首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A β-carbonic anhydrase (CA, EC 4.2.1.1), the protein encoded by the NCE103 gene of Candida glabrata which also present in Candida albicans and Saccharomyces cerevisiae, was cloned, purified, characterized kinetically and investigated for its inhibition by a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate and some isosteric species. The enzyme showed significant CO2 hydrase activity, with a kcat of 3.8 × 105 s?1 and kcat/KM of 4.8 × 107 M?1 s?1. The Cà glabrata CA (CgCA) was moderately inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, KIs of 0.60–1.12 mM) but strongly inhibited by bicarbonate, nitrate, nitrite and phenylarsonic acid (KIs of 86–98 μM). The other anions investigated showed inhibition constants in the low millimolar range, with the exception of bromide and iodide (KIs of 27–42 mM).  相似文献   

2.
《Aquatic Botany》1986,24(2):199-209
The ability of the seagrass Zostera muelleri Irmisch ex Aschers. to use HCO3 as well as CO2 for photosynthesis was investigated by measuring photosynthetic O2 evolution over a range of pH values. It was found that the apparent Km CO2 fell from 0.128 mM at pH 7.9 to 0.016 mM at pH 9.1 indicating that HCO3 as well as CO2 may act as a substrate for photosynthesis.The true Km CO2 could not be determined due to inhibition of photosynthesis at pHs less than 7.8 Km CO2 must be at least 0.128 mM, the apparent Km at pH 7.9, and is probably of the order of 0.200 mM CO2, the same as that reported for other marine plants. Km HCO3−1 is about 20 mM when CO2-dependent photosynthesis is minimal. Such a high Km HCO3 resembles values reported for freshwater, rather than marine plants.Photosynthetic O2 evolution is not saturated with respect to total inorganic carbon in natural seawater (pH 8.2). It is suggested that the distinctive shoulder from pH 8.1 to 8.5 in the pH profile of photosynthetic O2 evolution at a constant concentration of inorganic carbon is caused by an effect of pH on HCO3 uptake. The effect of pH on HCO3 uptake was determined by constructing a pH profile of photosynthesis at constant HCO3 concentration, and subtracting the estimated contribution of CO2 to photosynthesis from this rate. The resultant curve has a maximum at pH 8.4 and declines sharply at pHs less than 8.  相似文献   

3.
3-Methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidation pathway, was highly purified from bovine kidney. The native enzyme has an approximate molecular weight of 835,000 as measured from exclusion limits by polyacrylamide gel electrophoresis at pH 7.3. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated two subunits, identified as a biotin-free subunit (A subunit; Mr = 61,000) and a biotin-containing subunit (B subunit; Mr = 73,500). The biotin content of the enzyme was 1 mol/ 157,000 g protein, consistent with an AB protomeric structure for the enzyme. The isoelectric point of the enzyme was found to be 5.4. Maximal MCase activity was found at pH 8 and 38 °C in the presence of Mg2+ and an activating monovalent cation such as K+. Kinetic constants (Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 75 μm; ATP, 82 μm; HCO3?, 1.8 mm. Certain acyl-CoA derivatives, including crotonyl-CoA, (2Z)-3-ethylcrotonyl-CoA, and acetoacetyl-CoA, were also substrates for the enzyme. Some data on inhibition of the enzyme by acyl-CoA derivatives, and sulfhydryl- and arginyl-reagents, are presented.  相似文献   

4.
The ability of the morphologically complex cyanobacterium Chlorogloeopsis sp. ATCC 27193 to actively transport and accumulate inorganic carbon (C1= CO2+ HCO3?+ CO32?) for photosynthetic CO2 fixation was investigated. Mass-spectrometric assays revealed that Chlorogloeopsis cells grown under C1 limitation rapidly took up CO2 from the medium in a light-dependent reaction which was independent of CO2 fixation. Ethoxyzolamide, a carbonic anhydrase (CA) inhibitor, inhibited CO2 transport. Since electrometric and mass-spectrometric assays did not detect the presence of a periplasmic CA, it is suggested that CO2 transport was mediated by a CA-like activity which converted CO2 to HCO3? during passage across the membrane. Radiochemical assays, using H14CO3 as substrate, showed that C3-limited cells also had a high affinity (K0.5 HCO3?= 37 μM), Na+-independent HCO3? uptake mechanism. HCO3?uptake was light dependent and occurred against its electrochemical potential indicating a carrier-mediated, active transport process. The rate of Na+-independent HCO3? transport was sufficient to account for the steady state rate of CO2 fixation. Although not absolutely required. Na+ did specifically enhance the rate of HCO3? transport by up to 2-fold, but had no effect on the apparent affinity of the transport system for HCO3? Combined CO2 and HCO3? transport resulted in C1 accumulation as high as 25 mM and in excess of 300 times the external concentration. The C1 pool was the source of CO2 for photo-synthetic fixation and was generated, presumably, by the dehydration of HCO3? catalyzed by an intracellular CA. The collective evidence indicates that Chlorogloeopsis has a physiologically functional CO2-concentrating mechanism which is essential for photosynthesis.  相似文献   

