首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
 Amelogenins are the most abundant constituent in the enamel matrix of developing teeth. Recent investigations of rodent incisors and molar tooth germs revealed that amelogenins are expressed not only in secretory ameloblasts but also in maturation ameloblasts, although in relatively low levels. In this study, we investigated expression of amelogenin in the maturation stage of porcine tooth germs by in situ hybridization and immunocytochemistry. Amelogenin mRNA was intensely expressed in ameloblasts from the differentiation to the transition stages, but was not detected in maturation stage ameloblasts. C-terminal specific anti-amelogenin antiserum, which only reacts with nascent amelogenin molecules, stained ameloblasts from the differentiation to the transition stages. This antiserum also stained the surface layer of immature enamel at the same stages. At the maturation stage, no immunoreactivity was found within the ameloblasts or the immature enamel. These results indicate that, in porcine tooth germs, maturation ameloblasts do not express amelogenins, suggesting that newly secreted enamel matrix proteins from the maturation ameloblast are not essential to enamel maturation occurring at the maturation stage. Accepted: 14 January 1999  相似文献   

2.
During the maturation stage of amelogenesis, the loss of matrix proteins combined with an accentuated but regulated influx of calcium and phosphate ions into the enamel layer results in the "hardest" tissue of the body. The aim of the present investigation was to examine the effects of chronic hypocalcemia on the maturation of enamel. Twenty-one-day old male Wistar rats were given a calcium-free diet and deionized water for 28 days, while control animals received a normal chow. The rats were perfused with aldehyde and the mandibular incisors were processed for histochemical and ultrastructural analyses and for postembedding colloidal gold immunolabeling with antibodies to amelogenin, ameloblastin, and albumin. The maturation stage enamel organ in hypocalcemic rats exhibited areas with an apparent increase in cell number and the presence of cyst-like structures. In both cases the cells expressed signals for ameloblastin and amelogenin. The content of the cysts was periodic acid-Schiff- and periodic acid-silver nitrate-methanamine-positive and immunolabeled for amelogenin, ameloblastin, and albumin. Masses of a similar material were also found at the enamel surface in depressions of the ameloblast layer. In addition, there were accumulations of glycoproteinaceous matrix at the interface between ameloblasts and enamel. In decalcified specimens, the superficial portion of the enamel matrix sometimes exhibited the presence of tubular crystal "ghosts." The basal lamina, normally separating ameloblasts and enamel during the maturation stage, was missing in some areas. Enamel crystals extended within membrane invaginations at the apical surface of ameloblasts in these areas. Immunolabeling for amelogenin, ameloblastin, and albumin over enamel was variable and showed a heterogeneous distribution. In contrast, enamel in control rats exhibited a homogeneous labeling for amelogenin, a concentration of ameloblastin at the surface, and weak reactivity for albumin. These results suggest that diet-induced chronic hypocalcemia interferes with both cellular and extracellular events during enamel maturation.  相似文献   

3.
Dendritic cells in the enamel organ of rat incisors were examined with immunocytochemistry using an anti-cystatin C antibody for immature dendritic cells and macrophages, OX6 for MHC Class II, ED1 for macrophages and dendritic cells, and ED2 for macrophages. Single cells positive for anti-cystatin C appeared in the enamel organ in zones at which ameloblasts secrete enamel matrix proteins. They were also present in transition and enamel maturation zones. In addition, ameloblasts, osteocytes, and osteoclasts were labeled by anti-cystatin C. ED1 and ED2 immunocytochemistry revealed that there was no macrophage population in the enamel organ of secretion, transition, or enamel maturation zone. A double labeling study showed that most anti-cystatin C-positive cells in the enamel maturation zone were also positive for OX6, whereas anti-cystatin C-positive and OX6-negative cells were prevalent in the secretion zone. The results suggest that immature dendritic cells penetrate the enamel organ of the secretion zone and begin to mature in the zones of transition and enamel maturation. (J Histochem Cytochem 48:1243-1255, 2000)  相似文献   

