Sie ähneln einander in ihrer Ultrastruktur und ihren synaptischen Verbindungen. Aus diesem Grunde und da bei den Amphibien das pineale Lumen mit dem 3. Ventrikel kommuniziert, werden die Axone des pinealen Lumens als Liquorkontaktaxone und als Glied des sogenannten Liquorkontakt-Axonsystems des Gehirns angesehen.Ferner wurden die pinealen Liquorkontaktaxone mit folgenden Nervenfasern und Endigungen verglichen, die im pinealen Gewebe vorkommen: 1) Axone, die große, granulierte Vesikel (Durchmesser 1300–1500 Å) enthalten und an den Dendriten von Nervenzellen endigen, welche zwischen den basalen Fortsätzen der Pinealozyten liegen; 2) Pinealozytenfortsätze, die synaptische Bänder enthalten und ebenfalls an diesen Neuronen Synapsen bilden; 3) die neurohormonalen, synaptischen Semidesmosomen von Pinealozytenfortsätzen an der Lamina basalis, die die bindegewebigen Räume der Pia mater vom eigentlichen Nervengewebe des Pinealorgans begrenzt: 4) die perivasalen, autonomen Nervenfasern der pialen Septen. Obwohl granulierte Vesikel verschiedener Durchmesser in allen diesen Terminalen vorhanden sind, stellten wir die größte, morphologische Ähnlichkeit zwischen den pinealen Liquorkontaktaxonen und denjenigen Nervenfasern fest, die große, granulierte Vesikel aufweisen und an den pinealen Neuronen axo-dendritische Synapsen bilden. Eine ähnliche Natur und Herkunft beider Axone werden angenommen.
  相似文献   

7.
Immunohistochemistry for neuron-specific enolase (NSE) revealed that NSE is localized in both a limited number of pinealocytes and intrinsic afferent neurons in the pineal organ of the domestic fowl. Furthermore, a computer-assisted three-dimensional imaging technique allowed to clarify the reverse distributional pattern of both elements: NSE-positive pinealocytes displayed a dense distribution especially in the vesicular portion of the gland, whereas NSE-immunoreactive nerve cells were mainly found in the pineal stalk. The number of NSE-positive intrinsic neurons in the pineal organ of chickens decreased rapidly after hatching, with a concentration of these elements in the basal portion (stalk) of the pineal organ. On the other hand, immunoreactive pinealocytes increased remarkably in the end-vesicle of the organ with age, followed by a gradual expansion toward the proximal portion. Thus, the spectacular increase in NSE-positive pinealocytes and the progressive reduction of reactive neurons occurred in parallel during the course of post-hatching development. NSE-immunoreactive pinealocytes displayed morphological characteristics of bipolar elements, endowed with an apical protrusion into the pineal lumen and a short basal process at younger stages, whereas multipolar types of NSE-positive pinealocytes were predominantly found in the adult domestic fowl. These results indicate that in the pineal organ of the domestic fowl (1) the ontogenetic expansion of NSE-immunoreactive pinealocytes is paralleled by a regressive afferent innervation, (2) the NSE-positive pinealocytes transform from a bipolar (columnar) type to a multipolar type during post-hatching development, and (3) these ontogenetic changes in the NSE-immunoreactivity and morphology of pinealocytes may reflect the development of a neurosecretory-like capacity of the organ.  相似文献   

8.
Summary In the pineal organ of the lovebird, Uroloncha domestica, bulbous, cup-shaped and elongated outer segments of photoreceptor-like pinealocytes are demonstrated by scanning electron microscopy. These scarce outer segments, 4–11 m in length, extend into the pineal lumen. The present structural observations speak in favor of photosensitive pinealocytes in the pineal organ of Uroloncha domestica. The relation of the photoreceptor-like pinealocytes to acetylcholinesterase-positive nerve cells and a nervous connection between the pineal and the brain indicate that the pineal organ of this passeriform species may be the site of neuroendocrine and photoreceptive functions.Supported by a fellowship from the Japan Society for the Promotion of Science to M. UeckSupported by a grant from the Ministry of Education of Japan to K. Wake and by a grant of the Deutsche Forschungsgemeinschaft to M. Ueck  相似文献   