5.
Influx and efflux of inorganic carbon in Synechococcus UTEX625   总被引:1,自引:0,他引:1  
The CO2 and HCO3? fluxes in air-grown cells of Synechococcus UTEX 625 al pH 8-0 were measured during dark to light and light to dark transitions using a mass spectrometer and sampling of the reaction medium. The kinetic parameters for initial uptake of CO2 and HCO3? were determined during the initial period of illumination. The development of the internal Ci pool was followed up to steady-state photosynthesis, which occurred when the size of the internal inorganic carbon pool remained apparently constant for a limited period. The experimental procedure confirmed that only CO2 transport occurred with 100mmolm?3 Na+ and that both CO2 and HCO?3 transport occurred with 25molm?3 Na+. The K1/2 values of initial CO2 and HCO3 uptake were 0.7 and 17.2 mmolm?3respectively and agreed closely with the K1/2 values of net CO2 and HCO3? transport during steady-state photosynthesis, which were 0.66 and 17.1 mmolm?3 respectively. Maximum rates of CO2and HCO3? transport were 423 and 219mmolh?1 g?1 Chl. Maximum CO2 efflux observed upon darkening was 118mmolh?1 g?1 Chl. A permeability coefficient of the cell for CO2 of 3 × 10?8 m s?1 was determined from the dark CO2 efflux assuming an internal pH of 7.2 in the dark. Following the initial CO2 uptake in the light, the extracellular [CO2] steadily declined when only CO2 transport was allowed, but an increase in the extracellular [CO2] when HCO3? transport was allowed to proceed suggested that an enhanced CO2 efflux occurred as a result of the larger size of the intracellular Ci pool.  相似文献   

6.
The photosynthetic capacity of submerged Ulva sp. when utilizing CO2 and HCO?3 as exogenous carbon forms has been investigated and compared with ambient carbon concentrations in sea water. Saturating concentrations of HCO? 3 and CO2 were 1200 and 100 μM, respectively at saturating light, and photosynthetic rates under such conditions averaged 700 μmolO2·gDW?1 ·h?1. The HCO?3 concentration of sea water (≈2500μM), was thus found to be saturating for photosynthesis of Ulva. At the CO2 concentration of sea water (≈ 10 μM), the contribution of this carbon form to photosynthesis could be 27% at the most. Under conditions of slow water movement, the relative importance of CO2 utilization would probably be minimized in favour of HCO?3 utilization. It is concluded that HCO?3 uptake is not limiting photosynthesis for Ulva under natural conditions.  相似文献   

7.
Ouabain-treated turtle bladders bathed on both surfaces by identical HCO3?/CO2-containing, Cl?-free Na+ media exhibit a short-circuit current (Isc) and transepithelial potential (p.d.) serosa electronegative to mucosa. Addition of 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cyclic nucleotide phosphodiesterase, rapidly reverses the direction of the Isc and p.d.. The IBMX-induced reversal of Isc and p.d. is (1) dependent on the presence of HCO3? (and CO2) in the serosal bathing fluid, (2) independent of Na+ and other ions in the bathing medium, (3) decreased by inhibitors of carbonic anhydrase or oxidative metabolism, (4) increased by the serosal addition of cyclic AMP or the disulfonic stilbene, SITS. The results constitute evidence that the reversed Isc elicited by IBMX represents electrogenic secretion of HCO3?.  相似文献   