4.
After tooth enamel has been secreted it undergoes maturation or hardening. This process is mediated by ruffled and smooth-ended ameloblasts and associated papillary layer cells. The cells of the papillary layer are characterized by large numbers of mitochondria, coated vesicles, microvilli, and gap junctions. These features have led numerous investigators to speculate that the papillary layer is an ion-transporting epithelium. We have conducted freeze-fracture studies of the rat papillary layer in order to better characterize the surface features of these cells. The cell membranes of the papillary cells contained large numbers of intramembrane particles of various sizes ranging from 4 to 9 nm in diameter. Gap junctions were present at the cell surface and in the cytoplasm in the form of annular gap junctions. The intramembrane particles or connexons of both types of gap junctions were about 8-9 nm wide and were either packed randomly or present in the so-called 'crystallized' state. At the interface between smooth-ended ameloblasts and papillary layer cells, a well-developed zonula occludens was present along the basal surfaces of the ameloblasts and several large gap junctions were formed between the two cell types. The capillary network associated with the papillary layer was characterized by a thin endothelium containing large numbers of fenestrations.  相似文献   

5.
This is the first detailed report about the collar enamel of the teeth of Polypterus senegalus. We have examined the fine structure of the collar enamel and enamel organ of Polypterus during amelogenesis by light and transmission electron microscopy. An immunohistochemical analysis with an antibody against bovine amelogenin, an antiserum against porcine amelogenin and region-specific antibodies or antiserum against the C-terminus, middle region and N-terminus of porcine amelogenin has also been performed to examine the collar enamel matrix present in these teeth. Their ameloblasts contain fully developed Golgi apparatus, rough endoplasmic reticulum and secretory granules. During collar enamel formation, an amorphous fine enamel matrix containing no collagen fibrils is found between the dentin and ameloblast layers. In non-demineralized sections, the collar enamel (500 nm to 1 μm thick) is distinguishable from dentin, because of its higher density and differences in the arrangement of its crystals. The fine structural features of collar enamel in Polypterus are similar to those of tooth enamel in Lepisosteus (gars), coelacanths, lungfish and amphibians. The enamel matrix shows intense immunoreactivity to the antibody and antiserum against mammalian amelogenins and to the middle-region- and C-terminal-specific anti-amelogenin antibodies. These findings suggest that the proteins in the enamel of Polypterus contain domains that closely resemble those of bovine and porcine amelogenins. The enamel matrix, which exhibits positive immunoreactivity to mammalian amelogenins, extends to the cap enameloid surface, implying that amelogenin-like proteins are secreted by ameloblasts as a thin matrix layer that covers the cap enameloid after enameloid maturation.  相似文献   

6.
A modified Wachstein-Meisel medium containing lead or cerium as capturing ions was used to localize Ca2+-Mg2+ adenosine triphosphatase (ATPase; EC 3.6.1.3) in rat incisor ameloblasts during enamel formation. Sections representing different developmental stages were processed for electron microscopic cytochemistry. Distribution and intensity of the observed reaction product, which was almost exclusively associated with cell membranes, varied according to the stage of enamel formation. During the secretory stage, intense reaction product was evident along the entire plasma membrane of ameloblasts and papillary cells. The early transitional ameloblasts showed reaction product on their proximal and lateral cell membranes, but not distally. In late transitional (pre-absorptive) ameloblasts, distal cell membranes exhibited intense reaction product. During enamel maturation, smooth-ended ameloblasts showed reaction product proximally and laterally, but not distally. Ruffle-ended maturative ameloblasts exhibited intense reaction product along their lateral and distal membranes. The intensity of the latter was decreased but not eliminated by levamisole. In the transition from smooth-ended to ruffle-ended cells, the reaction product became evident distally, concomitant with the appearance of cell membrane invaginations. These data are consistent with a possible role for Ca2+-Mg2+ ATPase in controlling calcium availability at the enamel mineralization front.  相似文献   

