首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
福建中部近海浮游动物数量分布与水团变化的关系   总被引:4,自引:0,他引:4  
田丰歌  徐兆礼 《生态学报》2012,32(4):1097-1104
根据2009—2010年在福建中部近海24°55'—25°13'N、119°11'—119°32'E水域冬、春、夏3个季节的调查资料,探讨了该水域浮游动物总丰度与生物量的平面分布、季节变化及其与台湾海峡水团变化的关系。结果表明,调查水域浮游动物的数量在冬、春之交变化较大,而在春、夏季变化较小。浮游动物冬、春两季的平均丰度分别为8.90 个/m3和245.65 个/m3,夏季为236.82 个/m3。冬、春两季,该水域浮游动物的分布特征相近。其数量在近岸较高,向外侧水域逐渐降低。冬季浮游动物的丰度最高为31.56 个/m3,春季最高达到831.67 个/m3。中华哲水蚤(Calanus sinicus)是冬、春季影响总丰度变化最主要的种类。与冬、春季不同,夏季浮游动物的数量在离岸水域较高,丰度最高达1053.13 个/m3,而在近岸较低,最低值仅19.17 个/m3。汉森莹虾(Lucifer hanseni)、双生水母(Diphyes chamissonis)是影响总丰度变化最主要的种类。浮游动物在各季的不同分布特征与台湾海峡的季节性水团变化有关。受季风转换影响,从冬季到夏季,海峡内沿岸流势力逐渐减弱,台湾暖流水势力逐渐增强,并影响到沿岸的水文环境。这导致调查水域内浮游动物的优势种类由暖温种向暖水种演替。由于冬、春季的重要优势种类中华哲水蚤与夏季的汉森莹虾、双生水母具有不同的温度适应性,受不同性质水团的影响,在近岸和离岸水域各自呈现出不同的数量高低。从而进一步影响到各季浮游动物总数量的分布。  相似文献   

2.
黄河口邻近海域浮游动物群落时空变化特征   总被引:6,自引:1,他引:5  
利用2012年12月—2013年9月4个季度的现场调查资料研究了黄河口邻近海域浮游动物群落的时空分布特征。研究表明,黄河口邻近海域共鉴定出浮游动物70种,包括浮游幼虫19类。浮游动物优势种主要由夜光虫(Noctiluca scintillans)、小拟哲水蚤(Paracalanus parvus)、双刺纺锤水蚤(Acartia bifilosa)、拟长腹剑水蚤(Oithona similis)、强额拟哲水蚤(Paracalanus crassirostris)、近缘大眼剑水蚤(Corycaeus affinis)、强壮箭虫(Sagitta crassa)、双壳类幼体(Bivalvia larvae)、多毛类幼体(Polychaeta larvae)等种类。黄河口邻近海域浮游动物丰度夏季最高(60620个/m~3),春季(31228个/m~3)和秋季(21540个/m~3)次之,冬季最低(7594个/m~3)。不同季节浮游动物丰度的空间分布具有差异性,春季浮游动物丰度呈现出从近岸到外海降低的趋势;夏季浮游动物形成两个高丰度区,分别位于河口邻近海区和河口东部海区;秋季和冬季浮游动物丰度高值区均位于河口东部海区。浮游动物生物多样性指数均呈现从河口到外海升高的趋势,低值区位于黄河口入海口附近海区。相关性分析显示,黄河口邻近海域浮游动物丰度与海水温度显著正相关(r=0.212,P0.05),表明温度为影响黄河口邻近海域浮游动物丰度变化的主要因素。  相似文献   