8.
Abstract: The Na+-glutamate cotransporters are believed to countertransport OH? and K+. Previous evidence that the velocity of glutamate uptake can exceed the acid extrusion capacity of astrocytes raised the question of whether intracellular pH can become rate limiting for glutamate uptake. Cytoplasmic buffering capacity and acid extrusion in astrocytes are partially HCO3? dependent. Also, it was reported recently that raising extracellular [K+] alkalinizes astrocyte cytoplasm by an HCO3?-dependent mechanism. Here, we have compared glutamate uptake in HCO3?-buffered and HCO3?-depleted solutions at varying [K+]. We observed a pronounced stimulation of glutamate uptake by extracellular K+ (3–24 mM) that was substantially HCO3? dependent and affected preferentially the uptake of high concentrations (>25 µM) of glutamate. Stimulation of uptake by low extracellular [K+] (1.5–3 mM) was less dependent on HCO3?. Potassium-induced stimulation of uptake was weaker in rat astrocyte cultures than in mouse. The effects of Ba2+ and amiloride on glutamate uptake, as well as the HCO3?-dependent stimulatory effects of K+ and the species difference, all related consistently to effects on intracellular pH. The effects on uptake, however, were much larger than predicted by the associated changes in electrochemical gradient of OH?. A “bimodal” scheme for glutamate transport can account qualitatively for the observed correlation between intracellular pH and velocity of glutamate uptake.  相似文献   

9.
The observed equilibrium constants (Kobs) for the reactions of d-2-phosphoglycerate phosphatase, d-2-Phosphoglycerate3? + H2O → d-glycerate? + HPO42?; d-glycerate dehydrogenase (EC 1.1.1.29), d-Glycerate? + NAD+ → NADH + hydroxypyruvate? + H+; and l-serine:pyruvate aminotransferase (EC 2.6.1.51), Hydroxypyruvate? + l-H · alanine± → pyruvate? + l-H · serine±; have been determined, directly and indirectly, at 38 °C and under conditions of physiological ionic strength (0.25 m) and physiological ranges of pH and magnesium concentrations. From these observed constants and the acid dissociation and metal-binding constants of the substrates, an ionic equilibrium constant (K) also has been calculated for each reaction. The value of K for the d-2-phosphoglycerate phosphatase reaction is 4.00 × 103m [ΔG0 = ?21.4 kJ/mol (?5.12 kcal/mol)]([H20] = 1). Values of Kobs for this reaction at 38 °C, [K+] = 0.2 m, I = 0.25 M, and pH 7.0 include 3.39 × 103m (free [Mg2+] = 0), 3.23 × 103m (free [Mg2+] = 10?3m), and 2.32 × 103m (free [Mg2+] = 10?2m). The value of K for the d-glycerate dehydrogenase reaction has been determined to be 4.36 ± 0.13 × 10?13m (38 °C, I = 0.25 M) [ΔG0 = 73.6 kJ/mol (17.6 kcal/mol)]. This constant is relatively insensitive to free magnesium concentrations but is affected by changes in temperature [ΔH0 = 46.9 kJ/mol (11.2 kcal/mol)]. The value of K for the serine:pyruvate aminotransferase reaction is 5.41 ± 0.11 [ΔG0 = ?4.37 kJ/mol (?1.04 kcal/mol)] at 38 °C (I = 0.25 M) and shows a small temperature effect [ΔH0 = 16.3 kJ/ mol (3.9 kcal/mol)]. The constant showed no significant effect of ionic strength (0.06–1.0 m) and a response to the hydrogen ion concentration only above pH 8.5. The value of Kobs is 5.50 ± 0.11 at pH 7.0 (38 °C, [K+] = 0.2 m, [Mg2+] = 0, I = 0.25 M). The results have also allowed the value of K for the d-glycerate kinase reaction (EC 2.7.1.31), d-Glycerate? + ATP4? → d-2-phosphoglycerate3? + ADP3? + H+, to be calculated to be 32.5 m (38 °C, I = 0.25 M). Values for Kobs for this reaction under these conditions and at pH 7.0 include 236 (free [Mg2+] = 0) and 50.8 (free [Mg2+] = 10?3m).  相似文献   

