首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of neural crest cell migration in the mouse has been difficult due to the lack of reliable cell markers. Recently, we found that injection of DiI into the chick neural tube marks premigratory neural crest cells whose endfeet are in contact with the lumen of the neural tube (Serbedzija et al. Development 106, 809-819 (1989)). In the present study, this technique was applied to study neural crest cell migratory pathways in the trunk of the mouse embryo. Embryos were removed from the mother between the 8th and the 10th days of development and DiI was injected into the lumen of the neural tube. The embryos were then cultured for 12 to 24 h, and analyzed at the level of the forelimb. We observed two predominant pathways of neural crest cell migration: (1) a ventral pathway through the rostral portion of the somite and (2) a dorsolateral pathway between the dermamyotome and the epidermis. Neural crest cells were observed along the dorsolateral pathway throughout the period of migration. The distribution of labelled cells along the ventral pathway suggested that there were two overlapping phases of migration. An early ventrolateral phase began before E9 and ended by E9.5; this pathway consisted of a stream of cells within the rostral sclerotome, adjacent to the dermamyotome, that extended ventrally to the region of the sympathetic ganglia and the dorsal aorta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
The segmental origin and migratory pattern of neural crest cells at the trunk level of avian embryos was studied, with special emphasis on the formation of the dorsal root ganglia (DRG) which organize in the anterior half of each somite. Neural crest cells were visualized using the quail-chick marker and HNK-1 immunofluorescence. The migratory process turned out to be closely correlated with somitic development: when the somites are epithelial in structure few labeled cells were found in a dorsolateral position on the neural tube, uniformly distributed along the craniocaudal axis. Following somitic dissociation into dermomyotome and sclerotome labeled cells follow defined migratory pathways restricted to each anterior somitic half. In contrast, opposite the posterior half of the somites, cells remain grouped in a dorsolateral position on the neural tube. The fate of crest cells originating at the level of the posterior somitic half was investigated by grafting into chick hosts short segments of quail neural primordium, which ended at mid-somitic or at intersomitic levels. It was found that neural crest cells arising opposite the posterior somitic half participate in the formation of the DRG and Schwann cells lining the dorsal and ventral root fibers of the same somitic level as well as of the subsequent one, whereas those cells originating from levels facing the anterior half of a somite participate in the formation of the corresponding DRG. Moreover, crest cells from both segmental halves segregate within each ganglion in a distinct topographical arrangement which reflects their segmental origin on the neural primordium. Labeled cells which relocate from posterior into anterior somitic regions migrate longitudinally along the neural tube. Longitudinal migration of neural crest cells was first observed when the somites are epithelial in structure and is completed after the disappearance of the last cells from the posterior somitic region at a stage corresponding to the organogenesis of the DRG.  相似文献   

4.
Neural crest cell migratory pathways in the trunk of the chick embryo   总被引:14,自引:1,他引:14  
Neural crest cells migrate during embryogenesis to give rise to segmented structures of the vertebrate peripheral nervous system: namely, the dorsal root ganglia and the sympathetic chain. However, neural crest cell arise from the dorsal neural tube where they are apparently unsegmented. It is generally agreed that the somites impose segmentation on migrating crest cells, but there is a disagreement about two basic questions: exactly pathways do neural crest cells use to move through or around somites, and do neural crest cells actively migrate or are they passively dispersed by the movement of somite cells? The answers to both questions are critically important to any further understanding of the mechanisms underlying the precise distribution of the neural crest cells that develop into ganglia. We have done an exhaustive study of the locations of neural crest cells in chick embryos during early stages of their movement, using antibodies to neural crest cells (HNK-1), to neural filament-associated protein in growing nerve processes (E/C8), and to the extracellular matrix molecule laminin. Our results show that Some neural crest cells invade the extracellular space between adjacent somites, but the apparent majority move into the somites themselves along the border between the dermatome/myotome (DM) and the sclerotome. Neural crest cells remain closely associated with the anterior half of the DM of developing somites as they travel, suggesting that the basal lamina of the DM may be used as a migratory substratum. Supporting this idea is our observation that the development of the DM basal lamina coincides in time and location with the onset of crest migration through the somite. The leading front of neural crest cells advance through the somite while the length of the DM pathway remains constant, suggesting active locomotion, at least in this early phase of development. Neural crest cells leave the DM at a later stage of development to associate with the dorsal aorta, where sympathetic ganglia form, and to associate with newly emerging fibers of the ventral root nerve, where they presumably give rise to neuronal supportive cells. Thus we propose that the establishment of the segmental pattern of the peripheral ganglia and nerves depends on the timely development of appropriate substrata to guide and distribute migrating neural crest cells during the early stages of embryogenesis.  相似文献   