9.
Summary Lacertilian species display a remarkable diversity in the organization of the neural apparatus of their pineal organ (epiphysis cerebri). The occurrence of immunoreactive S-antigen and opsin was investigated in the retina and pineal organ of adult lizards, Uromastix hardwicki. In this species, numerous retinal photoreceptors displayed S-antigen-like immunoreactivity, whereas only very few pinealocytes were labeled. Immunoreactive opsin was found neither in retinal photoreceptors nor in pinealocytes. Electron microscopy showed that all pinealocytes of Uromastix hardwicki resemble modified pineal photoreceptors. A peculiar observation is the existence of a previously undescribed membrane system in the inner segments of these cells. It is evidently derived from the rough endoplasmic reticulum but consists of smooth membranes. The modified pineal photoreceptor cells of Uromastix hardwicki were never seen to establish synaptic contacts with somata or dendrites of intrapineal neurons, which are extremely rare. Vesiclecrowned ribbons are prominent in the basal processes of the receptor cells, facing the basal lamina or establishing receptor-receptor and receptor-interstitial type synaptoid contacts. Dense-core granules (60–250 nm in diameter) speak in favor of a secretory activity of the pinealocytes. Attention is drawn to the existence of receptor-receptor and receptor-interstitial cell contacts indicating intramural cellular relationships that deserve further study.Supported by the Deutsche Forschungsgemeinschaft (Ko 758/31) and the Deutscher Akademischer Austauschdienst (Senior DAAD Research Fellowship to M.A.H.)  相似文献   

10.
Summary S-antigen-immunoreactive pinealocytes located in the deep portion of the pineal organ of inbred and wild pigmented mice give rise to long, beaded processes penetrating into the habenular and pretectal regions. In addition, the medial habenular nuclei and the pretectal area contain S-antigen-immunoreactive perikarya, which resemble pinealocytes in size, shape and immunoreactivity and are considered as pinealocyte-like epithalamic cells. Immunoblotting techniques reveal that a single protein band of approximately 48 kDa molecular weight accounts for this immunoreactivity. As shown with the use of the electron microscope, the majority of the S-antigen-immunoreactive processes is closely apposed to immunonegative neuronal profiles and perikarya of the habenular and pretectal regions. S-antigen-immunoreactive processes and perikarya of both pinealocytes of the deep pineal organ and pinealocyte-like epithalamic cells may form the postsynaptic element in conventional synapses involving axons provided with clear synaptic vesicles. Thus, certain mammalian pinealocytes may receive and transmit signals via point-to-point connections resembling neuro-neuronal contacts. These results challenge the concept that the mammalian pineal organ exerts its influence exclusively via the release of melatonin into the general circulation. Furthermore, they provide evidence (i) that neuronal circuits not involving the sympathetic system participate in the regulation of pineal functions in mammals, and (ii) that intimate histogenetic and functional relationships exist between the pineal organ and the habenular-pretectal nuclei in mammals.  相似文献   

11.
By means of immunocytochemistry retinal S-antigen is selectively demonstrated in retinal photoreceptor cells of the rat and in pinealocytes of the hedgehog, rat, gerbil and cat. Brain areas surrounding the pineal organ are immunonegative. The immunoreactive material is evenly distributed in the perikarya of the cells. Occasionally, inner segments of retinal photoreceptors and processes of pinealocytes are also stained. The outer segments of retinal photoreceptors display a strong immunoreaction. In both pinealocytes and retinal photoreceptors the intensity of the immunoreaction varied considerably among individual cells. The immunocytochemical demonstration of retinal S-antigen in mammalian pinealocytes indicates that these cells still bear characteristics of photoreceptors. This finding is in accord with the concept that mammalian pinealocytes are derived from pineal photoreceptor cells of poikilothermic vertebrates.  相似文献   

