首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Nicotianamine is an intermediate for the biosynthesis of mugineic acid-family phytosiderophores (MAs) in the Gramineae and a key substance for iron metabolism in dicots. Nicotianamine synthase catalyzes the formation of nicotianamine from S-adenosylmethionine. Nicotianamine synthase activity was induced in barley roots at the 3rd day after withholding Fe supply and declined within one day followmg the supply of Fe3+-epihydroxymugineic acid. The induction of nicotianamine synthase activity by Fe-deficiency was observed also in sorghum, maize, and rye, and the level of nicotianamine synthase activity was highly associated with the MAs secreted among graminaceous plant tested. Therefore, the nicotianamine synthase gene may be a suitable candidate for making a transgenic plant tolerant to Fe-deficiency.Abbreviations p-APMSF (p-amidinophenyl) methanesulfonylfluoride hydrochloride - NA nicotianamine - DMA 2-deoxymugineic acid - E-64 trans-epoxysuccinyl-leucylamido-(4-guanidino) butane - epiHMA 3-epihydroxymugineic acid - MAs mugineic acid-family phytosiderophores which include deoxymugineic acid, mugineic acid, hydroxymugineic acid, epihydroxymugineic acid and avenic acid - PVP polyvinylpyrrolidone - SAM S-adenosylmethionine  相似文献   

2.
3.
Nicotianamine (NA) is present in all plants so far examined, and is thought to chelate transition metal ions. Previously, we isolated three nicotianamine synthase (NAS) genes of Arabidopsis thaliana (AtNAS1, 2, and 3) and showed that each NAS gene is differentially expressed. Deletion analysis of the 5' flanking region of AtNAS3 found a putative ethylene-responsive sequence, ATTTTCAAA.  相似文献   

4.
The Arabidopsis Yellow Stripe 1-Like (YSL) proteins have been identified by homology with the maize (Zea mays) Yellow Stripe 1 (YS1) transporter which is responsible for iron-phytosiderophore (PS) uptake by roots in response to iron shortage. Although dicotyledonous plants do not synthesize PS, they do synthesize the PS precursor nicotianamine, a strong metal chelator essential for maintenance of iron homeostasis and copper translocation. Furthermore, ZmYS1 and the rice (Oryza sativa) protein OsYSL2 have metal-nicotianamine transport activities in heterologous expression systems. In this work, we have characterized the function of AtYSL1 in planta. Two insertional loss-of-function ysl1 mutants of Arabidopsis were found to exhibit increased nicotianamine accumulation in shoots. More importantly, seeds of both ysl1 knockouts contained less iron and nicotianamine than wild-type seeds, even when produced by plants grown in the presence of an excess of iron. This phenotype could be reverted by expressing the wild-type AtYSL1 gene in ysl1 plants. ysl1 seeds germinated slowly, but this defect was rescued by an iron supply. AtYSL1 was expressed in the xylem parenchyma of leaves, where it was upregulated in response to iron excess, as well as in pollen and in young silique parts. This pattern is consistent with long-distance circulation of iron and nicotianamine and their delivery to the seed. Taken together, our work provides strong physiological evidence that iron and nicotianamine levels in seeds rely in part on AtYSL1 function.  相似文献   

5.
Nicotianamine (NA) is a precursor for mugineic acid-family phytosiderophores, which are a critical component of the Fe aquisition process in graminaceous plants. In addition, nicotianamine synthase (NAS) is strongly induced in these plants by Fe deficiency. NA is essential for Fe metabolism also in dicots, but NAS is not induced by Fe deficiency. We introduced a barley HνNAS1 promoter-gus fusion gene into tobacco. GUS activity was induced in the roots of these plants by Fe deficiency, and was constitutively expressed at a low level in their leaves.  相似文献   