5.
We have used the vital dye, DiI, to analyze the contribution of sacral neural crest cells to the enteric nervous system in chick and mouse embryos. In order to label premigratory sacral neural crest cells selectively, DiI was injected into the lumen of the neural tube at the level of the hindlimb. In chick embryos, DiI injections made prior to stage 19 resulted in labelled cells in the gut, which had emerged from the neural tube adjacent to somites 29-37. In mouse embryos, neural crest cells emigrated from the sacral neural tube between E9 and E9.5. In both chick and mouse embryos, DiI-labelled cells were observed in the rostral half of the somitic sclerotome, around the dorsal aorta, in the mesentery surrounding the gut, as well as within the epithelium of the gut. Mouse embryos, however, contained consistently fewer labelled cells than chick embryos. DiI-labelled cells first were observed in the rostral and dorsal portion of the gut. Paralleling the maturation of the embryo, there was a rostral-to-caudal sequence in which neural crest cells populated the gut at the sacral level. In addition, neural crest cells appeared within the gut in a dorsal-to-ventral sequence, suggesting that the cells entered the gut dorsally and moved progressively ventrally. The present results resolve a long-standing discrepancy in the literature by demonstrating that sacral neural crest cells in both the chick and mouse contribute to the enteric nervous system in the postumbilical gut.  相似文献   

6.
Trunk neural crest cells migrate along two major pathways: a ventral pathway through the somites whose cells form neuronal derivatives and dorsolateral pathway underneath the ectoderm whose cells become pigmented. In avian embryos, the latest emigrating neural crest cells move only along the dorsolateral pathway. To test whether late emigrating neural crest cells are more restricted in developmental potential than early migrating cells, cultures were prepared from the neural tubes of embryos at various stages of neural crest cell migration. "Early" and "middle" aged neural crest cells differentiated into many derivatives including pigmented cells, neurofilament-immunoreactive cells, and adrenergic cells. In contrast, "late" neural crest cells differentiated into pigment cells and neurofilament-immunoreactive cells, but not into adrenergic cells even after 10-14 days. To further challenge the developmental potential of early and late emigrating neural crest cells, they were transplanted into embryos during the early phases of neural crest cell migration, known to be permissive for adrenergic neuronal differentiation. The cells were labeled with the vital dye, DiI, and injected onto the ventral pathway at stages 14-17. Two and three days after injection, some early neural crest cells were found to express catecholamines, suggesting they were adrenergic neuroblasts. In contrast, DiI-labeled late neural crest cells never became catecholamine-positive. These results suggest that the late emigrating neural crest cell population has a more restricted developmental potential than the early migrating neural crest cell population.  相似文献   