3.
The East China Sea is characterized by a complex hydrographic regime and high biological productivity and diversity. This environmental setting in particular challenged a case study on the use of mesozooplankton community parameters as indicators of water masses. In order to reveal spatial patterns of zooplankton communities during summer, a large scale oceanic transect study was conducted. Two transects were taken in the southwest East China Sea region, covering for the first time the China shelf, slope, and the estuaries of the Yangtze river and of the Minjiang river, the northern Taiwan Strait, and the Kuroshio Current region. A total of 77 copepod species were quantified. Copepod abundance was significantly higher in the estuary of the Yangtze River runoff mixture waters and lowest at the Kuroshio Current Region. The calanoid Parvocalanus crassirostris was the most frequently occurring and abundant species retrieved from 27 samples of a total of 39 samples. The use of multivariate cluster analysis separated the Mainland China Shelf from the northern Taiwan Strait and the Kuroshio Current Region at the first hierarchical level. The use of an indicator value method (IndVal) associated with each cluster of stations revealed characteristic species assemblages. Two hierarchical levels defined 4 assemblages within geographical sectors representing copepod assemblages of the Kuroshio Current Region, of the northern Taiwan Strait and the southern China Shelf near the estuary of the Minjiang River and northern stations near the estuary of the Yangtze River. Overall, there was a strong correspondence between the distribution of certain copepod species and water masses. Differences between the Mainland China shelf, the northern Taiwan Strait and the Kuroshio Current Region were characterized by differences in species composition and abundance. Water mass boundaries in the study area were exclusively indicated by distinct differences in species composition, emphasizing a correlation between copepod communities and water masses of the southwest East China Sea in summer.  相似文献   

4.
Mesozooplankton biomass and abundance were evaluated in epipelagic waters at 59 stations covering the Italian sector of the Ligurian Sea (north-western Mediterranean) in December 1990. This region is characterised by a cyclonic circulation which encloses a central divergence zone and is associated with a main thermohaline front offshore the western Ligurian coast. At the end of autumn, mesozooplankton biomass (range: 0.80–4.24 mg DW m−3) and the abundance (range: 83.8–932 ind. m−3) were lower in the divergence zone. On the contrary, in the Ligurian frontal zone at the periphery of the divergence and on the eastern continental shelf the greatest values of biomass and abundance were recorded. Copepods and appendicularians dominated the mesozooplankton community, the main taxa being the copepods Clausocalanus spp. (46% of total zooplankton) and Oithona spp. (15%) and the appendicularian Fritillaria spp. (12%). Three hydrological sub-regions, i.e. the divergence, the eastern continental shelf and the periphery of the divergence, were characterised by different zooplankton communities and characteristic species. Environmental differences between the three zones were mainly related to changes in bottom topography, sea surface temperatures and quantity of particulate organic matter. Vertical mesozooplankton abundance and taxa distribution from the surface to 1,900 m depth were also examined in one station. The results showed that the bulk of the community was concentrated in the upper 200 m, small copepods being dominant particularly in the upper 50 m. The copepod community was more diversified in sub-superficial waters, with a maximum observed in the 200–400 m layer. The distributions of main zooplankton taxa described in epipelagic waters in the eastern Ligurian Sea in autumn were compared with their distribution at surface in the north-western Mediterranean obtained by sampling performed with the Continuous Plankton Recorder in 1997–1999. The analysis of the zooplankton community in CPR samples confirms the dominance of small copepods (Paracalanus spp., Clausocalanus spp., Oithona spp.) and appendicularians in the north-western Mediterranean in late autumn-winter and shows that their distribution is mainly related to the main mesoscale hydrographic features characterising this basin. Guest editors: S. Souissi & G. A. Boxshall Copepoda in the Mediterranean: Papers from the 9th International Conference on Copepoda, Hammamet, Tunisia  相似文献   

5.
Calanus sinicus is a copepod with wide geographical distributionin the continental shelf waters of China. Its occurrence inoceans around Taiwan and Hong Kong is limited by temperatureto winter and spring. We present evidence to show that C. sinicusis carried into the coastal waters of Taiwan and Hong Kong frompopulation centers in the Yellow Sea and the East China Seaby the China Coastal Current during the northeast monsoon periodin winter.  相似文献   