7.
Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a single membrane-anchored MMP-regulator and regulates matrix metalloproteinases (MMP) 2, 9 and 14. In turn, MMPs are endopeptidases that play a pivotal role in remodeling ECM. In this work, we decided to evaluate expression pattern of RECK in growing rat incisor during, specifically focusing out amelogenesis process. Based on different kinds of ameloblasts, our results showed that RECK expression was conducted by secretory and post-secretory ameloblasts. At the secretory phase, RECK was localized in the infra-nuclear region of the ameloblast, outer epithelium, near blood vessels, and in the stellate reticulum. From the transition to the maturation phases, RECK was strongly expressed by non-epithelial immuno-competent cells (macrophages and/or dendritic-like cells) in the papillary layer. From the transition to the maturation stage, RECK expression was increased. RECK mRNA was amplified by RT-PCR from whole enamel organ. Here, we verified the presence of RECK mRNA during all stages of amelogenesis. These events were governed by ameloblasts and by non-epithelial cells residents in the enamel organ. Concluding, we found differential expression of MMPs-2, -9 and RECK in the different phases of amelogenesis, suggesting that the tissue remodeling is rigorously controlled during dental mineralization.  相似文献   

8.
Epidermal growth factor (EGF) is a peptide shown to effect precocious incisor tooth eruption in rat pups. Binding sites for EGF were visualized in the continuously erupting adult rat incisor by light and electron microscope radioautography after in vivo injection of 125I-EGF. These binding sites represented EGF receptors because of (i) competition between 125I-EGF binding at 2 min after injection and a coinjected excess of unlabeled EGF; (ii) the receptor-mediated endocytosis of 125I-EGF at 15 and 30 min after injection; and (iii) the demonstration of EGF receptor kinase activation in vivo. The stem and the mitotic cells in the epithelial odontogenic organ at the growing end of the tooth develop into two nondividing layers of the enamel organ: (i) ameloblasts which secrete enamel and are subsequently involved in the enamel maturation process, and (ii) papillary layer cells situated between the blood supply and the ameloblasts. Although few EGF receptors were present at the mitotic end, receptor density was highest at the mature end of the enamel organ. High levels of 125I-EGF binding were found on papillary layer cells and ruffle-ended, but not smooth-ended, ameloblasts. This implies a cyclical exteriorization and internalization of receptors during modulations between the two cell types. These data suggest that the EGF receptor mediates a major function of the enamel organ in the formation of enamel.  相似文献   

9.
10.
Cystatin C, a cysteine protease inhibitor, was examined in the apical buds of rat incisors by immunohistochemistry, because in transition and maturation zones most of the dendritic cells in the papillary layer are anti-cystatin C-positive. Anti-cystatin C-labeled cells were sparse and localized to the proliferation and differentiation zones, constituting the apical bud of 5-week-old rat incisors. These cells were considered macrophages or dendritic cells, based on their reactivity with OX6 and ED1, as well as their ultrastructure. Basement membrane at the periphery of apical bud was also labeled by anti-cystatin C antibody. The apical buds included a few apoptotic fragments and weak reactivity with antibody to cathepsin L, a cysteine protease. Reactivity to anti-cystatin C and anti-cathepsin L antibodies was also detected in the apical bud of newborn rat incisors. These results suggest that the cystatin C-positive macrophages or dendritic cells are involved in normal incisor formation. They may be related to the clearance of apoptotic cells or protection from putative cysteine protease activity.  相似文献   

11.
Insulin-like growth factors (IGFs) are expressed in many tissues and control cell differentiation, proliferation, and apoptosis. In teeth, the temporo-spatial pattern of expression IGFs and their receptors has not been fully characterized. The purpose of this study was to obtain a comprehensive profile of their expression throughout the life cycle of ameloblasts, using the continuously erupting rat incisor model. Upper incisors of young male rats were fixed by perfusion, decalcified, and embedded in paraffin. Sections were processed for in situ hybridization and immunohistochemistry. mRNA and protein expression profiles IGF-I, IGF-II, IGF-IR, and IGF-IIR mRNA were essentially identical. At the apical loop of the incisor, very strong signals were seen in the outer enamel epithelium while the inner enamel epithelium showed a moderate reaction. In the region of ameloblasts facing pulp, inner enamel epithelium cells were still moderately reactive while signals over the outer enamel epithelium were slightly reduced. In the region of ameloblasts facing dentin and the initial portion of the secretory zone, signals in ameloblasts were weak while those over the outer enamel epithelium were strong. In the region of postsecretory transition, signals in both ameloblasts and papillary layer cells gradually increased. In maturation proper, signals in ameloblasts appeared as alternating bands of strong and weak reactivities, which corresponded to the regions of ruffle-ended and smooth-ended ameloblasts, respectively. Papillary layer cells also showed alternations in signal intensity that matched those in ameloblasts. These results suggest that the IGF family may act as an autocrine/paracrine system that influences not only cell differentiation but also the physiological activity of ameloblasts.  相似文献   