12.
Summary The pineal organ of the killifish, Fundulus heteroclitus, was investigated by electron microscopy under experimental conditions; its general and characteristic features are discussed with respect to the photosensory and secretory function. The strongly convoluted pineal epithelium is usually composed of photoreceptor, ganglion and supporting cells. In addition to the well-differentiated photosensory apparatus, the photoreceptor cell contains presumably immature dense-cored vesicles (140–220 nm in diameter) associated with a well-developed granular endoplasmic reticulum in the perinuclear region and the basal process. These dense-cored vesicles appear rather prominent in fish subjected to darkness. The ganglion cell shows the typical features of a nerve cell; granular endoplasmic reticulum, polysomes, mitochondria and Golgi apparatus are scattered in the electron-lucent cytoplasm around the spherical or oval nucleus. The dendrites of these cells divide into smaller branches and form many sensory synapses with the photoreceptor basal processes. Lipid droplets appear exclusively in the supporting cell, which also contains well-developed granular endoplasmic reticulum and Golgi apparatus. Cytoplasmic protrusions filled with compact dense-cored vesicles (90–220 nm in diameter) are found in dark-adapted fish. The origin of these cytoplasmic protrusions, however, remains unresolved. Thus, the pineal organ of the killifish contains two types of dense-cored vesicles which appear predominantly in darkness. The ultrastructural results suggest that the pineal organ of fish functions not only as a photoreceptor but also as a secretory organ.We thank Dr. Grace Pickford for the fishes.  相似文献   

13.
Summary By means of light-microscopic immunocyto-chemistry two polyclonal antibodies (AFRU, ASO; see p. 470) directed against secretory glycoproteins of the subcom-missural organ were shown to cross-react with cells in the pineal organ of lamprey larvae, coho salmon, a toad, two species of lizards, domestic fowl, albino rat and bovine (taxonomic details, see below). The AFRU-immunoreactive cells were identified as pinealocytes of the receptor line (pineal photoreceptors, modified photoreceptors or classical pinealocytes, respectively) either due to their characteristic structural features or by combining AFRU-immunoreaction with S-antigen and opsin immunocytochemistry in the same or adjacent sections. Depending on the species, AFRU- or ASO-immunoreactions were found in the entire perikaryon, inner segments, perinuclear area, and in basal processes facing capillaries or the basal lamina. In most cases, only certain populations of pinealocytes were immunolabeled; these cells were arranged in a peculiar topographical pattern. In lamprey larvae, immunoreactive pinealocytes were observed only in the pineal organ, but not in the parapineal organ. In coho salmon, the immunoreaction occurred in S-antigen-positive pinealocytes of the pineal end-vesicle, but was absent from S-antigen-immunoreactive pinealocytes of the stalk region. In the rat, AFRU-immunoreaction was restricted to S-antigen-immunoreactive pinealocytes found in the deep portion of the pineal organ and the habenular region. These findings support the concept that several types of pinealocytes exist, which differ in their molecular, biochemical and functional features. They also indicate the possibility that the AFRU- and ASO-immunoreactive material found in certain pinealocytes might represent a proteinaceous or peptidic compound, which is synthesized and released from a specialized type of pinealocyte in a hormone-like fashion. This cell type may share functional characteristics with peptidergic neurons or paraneurons.Supported by Grant I 38259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, to E.M.R. and A.O.; Grant S-85-39 from the Direccion de Investigaciones, Universidad Austral de Chile, to E.M.R.; Grant 187 from FONDECYT, Chile, to C.R.Y.; and Grant Ko 758/3-1 from the Deutsche Forschungsgemeinschaft, Federal Republic of Germany, to H.W.K.  相似文献   