10.
SUMMARY.
  • 1 Rates of photosynthetic oxygen evolution by Callitriche cophocarpa and Ranunculus peltatus in stream were measured on live occasions during the light period on 2 days at ambient light and ambient inorganic carbon, ambient light and saturating inorganic carbon, saturating light and ambient inorganic carbon, saturating light and saturating inorganic carbon and air-equilibrium inorganic carbon and ambient light.
  • 2 Despite an ambient CO2 concentration of about 220 μm , which is about ten times air-equilibrium, the concentration of inorganic carbon was more limiting than light on all the occasions that rates were measured. On average, rates of photosynthesis at ambient concentrations of CO2 were about 130 and 425 μmol O2 g?1 DW h?1 for C. cophocarpa and R. peltatus, respectively. These rates as a percentage of carbon saturated rates were only about 35% for C. cophocarpa and about 60% for R. peltatus. Ambient rates as a percentage of light saturated rates were about 80% for C. cophocarpa and about 95% for R. peltatus. Only in early morning and late evening where the photon irradiance was below 160 μmol m?2 s?1 was there evidence for slight light limitation.
  • 3 Based on results from pH-drift experiments and from rates of photosynthesis as a function of CO2 concentration in the presence and absence of HCO3?, C. cophocarpa was unable, but R. peltatus able to use HCO3? at an ambient HCO3? concentration of about 0·84 mm . The greater rates of photosynthesis at ambient CO2 concentration and the lesser limitation by inorganic carbon shown by R. peltatus compared to C. cophocarpa was the result of HCO3?-use as laboratory experiments showed that R. peltatus performed similarly to C. cophocarpa if the HCO3? concentration was reduced to 60 μm .
  相似文献   

11.
The inhibition by cupric ions of the hydration of CO2 catalyzed by carbonic anhydrase II is interesting because of the results of Tuet al. obtained at chemical equilibrium, indicating that Cu2+ inhibits specifically a proton transfer in the catalytic pathway. We have measured this inhibition at steady state, using stopped-flow methods. The inhibition by Cu2+ of the hydration of CO2 catalyzed by carbonic anhydrase II had aK I near 1×10?6 M atpH 7.0 and gave inhibition that is noncompetitive atpH 6.0 and mixed, but close to uncompetitive, atpH 6.8. ThepH dependence of this binding is consistent with a binding site for Cu2+ on the enzyme with apK a near 7. The binding interaction between Cu2+ and the fluorescent inhibitor 5-dimethylaminonaphthalene-l-sulfonamide on carbonic anhydrase II was noncompetitive, indicating that the binding site for Cu2+ is distinct from the coordination sphere of zinc in which the actual interconversion of CO2 and HCO 3 ? and the binding of sulfonamides takes place.  相似文献   

12.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

13.
To achieve sustainable production of biofuel from microalgae, a well-optimized and sustained biomass production is prerequisite. The major factor determining the higher productivity of algae is the availability and uptake of CO2 for biomass growth. In this study, an improved CO2 sequestration method leading to improved biomass yields has been investigated. The ability of OH? ions in fixing dissolved CO2 in form of HCO 3 ? in algal growth medium was studied using a Chlorella sp. and scaled-up in a photobioreactor. It was observed that a critical concentration of 0.005?M OH? is required for HCO 3 ? formation and utilization by algae. HCO 3 ? uptake was enhanced by 70.8% (in presence of 0.01?M NaOH) with a sixfold increase in growth rate compared with only CO2 system. In mineral carbon systems such as NaHCO3 and Na2CO3, increase in HCO 3 ? uptake was enhanced by 65.4% and 63.4%, respectively. The maximum rate of CO2 fixation of 6.6?mg?L?1?h?1 was obtained with 0.01?M NaOH which was 1.5 times compared with mineral carbon sources. The biomass from scale-up experiment contained 16.3% lipid (by weight) of which 75% is unsaturated fatty acids (in total lipids). This supports the idea that fixing the dissolved CO2 in the form of bicarbonate using alkali helps in increased biomass productivity rather than CO2 itself, forms a precursor for biodiesel, and increases CO2 sequestration in a cyclic process.  相似文献   