12.
Adult rats received a single dose of HRP intravenously and were killed from 10 min to 6 hr after injection. Following fixation with glutaraldehyde, the enamel organs were treated with a Graham-Karnovsky-type procedure for peroxidase activity, post-osmicated, and embedded in plastic. Sections were studied with light and electron microscopes. Ten minutes after injection, reaction product was found in all extra-cellular spaces of the enamel organ, at the enamel-ameloblast interface over smooth-ended and intermediate ameloblasts, and in apical surface invaginations and vesicles of the latter cell types. The enamel-ameloblast interface over the ruffle-ended aemlo-blasts and the extracellular spaces within the ruffled border were free of reaction product and remained so for up to 6 hr. The apical terminal bars of the ruffle-ended ameloblasts functioned as a barrier to HRP. The basal terminal bars of the smooth-ended ameloblasts likewise seemed to prevent the passage of the HRP. Possibly, HRP flows in a lateral direction from groups of ruffle-ended into groups of smooth-ended ameloblasts. Between 10 min and 6 hr, HRP was cleared more rapidly from the extra-cellular spaces of the papillary layer than from those of the ameloblast layer, and there was little backflow of tracer from the ameloblast into the papillary layer. Eventually, tracer was cleared also from the extracellular spaces of the ameloblast layer, probably mainly through micropinocytosis by the ameloblasts. A working model is proposed regarding the handling of large molecules by the enamel organ in the maturation zone.  相似文献   

13.
Mouse secretory ameloblasts express a number of enamel proteins, which have been divided into amelogenin and enamelin subfamilies. We have used polyclonal antibodies to murine amelogenins to reveal enamel proteins in mouse ameloblasts using the protein A-gold immunocytochemical technique. Specific immunolabeling was detected over the extracellular enamel matrix and over the rough endoplasmic reticulum, the saccules of the Golgi apparatus, and the secretory granules of the ameloblasts. In addition, some lysosome-like granules were also labeled. Only background labeling was obtained over mitochondria, nuclei, cytosol, adjacent odontoblasts, and dentin. Quantitation of the intensity of labeling showed the presence of an increasing gradient along the secretory pathway, which may correspond to the concentration or the maturation of these proteins as they are processed by the cell. These findings indicate that the ameloblast displays an intracellular distribution of its secretory products similar to that of other merocrine secreting cells. The presence of enamel proteins in lysosomes suggests that crinophagy and/or resorption occurs in these cells.  相似文献   

14.
15.
16.
We examined by immunocytochemistry the localization of the AP-1 family proteins c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, and Fra-2 in rat incisor ameloblasts. Most of the antibodies against AP-1 family proteins, except for c-Fos-specific antibody, labeled ameloblast nuclei. The labeling intensity of the c-Jun, JunD, and Fra-2 antibodies was stronger than that of JunB, FosB, and Fra-1. Antibody reactivities of c-Jun, JunD, and Fra-2 were greatly enhanced during or after the transition zone. Furthermore, c-Jun antibodies labeled maturation ameloblasts in a cyclic pattern, which was correlated with ameloblast modulation. Disruption of ameloblast modulation by colchicine injection resulted in greatly decreased reactivity of the c-Jun antibody in the ameloblast nuclei of the maturation zone. Phospho-specific antibodies to c-Jun labeled ameloblast nuclei only weakly throughout the secretion, transition, and maturation zones. These results suggest that the stage-specific localization of AP-1 in ameloblasts is closely related to tooth enamel formation.  相似文献   