14.
Summary The structure of the pineal organ of Zonotrichia leucophrys gambelii, as revealed by light- and electron-microscopy, resembles that of Passer domesticus (Oksche and Kirschstein, 1969; Ueck, 1970). The typical cellular element is the pinealocyte with certain basic structural features of the pineal photoreceptors of lower vertebrates (see Oksche, 1971). However, instead of the characteristic, cone-like outer segments, there are, as in other species of birds, only bulbous cilia with ectopic whorls of lamellae. This structure of the outer segment is, in a sense, contrary to the demonstration of synaptoid contacts, numerous unmyelinated, and occasional myelinated nerve fibers by electron microscopy. In Nissl preparations it was possible to demonstrate typical nerve cells. The pinealocytes of Z. l. gambelii are secretory; their Golgi complex forms granulated vesicles (800–1,400 Å in diameter) that belong to the group of granular inclusions characteristic of monoamines. Autonomie nerve fibers course within the connective tissue capsule of the pineal organ. In many pinealocytes of Z. l. gambelii, the granular endoplasmic reticulum contains extensively expanded cisternae that are filled with a flocculent material and closely associated with bundles of filaments. In a number of cases such loop-like structures are selectively stainable with aldehyde fuchsin. It was not possible to demonstrate specific secretory activity in the supporting cells. Extirpation of the pineal organ in Z. l. gambelii had no definitely detectable influence on the photoperiodic control of testicular growth.Aves, Passeriformes, Fringillidae.Supported by grants from the Deutsche Forschungsgemeinschaft to Professor Oksche and by the National Science Foundation (GB 11905) to Professor Farner. A part of this investigation was effected while Professor Kobayashi held a Visiting Professorship at the University of Giessen.  相似文献   

15.
Summary The form and size of the outer segments of photoreceptive pinealocytes in the pineal organ of the funa, Carassius gibelio langsdorfi, were observed with the scanning electron microscope. The height of the outer segments measures between 1 and 3 m and the diameter varies widely from 1.5 to 8 m. Various forms of outer segments, i.e. a slender type, a dome-like type, a cap-like type and a helical type, were demonstrated. The parallel-oriented filamentous processes of the inner segments have the same length as the outer segments and a diameter of approximately 100 nm; they are projections from the apical border of the inner segment and surround the cone-like outer segments. The processes make a right angle with the lamellar disks. The distance between two processes averages 100 nm. The lamellar disks of the outer segments are oriented at right angles to the modified cilium in the basal part, but the angle often changes in the peripheral part, where the lamellar disks are raised and become parallel to the cilium.Supported by a fellowship from the Japan Society for the Promotion of Science and a grant from the Deutsche Forschungsgemeinschaft to M. UeckSupported by a grant from the Ministry of Education of Japan to K.Wake  相似文献   

16.
Summary Monoaminergic nerve fibers were studied in the pineal organ of the monkey, Macaca fuscata, by use of fluorescence and immunohistochemical procedures. Abundant formations of noradrenergic nerve fibers were observed in the pineal organ. They entered the parenchyma in the form of several coarse bundles via the capsule in the distal portion of the organ and spread throughout the organ after branching into smaller units. The density of the autonomic innervation decreased gradually toward the proximal portion of the organ. In the distal portion, numerous nerve fibers formed perivascular plexuses around the blood vessels and some fibers ran as bundles unrelated to the blood vessels in the stroma. Fine varicose fibers and bundles derived from these plexuses penetrated among the pinealocytes. However, only a few intraparenchymal fluorescent fibers were detected in the proximal third of the gland. With the use of serotonin antiserum serotonin-immunoreactive nerve fibers were clearly restricted to the ventroproximal part of the pineal organ. Although the somata of the pinealocytes showed intense immunoreactivity, their processes were not stained. In one exceptional case, clusters of pinealocytes displaying very intense immunoreactivity were found in an area extending from the distal margin of the ventral portion of the pineal stalk to the proximal portion of the pineal organ proper; these cells were bipolar or multipolar and endowed with well-stained processes.  相似文献   