6.
Heavy metals are essential for basic cellular processes but toxic in higher concentrations. This requires the precise control of their intracellular concentrations, a process known as homeostasis. The metal-chelating, non-proteinogenous amino acid nicotianamine (NA) is a key component of plant metal assimilation and homeostasis. Its precise function is still unknown. Therefore, this article aims to contribute new information on the in vivo function of NA and to evaluate its potential use for plant nutrition and crop fortification. For this purpose, a nicotianamine synthase gene of Arabidopsis thaliana was ectopically expressed in transgenic tobacco plants. The presence of extra copies of the nicotianamine synthase gene co-segregated with up to 10-fold elevated levels of NA in comparison with wild type. The increased NA level led to: (a) a significantly increased iron level in leaves of adult plants; (b) the accumulation of zinc and manganese, but not copper; (c) an improvement of the iron use efficiency in adult plants grown under iron limitation; and (d) an enhanced tolerance against up to 1 m m nickel. Taken together, the data predict that NA may be a useful tool for improved plant nutrition on adverse soils and possibly for enhanced nutritional value of leaf and seed crops.  相似文献   

7.
An amino acid derivative isolated from seedlings of Avena sativa and Oryza sativa, along with avenic acid A and its derivatives which possess a chelating ability with iron ions, has been shown to be nicotianamine. The co-occurrence of nicotianamine and avenic acids in the same plant, as well as their structural similarity, reveals their close biosynthetic relationship.  相似文献   

8.
We generated rice lines with increased content of nicotianamine (NA), a key ligand for metal transport and homeostasis. This was accomplished by activation tagging of rice nicotianamine synthase 2 (OsNAS2). Enhanced expression of the gene resulted in elevated NA levels, greater Zn accumulations and improved plant tolerance to a Zn deficiency. Expression of Zn-uptake genes and those for the biosynthesis of phytosiderophores (PS) were increased in transgenic plants. This suggests that the higher amount of NA led to greater exudation of PS from the roots, as well as stimulated Zn uptake, translocation and seed-loading. In the endosperm, the OsNAS2 activation-tagged line contained up to 20-fold more NA and 2.7-fold more zinc. Liquid chromatography combined with inductively coupled plasma mass spectrometry revealed that the total content of zinc complexed with NA and 2'-deoxymugineic acid was increased 16-fold. Mice fed with OsNAS2-D1 seeds recovered more rapidly from a zinc deficiency than did control mice receiving WT seeds. These results demonstrate that the level of bio-available zinc in rice grains can be enhanced significantly by activation tagging of OsNAS2.  相似文献   

9.
Apple trees are extensively cultivated worldwide but are often affected by zinc (Zn) deficiency. Limited knowledge regarding Zn remobilization within fruit crops has hampered the development of efficient strategies for providing adequate amounts of Zn. In the present study, Zn distribution and remobilization were compared among apple trees cultivated under different Zn conditions. Without Zn application, plants showed visible symptoms of Zn deficiency at the shoot tips after 1 year but appeared to grow normally during the first 6 months (early stage of Zn deficiency). Compared with apple plants under sufficient Zn treatment, plants suffering from early‐stage Zn deficiency showed preferential Zn distribution to young leaves and higher Zn levels in phloem, demonstrating that hidden Zn deficiency triggers a highly efficient remobilization of Zn in this species. The in vivo Zn‐nicotianamine complex in phloem tissues, combined with the significant enhanced expression of MdNAS3 and MdYSL6, suggested a positive role for nicotianamine in the phloem remobilization of Zn. These results strongly suggest that a proportion of Zn in the old leaves of apple trees can be efficiently remobilized by phloem transport to the shoot tips, partially in the form of Zn‐nicotianamine, thus protecting apple trees against the early stages of Zn deficiency.  相似文献   

10.
The influence of nicotianamine (NA) and iron on the activities of 4 iron-containing and two iron-free enzymes in leaves and roots of the NA-free tomato mutant chloronerva and its NA-containing wild-type ( Lycopersicon esculentum Mill. cv. Bonner Beste) was investigated. Aconitase (EC 4.2.1.3) activity in both leaves and roots was much higher in the mutant under normal iron supply (10 μ M FeEDTA) and in wild-type under iron deficiency than in wild-type supplied with 10 μ M FeEDTA. Application of NA to chloronerva leaves led to a decrease of aconitase activity in leaves and roots. NA had no effect on the enzyme activity when added to the assay medium.
Similar results were obtained for the iron-containing enzymes catalase (EC 1.11.1.6), ascorbate-dependent peroxidase (EC 1.11.1.11) and guaiacol-dependent peroxidase (EC 1.11.1.7) in roots. NA treatment of the mutant leaves decreased enzyme activities in roots down to wild-type values. In vivo NA application had no effect on enzyme activities in leaf extracts.
The activities of the iron-free enzymes NAD+-malate dehydrogenase (EC 1.1.1.37) and phosphofructokinase (EC 2.7.1.11) in root and leaf extracts were not influenced by the iron supply to the plants.  相似文献   