7.
The expression of tenascin by neural crest cells and glia.   总被引:3,自引:0,他引:3  
The extracellular matrix glycoprotein tenascin is concentrated in both the embryo and adult in regions where cell motility is taking place. For example, during avian neural crest morphogenesis tenascin is concentrated in the rostral half of the sclerotome, precisely where the neural crest cells themselves are found. Previous in vitro studies indicated that somite cells were the source of this tenascin, implying a role for tenascin in directing the ventral migration of neural crest cells and thus the establishment of the periodic arrangement of the PNS. In this study, we have used a cDNA probe to identify the source of tenascin found along the pathways of the neural crest using in situ hybridization. In tissue sections, individual cells found along the neural crest migratory pathways, both before entering the somites and within the somites, are strongly labelled by the tenascin cDNA. In vitro neural crest cells are more strongly labelled with the tenascin probe than somite cells. Finally, western blotting has been used to identify tenascin in culture medium conditioned by neural crest cells. This indicates that neural crest cells themselves are the source of much of the tenascin found lining their migratory pathways, and that interactions with somite cells may not be needed to induce the expression of tenascin. We have also studied the distribution of tenascin mRNA in the developing spinal cord and spinal ganglia. At embryonic days 7 and 10, tenascin cDNA hybridizes within cells that appear to be migrating from the ependymal layer to the white matter, as well as within cells in the dorsal roots.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Avian neural crest cells migrating along the trunk ventral pathway are distributed throughout the rostral half of the sclerotome with the exception of a neural crest cell-free space of approximately 85 microns width surrounding the notochord. To determine if this neural crest cell-free space results from the notochord inhibiting neural crest cell migration, a length of quail notochord was implanted lateral to the neural tube along the neural crest ventral migratory pathway of 2-day chicken embryos. The subsequent distribution of neural crest cells was analyzed in embryos fixed 2 days after grafting. When the donor notochord was isolated using collagenase, neural crest cells avoided the ectopic notochord and were absent from the area immediately surrounding the implant (mean distance of 43 microns). The neural crest cell-free space was significantly less when notochords were isolated using trypsin or chondroitinase digestion and was completely eliminated when notochords were fixed with paraformaldehyde or methanol prior to implantation. The implanted notochords did not appear to affect the overall number of neural crest cells, and therefore were unlikely to exert this effect by altering their viability. These results suggest that the notochord produces a substance that can inhibit neural crest cell migration and that this substance is trypsin and chondroitinase labile.  相似文献   

9.
In this study, we describe the distribution of various classes of proteoglycans and their potential matrix ligand, hyaluronan, during neural crest development in the trunk region of the chicken embryo. Different types of chondroitin and keratan sulfate proteoglycans were recognized using a panel of monoclonal antibodies produced against specific epitopes on their glycosaminoglycan chains. A heparan sulfate proteoglycan was identified by an antibody against its core protein. The distribution of hyaluronan was mapped using a biotinylated fragment that corresponds to the hyaluronan-binding region of cartilage proteoglycans. Four major patterns of proteoglycan immunoreactivity were observed. (1) Chondroitin-6-sulfate-rich proteoglycans and certain keratin sulfate proteoglycans were absent from regions containing migrating neural crest cells, but were present in interstitial matrices and basement membranes along prospective migratory pathways such as the ventral portion of the sclerotome. Although initially distributed uniformly along the rostrocaudal extent of the sclerotome, these proteoglycans became rearranged to the caudal portion of the sclerotome with progressive migration of neural crest cells through the rostral sclerotome and their aggregation into peripheral ganglia. (2) A subset of chondroitin/keratan sulfate proteoglycans bearing primarily unsulfated chondroitin chains was observed exclusively in regions where neural crest cells were absent or delayed from entering, such as the perinotochordal and subepidermal spaces. (3) A subset of chondroitin/keratan sulfate proteoglycans was restricted to the perinotochordal region and, following gangliogenesis, was arranged in a metameric pattern corresponding to the sites where presumptive vertebral arches form. (4) Certain keratan sulfate proteoglycans and a heparan sulfate proteoglycan were observed in basement membranes and in an interstitial matrix uniformly distributed along the rostrocaudal extent of the sclerotome. After gangliogenesis, the neural crest-derived dorsal root and sympathetic ganglia contained both these proteoglycan types, but were essentially free of other chondroitin/keratan-proteoglycan subsets. Hyaluronan generally colocalized with the first set of proteoglycans, but also was concentrated around migrating neural crest cells and was reduced in neural crest-derived ganglia. These observations demonstrate that proteoglycans have diverse and dynamic distributions during times of neural crest development and chondrogenesis of the presumptive vertebrae. In general, chondroitin/keratan sulfate proteoglycans are abundant in regions where neural crest cells are absent, and their segmental distribution inversely correlates with that of neural crest-derived ganglia.  相似文献   