17.
By use of antibodies raised against leu-enkephalin and met-enkephalin immunoreactive, opioidergic bi- and multipolar cells were demonstrated in the pineal gland of the European hamster. Ultrastructural analysis of these opioidergic cells revealed them to be pinealocytes. Processes emerged from the cell bodies and terminated in club-shaped swellings containing many small clear and some larger granular vesicles. Some of the terminals made synapse-like contacts with non-immunoreactive pinealocytes. The presence of the opioidergic pinealocytes strongly indicates that the pineal gland of the European hamster, in addition to its pinealopetal nervous regulation, is regulated by intrapineal peptidergic pinealocytes via a synaptic mechanism. A possible paracrine role of the opioidergic cells must also be considered.  相似文献   

18.
The pineal tract of rainbow trout from the pineal end vesicle to the posterior commissure was studied by light and electron microscopy. Five types of nerve fibres (photoreceptor basal process, ganglion cell dendrite, electron-lucent fibre and synaptic vesicles, myelinated and unmyelinated axons) and two modes of synapses (photoreceptor basal process ganglion cell dendrite and axon terminal with synaptic vesicles-photoreceptor basal process synapses) are distinguishable in the proximal region of end vesicle. The two distinct synaptic associations with the photoreceptor basal process suggest two different (excitatory and inhibitory) control of pineal sensory activity. At the distal portion of stalk about two thousand nerve fibres converge into dorsal and ventral bundles. Posterior to the habenular commissure several small branches run out laterally from the ventral bundles to the basal margin of the ependyma, but not into the habenular commissure. The dorsal bundle passes through the dorsal side of the subcommissural organ and runs ventral to the posterior commissure. The pineal tract is composed of unmyelinated axons, electron-lucent nerve fibres and myelinated axons. The number of fibres increases throughout the stalk and reaches the maximum number at the opening of pineal lumen to IIIrd ventricle, however, the number of fibres then decreases through the subcommissural organ and posterior commissure. This increase and decrease of nerve fibres suggest the continuous participation of axonal fibres of pineal nerve cells and the ramification or branching of pineal tract, respectively.  相似文献   

19.
Summary The pineal organ of the blind, cave-dwelling fish, Typhlichthyes subterraneous, was examined with both light and electron microscopes. Like the eyes, the pineal in this troglobytic species was found to be regressed. Two cell types, photoreceptor and supportive cells, were described in the pineal epithelium. Although ganglion cells were not identified, small, unmyelinated nerve fibers were present. The photoreceptor cells had degenerated outer segments. Accordingly, it was suggested that the pineal in this species is not likely to function in photoreception. However, the presence of well developed Golgi bodies, clear and dense-cored vesicles, variable amounts of rough endoplasmic reticulum and glycogen particles indicated that both cell types are metabolically active and may play a role in secretion.  相似文献   

20.
Summary In the pineal region of the opossum, Didelphis virginiana, two types of cells predominate: 1) pinealocytes, and 2) fibrous astrocytes. Pinealocytes are characterized by the presence of prominent Golgi bodies, numerous clear and dense-cored vesicles, sensory cilia (9+0), vesicle-crowned rods, and condensation of a material that was always associated with the rough endoplasmic reticulum. In addition, two other cell types are occasionally seen. These include 1) neuron-like cells, and 2) darker staining cells of unknown identity. The endoplasmic reticulum of the darker staining cells is typically expanded and filled with an amorphous substance. Although the pineal region is small in size, the present findings suggest that pinealocytes in this species are metabolically active cells displaying a secretory function. Moreover, the presence of sensory cilia (9+0) and vesicle-crowned rods indicates that pinealocytes of the opossum are phylogenetically related to the photoreceptor cells found in the pineal organ of lower vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号