6.
钦州湾秋季和春季浮游动物分布特征及影响因素   总被引:2,自引:0,他引:2  
庞碧剑  李天深  蓝文陆  黎明民  骆鑫  陈莹 《生态学报》2018,38(17):6204-6216
为了解钦州湾浮游动物群落的时空分布特征及与主要环境因子的关系,于2014年10月和2015年3月进行了秋季和春季两航次的调查。结果表明:该海湾的浮游动物群落有明显的季节变化。秋季共鉴定出12类87种,其中优势种有太平洋纺锤水蚤(Acartia pacifica)、肥胖三角溞(Evadne tergestina)、亨生莹虾(Lucifer hanseni)、百陶箭虫(Sagitta bedoti)和长尾类幼虫(Macrura larvae);春季共鉴定出11类48种,优势种为中华哲水蚤(Calanus sinicus)和太平洋纺锤水蚤;秋季浮游动物的平均丰度、生物量和多样性指数(528.92个/m~3、110.60 mg/m~3和2.22)均高于春季(48.30个/m~3、61.10 mg/m~3和1.70)。空间分布上,钦州湾外湾浮游动物丰度、生物量和多样性指数的平均值皆高于内湾。多维尺度分析表明,秋季内湾群落相似性较高,春季外湾浮游动物群落相似性较高。相关性分析表明盐度与营养盐是影响钦州湾浮游动物分布的主要环境因子。与2011—2012年数据相比,钦州湾浮游动物群落结构已趋于单一化和小型化,以致生物量明显下降。这一现象主要与钦州湾海水富营养化以及大面积高密度牡蛎养殖有密切的关系。  相似文献   

7.
A field sampling was conducted before the onset of the northeasterly monsoon to investigate the copepod community composition during the monsoon transition period at the northern coast of Taiwan (East China Sea). In total, 22 major mesozooplankton taxa were found, with the Calanoida (relative abundance: 66.36%) and Chaetognatha (9.44%) being the most abundant. Mesozooplankton densities ranged between 226.91 and 2162.84 individuals m?3 (mean?±?SD: 744.01?±?631.5 individuals m?3). A total of 49 copepod species were identified, belonging to 4 orders, 19 families, and 30 genera. The most abundant species were: Temora turbinata (23.50%), Undinula vulgaris (17.92%), and Acrocalanus gibber (14.73%). The chaetognath Flaccisagitta enflata occurred at all 8 sampling stations, providing a 95% portion of the overall chaetognath contribution. Amphipoda were abundant at stations 4 and 5, with Hyperioides sibaginis and Lestigonus bengalensis being dominant, and comprising about 50% of all amphipods. Chaetognath abundance showed a significantly negative correlation with salinity (r?=?0.77, p?=?0.027), whereas mesozooplankton group numbers had a significantly positive correlation with salinity (r?=?0.71, p?=?0.048). Densities of four copepod species (Calanus sinicus, Calocalanus pavo, Calanopia elliptica and Labidocera acuta) showed a significantly negative correlation with seawater temperature. Communities of mesozooplankton and copepods of northern Taiwan varied spatially with the distance to land. The results of this study provide evidence for the presence of C. sinicus in the coastal area of northern Taiwan during the early northeast monsoon transition period in September.  相似文献   

8.
The aim of this study was to characterize the grazing link betweenphytoplankton and zooplankton. Quantifying rates of phytoplanktonutilization by micro- and mesozooplankton is an attempt to understandthe control of phytoplankton populations in marine ecosystemsand the export flux of organic matter to the depths. Sampleswere taken in the plume of dilution of the Gironde estuary duringspring (May 1995). The mesozooplankton community was dominatedby the heterotrophic dinoflagellate Noctiluca scintillans andby copepods. Our estimates showed that on average, 26% of thetotal primary production was grazed daily by mesozooplankton.However, the pressure exerted by microzooplankton on the primaryproduction was estimated to be approximately four times higher.As a consequence, during this spring situation in the plumeof dilution of the Gironde estuary when small cells dominated,microzooplankton represented the most important grazing communityand could potentially control the growth of phytoplankton.  相似文献   