10.
The neural crest is a migratory population of cells that produces many diverse structures within the embryo. Trunk neural crest cells give rise to such structures as the dorsal root ganglia (DRG) and sympathetic ganglia (SG), which form in a metameric pattern along the anterior-posterior axis of the embryo. While static analyses have provided invaluable information concerning the development of these structures, time-lapse imaging of neural crest cells navigating through their normal environment could potentially reveal previously unidentified cellular and molecular interactions integral to DRG and SG development. In this study, we follow fluorescently labeled trunk neural crest cells using a novel sagittal explant and time-lapse confocal microscopy. We show that along their dorsoventral migratory route, trunk neural crest cells are highly motile and interact extensively with neighboring cells and the environment, with many cells migrating in chain-like formations. Surprisingly, the segregated pattern of crest cell streams through the rostral somite is not maintained once these cells arrive alongside the dorsal aorta. Instead, neural crest cells disperse along the ventral outer border of the somite, interacting extensively with each other and their environment via dynamic extension and retraction of filopodia. Discrete sympathetic ganglia arise as a consequence of intermixing and selective reorganization of neural crest cells at the target site. The diverse cell migratory behaviors and active reorganization at the target suggest that cell-cell and cell-environment interactions are coordinated with dynamic molecular processes.  相似文献   

11.
Crest cells individualized at the dorsal border of the neural tube, while they became surrounded by a fibronectin-rich matrix. Crest cells initiated their migration between the basement membranes of the neural tube and the ectoderm. In the vagal region, crest cells migrated in a fibronectin-rich environment between the ectoderm and the dermomyotome, very rapidly reaching the apex of the pharynx. In the trunk region, crest cells opposite the bulk of the somite accumulated at the junction between the somite, the neural tube, and the ectoderm; they resumed their migration at the onset of the dissociation of the somite into dermomyotome and sclerotome. Migration occurred more ventrally along the neural tube; nevertheless, the formation of the rapidly expanding sclerotome prevented crest cells from reaching the paranotochordal region. Thereafter, crest cells accumulated between the neural tube, the dermomyotome, and the sclerotome, where ultimately they formed the dorsal root ganglia. In contrast, cells opposite the intersomitic space did not encounter these obstacles and utilized a narrow pathway formed between the basement membranes of the two adjacent somites. This pathway allowed crest cells to reach the most ventral regions of the embryo very rapidly; they accumulated along the aorta to form the aortic plexuses, the adrenal medulla, and the sympathetic ganglia. The basic features of the migration pathways are (1) a strict delimitation by the fibronectin-rich basement membranes of the surrounding tissues, (2) a formation of space concomitant with the migration of crest cells, (3) a transient existence: continued migration is correlated with the presence of fibronectin, whereas cessation is correlated with its focal disappearance. The crest cells are characterized by their inability to traverse basement membranes and penetrate within tissues. We propose that the combination of active proliferation, unique motility properties, and the presence of narrow pathways are the major mechanisms ensuring correct directionality. Morphologically defined transient routes of migration along with developmentally regulated changes in the extracellular matrix and in the adhesive properties of crest cells are most probably involved in their stabilization in defined territories and their aggregation into ganglia.  相似文献   