11.
Douchkov  D.  Herbik  A.  Koch  G.  Mock  H.-P.  Melzer  M.  Stephan  U. W.  Bäumlein  H. 《Plant and Soil》2002,241(1):115-119
Basic cellular processes such as electron transport in photosynthesis and respiration require the precise control of iron homeostasis. To mobilise iron, plants have evolved at least two different strategies. The non-proteinogenic amino acid nicotianamine is an essential component of both pathways.We briefly review the characterisation of the nicotianamine synthase as a member of a novel class of enzymes, the cloning of the corresponding gene coding sequences of barley, Arabidopsis and tomato as well as the molecular basis of the chloronerva mutant exhibiting severe defects in the regulation of iron metabolism.Further, we report on current experiments aiming to the application of various NAS-genes to manipulate iron assimilation in model and crop plants using transgenic sense and antisense approaches.  相似文献   

12.
Aoyagi Y 《Phytochemistry》2006,67(6):618-621
A compound that inhibited angiotensin-I converting enzyme (ACE) activity was isolated from buckwheat powder. This compound is thought to be the hydroxy derivative of nicotianamine and its chemical structure is 2'-hydroxynicotianamine. This compound showed a very high inhibitory activity toward ACE, and the IC(50) was 0.08 microM. Only this hydroxy analog was found in buckwheat powder, at about 30 mg/100g, and no nicotianamine was detected. However, nicotianamine was detected in the buckwheat plant body. 2'-hydroxynicotianamine was also found in other polygonaceous plants.  相似文献   

13.
Zinc (Zn) is an essential trace element in all living organisms, but is toxic in excess. Several plant species are able to accumulate Zn at extraordinarily high concentrations in the leaf epidermis without showing any toxicity symptoms. However, the molecular mechanisms of this phenomenon are still poorly understood. A state‐of‐the‐art quantitative 2D liquid chromatography/tandem mass spectrometry (2D‐LC‐MS/MS) proteomics approach was used to investigate the abundance of proteins involved in Zn hyperaccumulation in leaf epidermal and mesophyll tissues of Noccaea caerulescens. Furthermore, the Zn speciation in planta was analyzed by a size‐exclusion chromatography/inductively coupled plasma mass spectrometer (SEC‐ICP‐MS) method, in order to identify the Zn‐binding ligands and mechanisms responsible for Zn hyperaccumulation. Epidermal cells have an increased capability to cope with the oxidative stress that results from excess Zn, as indicated by a higher abundance of glutathione S‐transferase proteins. A Zn importer of the ZIP family was more abundant in the epidermal tissue than in the mesophyll tissue, but the vacuolar Zn transporter MTP1 was equally distributed. Almost all of the Zn located in the mesophyll was stored as Zn–nicotianamine complexes. In contrast, a much lower proportion of the Zn was found as Zn–nicotianamine complexes in the epidermis. However, these cells have higher concentrations of malate and citrate, and these organic acids are probably responsible for complexation of most epidermal Zn. Here we provide evidence for a cell type‐specific adaptation to excess Zn conditions and an increased ability to transport Zn into the epidermal vacuoles.  相似文献   

14.
During the first 8 days of germination the Ricinus seedling is supplied with all nutrients by the endosperm via phloem transport. In 4- to 8-days-old seedlings the concentrations and contents of Fe, Cu, Mn and Zn, and nicotianamine (NA) in the endosperm, cotyledons, hypocotyl and roots were estimated. From the data obtained translocation rates and flow profiles for the metals were established. The main sink for Fe, Mn and Zn were the cotyledons whereas Cu was mainly imported into the hypocotyl. Maximum flow rates occurred between days 5 and 7, for Zn between days 6 and 8.The time kinetics of NA and divalent metal ion concentrations and contents are interpreted as co-transport. The role of NA as transport vehicle of micronutrients in the sieve tubes is discussed.  相似文献   