9.
We analyse the influence of the Kuroshio Current on copepod assemblages in the northern South China Sea. The assumption was tested whether predominant current regimes bring marine zooplankton and Copepoda from subtropical and tropical waters to the south of Taiwan. A total of 101 copepod species were identified from 26 families and 48 genera that include Calanoida, Cyclopoida, Harpacticoida and Poecilostomatoida. High copepod abundances in the study area are shown to be caused by both, a year-round Kuroshio Current intrusion and the SW monsoon, prevailing in the South China Sea during summer. Calanus sinicus did not appear in the samples, indicating that there was no cold water mass intrusion in the area during sampling. Both, the intrusion of the Kuroshio Branch Current to the Luzon Strait and the South China Sea circulation may play a more important role in shaping copepod assemblages in the region than hitherto expected. The abundance of copepods was higher above the 50 m isoline than at deeper strata. Species number and the Shannon-Wiener diversity index were higher with increasing depth. Copepod assemblage structure changed with different sampling depth and different sampling areas. Copepod abundance and species richness were higher in the northern South China Sea than in the Kuroshio Current area, and higher at lower latitudes than at higher latitudes. Some indicator species are characteristic for the Kuroshio Current and indicate with others that the study area accomodated water masses from the northern South China Sea as well as from the Kuroshio Current.  相似文献   

10.
Surface seawater was collected in four different seasons in the coastal East China Sea adjacent to the Yangtze River Estuary and phytoplankton community diversity was analysed using rbcL genetic markers. Phytoplankton diversity (Shannon Index) was found to be highest in autumn and lowest in summer, which was mainly controlled by seawater temperature, river runoff, the Taiwan Warm Current and possibly other environmental factors. For taxa characterized by Form IAB rbcL, the abundance of Chlorophyta was much greater than those of Proteobacteria and Cyanobacteria throughout the year with the most dominant taxa being Bathycoccus prasinos (Chlorophyta) in spring and Micromonas sp. (Chlorophyta) in other seasons. For taxa identified by Form ID rbcL, Coscinodiscophyceae (diatoms) constituted the largest group (most clones) in the phylogenetic tree. Dinophysis fortii (a dinoflagellate) was found to be the most abundant species in winter and spring and Skeletonema spp. (a diatom) dominated the phytoplankton community in summer and autumn. The seasonal dominance of Dinophysis fortii agreed well with the recently increasing proportion of dinoflagellates in the phytoplankton community in the coastal East China Sea. The abundance of Dinophysis fortii was negatively correlated with seawater temperature, suggesting that harmful algal blooms caused by this species may primarily occur in spring.  相似文献   

11.
长江口及邻近海域浮游动物群落结构及季节变化   总被引:6,自引:0,他引:6  
根据2006—2007年长江口及其邻近海域(29°30'N—32°30'N,120°00'E—127°30'E)150个站位4个季节的调查资料,对长江口海域浮游动物群落结构、种类组成、优势种及其季节变化进行研究。结果表明,长江口及其邻近海域浮游动物群落物种多样性丰富,四季共鉴定浮游动物460种,隶属7个门,246属,此外,另有54类浮游幼体。其中,桡足类是最优势类群,有193种,占41.96%;端足类为第二优势类群,有51种,占11.09%;水螅水母为第三优势类群,有34种,占7.39%。长江口及其邻近海域浮游动物的物种多样性呈现明显季节变化,其特征为:夏季(317种)秋季(309种)春季(230种)冬季(138种)。中华哲水蚤和百陶带箭虫为长江口及其邻近海域的四季优势种。长江口及其邻近海域浮游动物大体可划分为5种生态类群:近岸低盐类群、广温广盐类群、低温高盐类群、高温广盐类群和高温高盐类群。结合同步调查的水文和水化学数据,进行浮游动物群落丰度与环境因子的相关分析表明:盐度是影响长江口及其邻近海域的浮游动物群落丰度的主要环境因子。  相似文献   