12.
13.
A series of microsurgical operations was performed in chick embryos to study the factors that control the polarity, position and differentiation of the sympathetic and dorsal root ganglion cells developing from the neural crest. The neural tube, with or without the notochord, was rotated by 180 degrees dorsoventrally to cause the neural crest cells to emerge ventrally. In some embryos, the notochord was ablated, and in others a second notochord was implanted. Sympathetic differentiation was assessed by catecholamine fluorescence after aldehyde fixation. Neural crest cells emerging from an inverted neural tube migrate in a ventral-to-dorsal direction through the sclerotome, where they become segmented by being restricted to the rostral half of each sclerotome. Both motor axons and neural crest cells avoid the notochord and the extracellular matrix that surrounds it, but motor axons appear also to be attracted to the notochord until they reach its immediate vicinity. The dorsal root ganglia always form adjacent to the neural tube and their dorsoventral orientation follows the direction of migration of the neural crest cells. Differentiation of catecholaminergic cells only occurs near the aorta/mesonephros and in addition requires the proximity of either the ventral neural tube (floor plate/ventral root region) or the notochord. Prior migration of presumptive catecholaminergic cells through the sclerotome, however, is neither required nor sufficient for their adrenergic differentiation.  相似文献   

14.
Little is known about the mechanisms that direct neural crest cells to the appropriate migratory pathways. Our aim was to determine how neural crest cells that are specified as neurons and glial cells only migrate ventrally and are prevented from migrating dorsolaterally into the skin, whereas neural crest cells specified as melanoblasts are directed into the dorsolateral pathway. Eph receptors and their ephrin ligands have been shown to be essential for migration of many cell types during embryonic development. Consequently, we asked if ephrin-B proteins participate in the guidance of melanoblasts along the dorsolateral pathway, and prevent early migratory neural crest cells from invading the dorsolateral pathway. Using Fc fusion proteins, we detected the expression of ephrin-B ligands in the dorsolateral pathway at the stage when neural crest cells are migrating ventrally. Furthermore, we show that ephrins block dorsolateral migration of early-migrating neural crest cells because when we disrupt the Eph-ephrin interactions by addition of soluble ephrin-B ligand to trunk explants, early neural crest cells migrate inappropriately into the dorsolateral pathway. Surprisingly, we discovered the ephrin-B ligands continue to be expressed along the dorsolateral pathway during melanoblast migration. RT-PCR analysis, in situ hybridisation, and cell surface-labelling of neural crest cell cultures demonstrate that melanoblasts express several EphB receptors. In adhesion assays, engagement of ephrin-B ligands to EphB receptors increases melanoblast attachment to fibronectin. Cell migration assays demonstrate that ephrin-B ligands stimulate the migration of melanoblasts. Furthermore, when Eph signalling is disrupted in vivo, melanoblasts are prevented from migrating dorsolaterally, suggesting ephrin-B ligands promote the dorsolateral migration of melanoblasts. Thus, transmembrane ephrins act as bifunctional guidance cues: they first repel early migratory neural crest cells from the dorsolateral path, and then later stimulate the migration of melanoblasts into this pathway. The mechanisms by which ephrins regulate repulsion or attraction in neural crest cells are unknown. One possibility is that the cellular response involves signalling to the actin cytoskeleton, potentially involving the activation of Cdc42/Rac family of GTPases. In support of this hypothesis, we show that adhesion of early migratory cells to an ephrin-B-derivatized substratum results in cell rounding and disruption of the actin cytoskeleton, whereas plating of melanoblasts on an ephrin-B substratum induces the formation of microspikes filled with F-actin.  相似文献   