14.
β-Phenylethylamine (PEA) was characterized as substrate for both type A and type B monoamine oxidase (MAO) in rat brain mitochondria at different substrate concentrations and at different pHs of the reaction media. The experiments on sensitivity to clorygline and deprenyl showed that the inhibition patterns with PEA as substrate differed markedly at different substrate concentrations: at 10 μM, PEA acted as a specific substrate for type B MAO, but at 50–1000 μM it became a common substrate for both types of MAO. The inhibition patterns were also affected markedly by a small change in pH of the reaction medium, especially when PEA concentrations were 50 and 100 μM: the change in pH from 7.2 to 7.8 resulted in the incresse in the proportion of type A MAO by 20–30 per cent. To investigate the mechanisms of such changes in substrate specificity of PEA, kinetic analyses were carried out at pH 7.2 and 7.8 with the uninhibited, the clorgyline-treated (type B) and the deprenyl-treated (type A) enzyme. The Lineweaver-Burk plots for the uninhibited MAO showed strong substrate inhibition for both pHs, which is more marked at pH 7.8 than at pH 7.2. Pretreatment of the enzyme with 10?7 M clorgyline resulted in generally similar Km values for PEA to those of the uninhibited enzyme, and the substrate inhibition at pH 7.8 was also stronger than that at pH 7.2. After pretreatment with 10?7 M deprenyl, the Km values were higher and the Vmax values were lower than those of the uninhibited or the clorgyline-treated enzyme; there was no or only slight substrate inhibition in these curves. These results suggest that the remarkable changes in substrate specificity observed at different PEA concentrations and at different pHs may be due to the strong substrate inhibition of type B MAO.  相似文献   

15.
Protoplasts were prepared from Ulva fasciata Delile, and their photosynthetic performance was measured and compared with that of thalli discs. These protoplasts maintained maximal rates of photosynthesis as high as those of thalli (up to 300 μmol O2·mg chlorophyll?1·h?1) for several hours after preparation and were therefore considered suitable for kinetic studies of inorganic carbon utilization. The photosynthetic K1/2(inorganic carbon) at pH 6.1 was 3.8 μM and increased to 67, 158, and 1410 μM at the pH values 7.0, 7.9, and 8.9, respectively. Compared with these protoplasts, thalli had a much lower affinity for CO2 but approximately the same affinity for HCO3?. Comparisons between rates of photosynthesis and the spontaneous dehydration of HCO3? (at 50 μM inorganic carbon) revealed that photosynthesis of both protoplasts (which lacked apparent activity of extracellular/surface-bound carbonic anhydrase) and thalli (which were only 25% inhibited by the external carbonic anhydrase inhibitor acetazolamide) could not be supported by CO2 formation in the medium at the higher pH values, indicating HCO3? uptake. Since both protoplasts and thalli were sensitive to 4,4′-diisothiocyanostilbene-2,2′-disulfonate, we suggest that HCO3? transport was facilitated by the membrane-located anion exchange protein recently reported to function in certain Ulva thalli. These findings suggest that the presence of a cell wall may constitute a diffusion barrier for CO2, but not for HCO3?, utilization under natural seawater conditions.  相似文献   

16.
Ulva lactuca, collected on the west coast of Sweden at the end of May, was able to utilize the HCO3 ? pool of seawater only through extracellular dehydration via carbonic anhydrase, followed by uptake of the CO2 formed. A decrease in the CO2 supply via this mechanism resulted in the gradual development of an additional method of HCO3 ? utilization, namely a direct uptake of HCO3 ? . Photosynthesis could then be supported by either a ‘HCO3 ? dehydration mechanism’ or a ‘HCO3 ? uptake mechanism’. Through selective inhibition of either of these mechanisms, the physiological properties of the other could be assessed. These properties suggest that the HCO3 ? uptake mechanism of U. lactuca is important under conditions when low concentrations of inorganic C, high pH and high external O2 concentrations would limit photosynthesis supported by the HCO3 ? dehydration mechanism. Such conditions may occur during intense irradiation of the alga in rockpools or in shallow bays with low rates of water exchange. The results are discussed in relation to a possible coupling between mechanisms for inorganic C acquisition and cell structure (or even morphology) of green macroalgae. They also illustrate some necessary precautions when using Michaelis–Menten kinetics for estimations of Vmax and K1/2 values.  相似文献   