15.
The influence of nicotianamine (NA) on formation and elongation of adventitious roots in hypocotyls of de-rooted NA-less mutant seedlings of Lycopersicon esculentum Mill, was examined in relation to the iron supply [ferric N-N'-ethylenediaminedi-(2-hydroxyphenylacetate) (FEDDHA), ferric ethylenediaminetetracetate (FeEDTA), ferric N-(2-hydroxyethyl)-ethylenediaminetriacetate (FeHEDTA, Fe-citrate and FeCl3] in the nutrient solution. The initiation of root primordia in hypocotyl cuttings was independent of NA and occurred with about the same frequency in both, mutant and wild-type. In the mutant the development of primordia to adventitious roots was blocked at all iron sources used, except FeEDTA. Addition of NA (5x 10−6 to 2 × 10−5 M ) to the rooting medium resulted in a fast growth of adventitious roots in mutant cuttings with all iron sources tested. Rooting of wild-type cuttings was independent from NA application and iron sources. We suppose that NA is involved in the intracellular transport of iron. Its function is possibly linked with chelation of ferrous iron in the cell.  相似文献   

16.
The ‘normalizing factor’ for the mutant ‘chloronerva’ of the tomato, Lycopersicon esculentum cv Bonner Beste was shown to possess the structure (2S:3′S:3″S)-N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]-azetidine-2- carboxylic acid and proved to be identical with nicotianamine, especially on the basis of its high resolution mass and NMR spectroscopic investigations and those of some of its derivatives. It seems to be of general occurrence in vascular plants and has been isolated from Medicago sativa (Leguminosae) and Beta vulgaris (Chenopodiaceae) using a large-scale isolation procedure. Nicotianamine has an optimal molecular structure for chelating iron ions and is considered a possible phytosiderophore with an essential function in cellular iron transport and/or metabolism.  相似文献   

17.
Bread wheat (Triticum aestivum L.) is cultivated on more land than any other crop and produces a fifth of the calories consumed by humans. Wheat endosperm is rich in starch yet contains low concentrations of dietary iron (Fe) and zinc (Zn). Biofortification is a micronutrient intervention aimed at increasing the density and bioavailability of essential vitamins and minerals in staple crops; Fe biofortification of wheat has proved challenging. In this study we employed constitutive expression (CE) of the rice (Oryza sativa L.) nicotianamine synthase 2 (OsNAS2) gene in bread wheat to up‐regulate biosynthesis of two low molecular weight metal chelators – nicotianamine (NA) and 2′‐deoxymugineic acid (DMA) – that play key roles in metal transport and nutrition. The CE‐OsNAS2 plants accumulated higher concentrations of grain Fe, Zn, NA and DMA and synchrotron X‐ray fluorescence microscopy (XFM) revealed enhanced localization of Fe and Zn in endosperm and crease tissues, respectively. Iron bioavailability was increased in white flour milled from field‐grown CE‐OsNAS2 grain and positively correlated with NA and DMA concentrations.  相似文献   

18.
In vitro nicotianamine synthase activity was measured in tobaccounder Fe-deficient or Fe-sufficient conditions. Its activitywas not induced by Fe-deficiency, in contrast to barley roots,implying that the molecular biological regulation of nicotianaminesynthase in response to Fe-deficiency may be different betweentobacco and barley. Key words: Barley, Fe-deficiency, ferric reduction, nicotianamine synthase, tobacco  相似文献   

19.
20.
Experimental evidence suggests that nicotianamine (NA) is involved in the complexation of metal ions in some metal-hyperaccumulating plants. Closely-related nickel (Ni)- and zinc (Zn)-hyperaccumulating species were studied to determine whether a correlation exists between the Ni and Zn concentrations and NA in foliar tissues. A liquid chromatography-mass spectrometry (LC-MS) procedure was developed to quantify the NA and amino acid contents using the derivatizing agent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. A strong correlation emerged between Ni and NA, but not between Zn and NA. Concentrations of NA and L-histidine (His) also increased in response to higher Ni concentrations in the hydroponic solution supplied to a serpentine population of Thlaspi caerulescens. An inversely proportional correlation was found between the iron (Fe) and Ni concentrations in the leaves. Correlations were also found between Zn and asparagine. The results obtained in this study suggest that NA is involved in hyperaccumulation of Ni but not Zn. The inverse proportionality between the Ni and Fe concentrations in the leaf may suggest that Ni and Fe compete for complexation to NA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号