15.
A sub-population of the neural crest is known to play a crucial role in development of the cardiac outflow tract. Studies in avians have mapped the complete migratory pathways taken by 'cardiac' neural crest cells en route from the neural tube to the developing heart. A cardiac neural crest lineage is also known to exist in mammals, although detailed information on its axial level of origin and migratory pattern are lacking. We used focal cell labelling and orthotopic grafting, followed by whole embryo culture, to determine the spatio-temporal migratory pattern of cardiac neural crest in mouse embryos. Axial levels between the post-otic hindbrain and somite 4 contributed neural crest cells to the heart, with the neural tube opposite somite 2 being the most prolific source. Emigration of cardiac neural crest from the neural tube began at the 7-somite stage, with cells migrating in pathways dorsolateral to the somite, medial to the somite, and between somites. Subsequently, cardiac neural crest cells migrated through the peri-aortic mesenchyme, lateral to the pharynx, through pharyngeal arches 3, 4 and 6, and into the aortic sac. Colonisation of the outflow tract mesenchyme was detected at the 32-somite stage. Embryos homozygous for the Sp2H mutation show delayed onset of cardiac neural crest emigration, although the pathways of subsequent migration resembled wild type. The number of neural crest cells along the cardiac migratory pathway was significantly reduced in Sp2H/Sp2H embryos. To resolve current controversy over the cell autonomy of the splotch cardiac neural crest defect, we performed reciprocal grafts of premigratory neural crest between wild type and splotch embryos. Sp2H/Sp2H cells migrated normally in the +/+ environment, and +/+ cells migrated normally in the Sp2H/Sp2H environment. In contrast, retarded migration along the cardiac route occurred when either Sp2H/+ or Sp2H/Sp2H neural crest cells were grafted into the Sp2H/Sp2H environment. We conclude that the retardation of cardiac neural crest migration in splotch mutant embryos requires the genetic defect in both neural crest cells and their migratory environment.  相似文献   

16.
Trunk neural crest cells follow a common ventral migratory pathway but are distributed into two distinct locations to form discrete sympathetic and dorsal root ganglia along the vertebrate axis. Although fluorescent cell labeling and time‐lapse studies have recorded complex trunk neural crest cell migratory behaviors, the signals that underlie this dynamic patterning remain unclear. The absence of molecular information has led to a number of mechanistic hypotheses for trunk neural crest cell migration. Here, we review recent data in support of three distinct mechanisms of trunk neural crest cell migration and develop and simulate a computational model based on chemotactic signaling. We show that by integrating the timing and spatial location of multiple chemotactic signals, trunk neural crest cells may be accurately positioned into two distinct targets that correspond to the sympathetic and dorsal root ganglia. In doing so, we honor the contributions of Wilhelm His to his identification of the neural crest and extend the observations of His and others to better understand a complex question in neural crest cell biology.  相似文献   

17.
The origin of the turtle plastron is not known, but these nine bones have been homologized to the exoskeletal components of the clavicles, the interclavicular bone, and gastralia. Earlier evidence from our laboratory showed that the bone-forming cells of the plastron were positive for HNK-1 and PDGFRalpha, two markers of the skeletogenic neural crest. This study looks at the embryonic origin of these plastron-forming cells. We show that the HNK-1+ cells are also positive for p75 and FoxD3, confirming their neural crest identity, and that they originate from the dorsal neural tube of stage 17 turtle embryos, several days after the original wave of neural crest cells have migrated and differentiated. DiI studies show that these are migratory cells, and they can be observed in the lateral regions of the embryo and can be seen forming intramembranous bone in the ventral (plastron) regions. Before migrating ventrally, these late-emerging neural crest cells reside for over a week in a carapacial staging area above the neural tube and vertebrae. It is speculated that this staging area is where they lose the inability to form skeletal cells.  相似文献   