12.
三峡三期蓄水后长江口海域浮游动物群落特征及影响因子   总被引:2,自引:0,他引:2  
王丽  王保栋  陈求稳  汤新武  韩瑞 《生态学报》2016,36(9):2505-2512
根据2010年8月、11月以及2011年5月3个航次、各次24个监测点的调查数据,分析了三峡工程三期蓄水后一个水文年内长江口浮游动物优势种、湿重生物量及丰度的变化,并用BIOENV筛选出影响浮游动物分布的关键环境因子。结果表明:长江口浮游动物春季绝对优势种为夜光虫(Noctiluca scientillans)与中华哲水蚤(Calanus sinicus),夏季绝对优势种为太平洋纺锤水蚤(Acartia pacifica steuer),秋季绝对优势种为针刺拟哲水蚤(Paracalanus aculeatus);浮游动物湿重生物量夏季(970.6 mg/m~3)秋季(613.8 mg/m~3)春季(571.5 mg/m~3),丰度夏季(783.5个/m~3)春季(691.3个/m~3)秋季(399.5个/m~3);影响浮游动物分布的关键环境因子为底层盐度、底层温度及底层硅酸盐。  相似文献   

13.
骆鑫  曾江宁  徐晓群  杜萍  廖一波  刘晶晶 《生态学报》2016,36(24):8194-8204
为更好地了解舟山海域浮游动物的群落结构、生物量和丰度的时空分布特征及其与主要环境因子的关系,分别于2014年7月和10月进行了夏季、秋季两次生态综合调查,并用多维尺度分析法、典范对应分析法对浮游动物群落结构进行了研究。结果表明:夏季舟山海域调查的浮游动物有13类,64种,优势种为背针胸刺水蚤(Centropages dorsispinatus)、圆唇角水蚤(Labidocera rotunda)、中华哲水蚤(Calanus sinicus)、精致真刺水蚤(Euchaeta concinna)、百陶带箭虫(Zonosagitta bedoti)和真刺唇角水蚤(Labidocera euchaeta);秋季鉴定到浮游动物12类,45种,优势种为背针胸刺水蚤(Centropages dorsispinatus)、百陶带箭虫(Zonosagitta bedoti)、双生水母(Diphyes chamissonis)、瓜水母(Beroёcucumis)和中华哲水蚤。夏季浮游动物平均丰度及平均生物量(144.0 ind/m3和176.3 mg/m~3)都分别高于秋季(21.4个/m3和86.3 mg/m3);Shannon-Wiener多样性指数夏季(3.03)高于秋季(2.82),Pielou均匀度指数则是秋季(0.83)高于夏季(0.64);夏季不同区域浮游动物群落之间具有明显的差异,而秋季大部分站位群落之间差异不显著;温度、盐度、叶绿素a浓度和营养盐含量是影响舟山海域浮游动物分布的主要环境因子;与历史资料相比,舟山海域浮游动物丰度及生物量呈下降趋势,其优势种保持较稳定。  相似文献   

14.
根据2015—2016年在福建北部近海水域(120.10°E—120.65°E, 26.35°N—27.07°N)夏、秋、冬、春4个季节的海洋生态调查资料, 探讨了该水域浮游动物的数量分布、季节变化及其与水团变化的关系。结果表明, 调查水域浮游动物的平均生物量依次是: 夏季(479.51 mg/m3)>秋季(257.37 mg/m3)>春季(241.86 mg/m3)>冬季(84.05 mg/m3), 平均丰度依次是: 夏季(156.36 ind./m3)>春季(91.57 ind./m3)>秋季(40.34 ind./m3)>冬季(21.82 ind./m3), 生物量和丰度均值都呈现出夏季、秋季到冬季依次减少, 春季增多的趋势, 不同的是秋季生物量均值高于春季, 而丰度均值低于春季。在夏、冬和春三季, 浮游动物的总生物量和总丰度的分布总体较为一致; 而在秋季, 浮游动物的总生物量和总丰度的分布几乎相反。百陶箭虫(Sagitta bedoti)和微剌哲水蚤(Canthocalanus pauper)是影响夏季总丰度分布最主要的种类; 链钟水母(Desmophyes annectens)是影响秋季总丰度分布最主要的种类; 驼背隆哲水蚤(Acrocalanus gibber)、亚强真哲水蚤(Eucalanus subcrassus)和百陶箭虫对冬季总丰度的分布起到了重要影响; 五角水母(Muggiaea atlantica)和微剌哲水蚤是春季占总丰度比例较高的种类。浮游动物数量各季不同分布模式的根本原因是台湾暖流和浙闽沿岸流水团的季节性变化所致。研究结果不仅对了解与评价区域海洋生态系统动态和生物多样性变化具有重要的理论意义, 而且还可以丰富我国近海水域浮游动物的生态特征与水团变化之间的关系。  相似文献   