17.
Morphogenesis and cytodifferentiation are distinct processes in tooth development. Cell proliferation predominates in morphogenesis; differentiation involves changes in form and gene expression. The cytoskeleton is essential for both processes, being regulated by Rho GTPases. The aim of this study was to verify the expression, distribution, and role of Rho GTPases in ameloblasts and odontoblasts during tooth development in correlation with actin and tubulin arrangements and amelogenin and dentin sialophosphoprotein (DSPP) expression. RhoA, Rac1, and Cdc42 were strongly expressed during morphogenesis; during cytodifferentiation, RhoA was present in ameloblasts and odontoblasts, Rac1 and its effector Pak3 were observed in ameloblasts; and Cdc42 was present in all cells of the tooth germ and mesenchyme. The expression of RhoA mRNA and its effectors RockI and RockII, Rac1 and Pak3, as analyzed by real-time polymerase chain reaction, increased after ameloblast and odontoblast differentiation, according to the mRNA expression of amelogenin and DSPP. The inhibition of all Rho GTPases by Clostridium difficile toxin A completely abolished amelogenin and DSPP expression in tooth germs cultured in anterior eye chamber, whereas the specific inhibition of the Rocks showed only a partial effect. Thus, both GTPases are important during tooth morphogenesis. During cytodifferentiation, Rho proteins are essential for the complete differentiation of ameloblasts and odontoblasts by regulating the expression of amelogenin and DSPP. RhoA and its effector RockI contribute to this role. A specific function for Rac1 in ameloblasts remains to be elucidated; its punctate distribution indicates its possible role in exocytosis/endocytosis.  相似文献   

18.
Tooth development is a complex process including successive stages of initiation, morphogenesis, and histogenesis. The role of the Dlx family of homeobox genes during the early stages of tooth development has been widely analyzed, while little data has been reported on their role in dental histogenesis. The expression pattern of Dlx2 has been described in the mouse incisor; an inverse linear relationship exists between the level of Dlx2 expression and enamel thickness, suggesting a role for Dlx2 in regulation of ameloblast differentiation and activity. In vitro data have revealed that DLX homeoproteins are able to regulate the expression of matrix proteins such as osteocalcin. The aim of the present study was to analyze the expression and function of Dlx genes during amelogenesis. Analysis of Dlx2/LacZ transgenic reporter mice, Dlx2 and Dlx1/Dlx2 null mutant mice, identified spatial variations in Dlx2 expression within molar tooth germs and suggests a role for Dlx2 in the organization of preameloblastic cells as a palisade in the labial region of molars. Later, during the secretory and maturation stages of amelogenesis, the expression pattern in molars was found to be similar to that described in incisors. The expression patterns of the other Dlx genes were examined in incisors and compared to Dlx2. Within the ameloblasts Dlx3 and Dlx6 are expressed constantly throughout presecretory, secretory, and maturation stages; during the secretory phase when Dlx2 is transitorily switched off, Dlx1 expression is upregulated. These data suggest a role for DLX homeoproteins in the morphological control of enamel. Sequence analysis of the amelogenin gene promoter revealed five potential responsive elements for DLX proteins that are shown to be functional for DLX2. Regulation of amelogenin in ameloblasts may be one method by which DLX homeoproteins may control enamel formation. To conclude, this study establishes supplementary functions of Dlx family members during tooth development: the participation in establishment of dental epithelial functional organization and the control of enamel morphogenesis via regulation of amelogenin expression.  相似文献   

19.
Summary Maturation ameloblasts of developing molar teeth of the rat were studied by both scanning and transmission electron microscopy. After fixation, teeth were frozen and split. One face of the fractured tooth was used for SEM, the other for TEM.It was found that in some regions proximal junctional complexes separate the interameloblast space from the intercellular space of the papillary layer. Thereby an intercellular ameloblastic compartment is delineated which in some specimens contains a substance interpreted to be colloidal. Elsewhere the proximal junctions of ameloblasts are not present and free communication between the extracellular spaces is evident. The apical pole of ameloblasts varies in structure. Over some areas there is a distinct distal border zone with membranous infoldings which in some regions resembles a striated or ruffled border, but in other regions the membranes show whorl configurations. The distal border zone also contains granules with flocculent material. Elsewhere the ameloblasts display no distal border zone and the cells show a smooth membrane (except for pinocytotic vesicles and hemidesmosomes) facing the enamel surface. The lateral surface of ameloblasts exhibits a variety of surface configurations similar to but not as pronounced as those reported previously in rat incisor maturation ameloblasts.The authors wish to thank Pauletta Sanders and Helen Ruane for technical assistance. This project was supported in part by USPHS NIH Grant DE04059-03 and by the Medical Research Council of Great Britain  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号