18.
Neural crest cells migrate along two pathways in the trunk: the ventral path, between the neural tube and somite, and the dorsolateral path, between the somite and overlying ectoderm. In avian embryos, ventral migration precedes dorsolateral migration by nearly 24 h, and the onset of dorsolateral migration coincides with the cessation of ventral migration. Neural crest cells in the ventral path differentiate predominantly as neurons and glial cells of the peripheral nervous system, whereas those in the dorsolateral path give rise to the melanocytes of the skin. Thus, early- and late-migrating neural crest cells exhibit unique morphogenetic behaviors and give rise to different subsets of neural crest derivatives. Here we present evidence that these differences reflect the appearance of specified melanocyte precursors, or melanoblasts, from late- but not early-migrating neural crest cells. We demonstrate that serum from Smyth line (SL) chickens specifically immunolabels melanocyte precursors, or melanoblasts. Using SL serum as a marker, we first detect melanoblasts immediately dorsal and lateral to the neural tube beginning at stage 18, which is prior to the onset of dorsolateral migration. At later stages every neural crest cell in the dorsolateral path is SL-positive, demonstrating that only melanoblasts migrate dorsolaterally. Thus, melanoblast specification precedes dorsolateral migration, and only melanoblasts migrate dorsolaterally at the thoracic level. Together with previous work (Erickson, C. A., and Goins, T. L.,Development121, 915–924, 1995), these data argue that specification as a melanoblast is a prerequisite for dorsolateral migration. This conclusion suggested that the delay in dorsolateral migration (relative to ventral migration) may reflect a delay in the emigration of melanogenic neural crest cells from the neural tube. Several experiments support this hypothesis. There are no melanoblasts in the ventral path, as revealed by the absence of SL-positive cells in the ventral path, and neural crest cells isolated from the ventral path do not give rise to melanocytes when explanted in culture, suggesting that early, ventrally migrating neural crest cells are limited in their ability to differentiate as melanocytes. Similarly, neural crest cells that emigrate from the neural tubein vitroduring the first 6 h fail to give rise to any melanocytes or SL-positive melanoblasts, whereas neural crest cells that emigrate at progressively later times show a dramatic increase in melanogenesis under identical culture conditions. Thus, the timing of dorsolateral migration at the thoracic level is ultimately controlled by the late emigration of melanogenic neural crest cells from the neural tube.  相似文献   

19.
We have investigated dorsal root ganglion formation, in the avian embryo, as a function of the composition of the paraxial somitic mesoderm. Three or four contiguous young somites were unilaterally removed from chick embryos and replaced by multiple cranial or caudal half-somites from quail embryos. Migration of neural crest cells and formation of DRG were subsequently visualized both by the HNK-1 antibody and the Feulgen nuclear stain. At advanced migratory stages (as defined by Teillet et al. Devl Biol. 120, 329-347 1987), neural crest cells apposed to the dorsolateral faces of the neural tube were distributed in a continuous, nonsegmented pattern that was indistinguishable on unoperated sides and on sides into which either half of the somites had been grafted. In contrast, ventrolaterally, neural crest cells were distributed segmentally close to the neural tube and within the cranial part of each normal sclerotome, whereas they displayed a nonsegmental distribution when the graft involved multiple cranial half-somites or were virtually absent when multiple caudal half-somites had been implanted. In spite of the identical dorsal distribution of neural crest cells in all embryos, profound differences in the size and segmentation of DRG were observed during gangliogenesis (E4-9) according to the type of graft that had been performed. Thus when the implant consisted of compound cranial half-somites, giant, coalesced ganglia developed, encompassing the entire length of the graft. On the other hand, very small, dorsally located ganglia with irregular segmentation were seen at the level corresponding to the graft of multiple caudal half-somites. We conclude that normal morphogenesis of dorsal root ganglia depends upon the craniocaudal integrity of the somites.  相似文献   

20.
We have characterized the dispersion of neural crest cells along the dorsolateral path in the trunk of the chicken embryo and experimentally investigated the control of neural crest cell entry into this path. The distribution of putative neural crest cells was analyzed in plastic sections of embryos that had been incubated for 24 hr in HNK-1 antibody, a procedure that we show successfully labels neural crest cells in the dorsolateral path and ectoderm. In accord with earlier observations, crest cells delay entering the dorsolateral path until a day or more after their counterparts have colonized the ventral path. However, once crest cells enter, they disperse rapidly through the path dorsal to the somite but still delay migrating dorsal to the intersegmental space. During dispersion, crest cells invade the ectoderm at sites associated with local disruptions in the basal lamina which may be caused by crest cells. Finally, deleting the dermamyotome releases an inhibition of neural crest cell migration: crest cells enter the dorsolateral path precociously. We speculate that the epithelial dermatome may transiently produce inhibitory substances and that emerging dermis may provide a long-distance, stimulatory cue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号