17.
Ascidia callosa sperm are triggered to undergo initiation of the sperm reaction (mitochondrial swelling) by increasing the pH or lowering the Na+ concentration of the medium. The optimal [Na+] for acid release is 20 mM with excellent correlation between acid release and initiation of morphological changes. Increasing the [K+] to around 20 mM inhibits acid release when applied up to 1 min after triggering the sperm but with less inhibition at 2 and 4 min, suggesting that K+ inhibits initiation of acid release rather than acid release itself. Acid release and the sperm reaction can also be triggered by Cl?-free (NO?3 or glutamate substituted) seawater (SW). Cl? efflux accompanies H+ efflux with twice as many Cl? being released as H+. Both H+ and Cl? release in Cl?-free SW are dependent upon CO2 being present in HCO?3-free medium, suggesting that H+ efflux is in part Cl? and HCO?3-mediated. However, the chloride channel blocking agent SITS has no effect on H+ release and augments Cl? release. Acid release results in a substantial increase in internal pH as determined by partitioning of 9-amino acridine. We envision acid release from ascidian sperm as involving two systems, the Na+-dependent acidification system of unreacted sperm and the Cl?- and HCO?3-mediated H+ release at activation. The mechanism controlling acid release would then involve inactivation of the internal acidification process and activation of the chloride-bicarbonate-mediated alkalinization process.  相似文献   

18.
In this study, we presented a new approach for quantification of bicarbonate (HCO3?) molecules bound to PSII. Our method, which is based on a combination of membrane-inlet mass spectrometry (MIMS) and 18O-labelling, excludes the possibility of “non-accounted” HCO3? by avoiding (1) the employment of formate for removal of HCO3? from PSII, and (2) the extremely low concentrations of HCO3?/CO2 during online MIMS measurements. By equilibration of PSII sample to ambient CO2 concentration of dissolved CO2/HCO3?, the method ensures that all physiological binding sites are saturated before analysis. With this approach, we determined that in spinach PSII membrane fragments 1.1 ± 0.1 HCO3? are bound per PSII reaction center, while none was bound to isolated PsbO protein. Our present results confirmed that PSII binds one HCO3? molecule as ligand to the non-heme iron of PSII, while unbound HCO3? optimizes the water-splitting reactions by acting as a mobile proton shuttle.  相似文献   

19.
The 16 sulfhydryl groups of native, homogeneous rabbit muscle fructose diphosphatase can all react with 5,5′-dithiobis-(2-nitrobenzoic acid). High concentrations of substrate (1–2 mm) decrease the reaction rate of the sulfhydryl groups, while concentrations up to 70 μm have no effect. After titration of the four most rapidly reacting sulfhydryl groups there is a marked desensitization toward the allosteric inhibitor AMP. In the presence of 30 μm AMP only 4–5 sulfhydryl groups/tetramer react with 5,5′-dithiobis-(2-nitrobenzoic acid), and the enzyme again becomes desensitized toward AMP inhibition. Together with a 3.5-fold increase in the I50 for AMP inhibition, the Km for Mg2+ or Mn2+ ions is also increased. In the presence of 7 mm MgCl2 or 0.28 mm MnCl2 only 6–8 sulfhydryl groups are modified. The rapid reaction of 4 sulfhydryl groups again results in desensitization. There is neither a protection by the substrate against inactivation, nor a protection by the allosteric inhibitor against desensitization. It is concluded that AMP and the divalent cations induce conformational changes in the protein molecule making 11–12 or 8–10 sulfhydryl groups inert for 5,5′-dithiobis-(2-nitrobenzoic acid), respectively. The Km for fructose-1,6-diphosphate is not changed after the modification of 4–5 sulfhydryl groups.  相似文献   

20.
An α-carbonic anhydrase (CA, EC 4.2.1.1) has been recently cloned and characterized in the human pathogenic bacterium Vibrio cholerae, denominated VchCA (Del Prete et al. J. Med. Chem. 2012, 55, 10742). This enzyme shows a good catalytic activity for the CO2 hydration reaction, comparable to that of the human (h) isoform hCA I. Many inorganic anions and several small molecules were investigated as VchCA inhibitors. Inorganic anions such as cyanate, cyanide, hydrogen sulfide, hydrogen sulfite, and trithiocarbonate were effective VchCA inhibitors with inhibition constants in the range of 33–88 μM. Other effective inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KIs of 7–43 μM. Halides (bromide, iodide), bicarbonate and carbonate were much less effective VchCA inhibitors, with KIs in the range of 4.64–28.0 mM. The resistance of VchCA to bicarbonate inhibition may represent an evolutionary adaptation of this enzyme to living in an environment rich in this ion, such as the gastrointestinal tract, as bicarbonate is a virulence enhancer of this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号