15.
兴化湾浮游动物群落季节变化和水平分布   总被引:4,自引:0,他引:4  
兴化湾为福建北部最大的海湾,于2006年对该海湾浮游动物群落进行了四季9个站位的调查。共检出浮游动物及幼虫124种,其中春季42种,夏季89种,秋季71种,冬季20种;分属近岸暖温、近岸暖水和广布外海3个生态类群;优势种15种,春季以水母和桡足类占优势,夏季以水母占优势,秋季以水母、桡足类和箭虫占优势,冬季则以桡足类占优势。不同季节兴化湾浮游动物生物量湿重和丰度水平分布特征变化明显,并与温度和盐度呈显著相关。聚类分析显示兴化湾浮游动物群落夏季类群和秋季类群相似度较高;各季节水平分布基本可分为湾口区和湾内区两大类群。与20世纪80年代相比,尽管本次调查浮游动物群落没有表现出显著差异,但随着电厂等大规模工程的投产,兴化湾海域生态系统健康面临着极大威胁,其环境压力需引起持续关注。  相似文献   

16.
Williams  R.  Conway  D. V. P.  Hunt  H. G. 《Hydrobiologia》1994,292(1):521-530
The European shelf seas can be divided into regions which have tidally mixed waters and thermally stratified waters. The tidally mixed near shore environments support zooplankton communities dominated by smaller copepods and having large meroplankton contributions. These small copepods (Centropages spp., Temora spp., Acartia spp., Paral Pseudo/Microcalanus spp.) together with the microzooplankton component form a different and more complex food web than the larger copepod/diatom link associated with thermally stratified waters. The copepods Calanus finmarchicus and C. helgolandicus account for over 90% of the copepod dry weight biomass in stratified waters. Although occurring in lower numbers in mixed waters they can still make significant contributions to the biomass. A 31 year time series from the European shelf shows the inter- and intea-annual variability of these species. The basic biology and food web that these two systems support, and the transfer of energy, can result in marked differences in quantity and quality of particulates available as food for fish larvae. Calanus dominated systems allow the primary production to be directed straight through the trophic food chain (diatoms/Calanus/fish larvae) while the near shore communities of smaller copepods limit the amount of energy being transferred to the higher trophic levels. Eighty-two Longhurst Hardy Plankton Recorder hauls were used as the data base for this study. In all cases the zooplankton was dominated by copepods both in numbers and biomass accounting for > 80% of total zooplankton dry weight in the Irish Sea, Celtic Sea, shelf edge of the Celtic Sea and the northern and southern North Sea in Spring.  相似文献   

17.
Indoor mesocosms were used to study the combined effect of warming and of different densities of overwintering mesozooplankton (mainly copepods) on the spring development of phytoplankton in shallow, coastal waters. Similar to previous studies, warming accelerated the spring phytoplankton peak by ca. 1 day °C?1 whereas zooplankton did not significantly influence timing. Phytoplankton biomass during the experimental period decreased with warming and with higher densities of overwintering zooplankton. Similarly, average cell size and average effective particle size (here: colony size) decreased both with zooplankton density and warming. A decrease in phytoplankton particle size is generally considered at typical footprint of copepod grazing. We conclude that warming induced changes in the magnitude and structure of the phytoplankton spring bloom cannot be understood without considering grazing by overwintering zooplankton.  相似文献   

18.
The investigation of the zooplankton community in the upstream part of Stratos reservoir during a 24 months survey (September 2004–August 2006) revealed 26 invertebrate species (14 rotifers, 6 cladocerans, 5 copepods and one mollusk larva). The mean abundance of the total zooplankton was higher in the first sampling period (2004–2005) and ranged between 8.81 and 47.74 ind. L−1, than the second period (2005–2006) when fluctuated between 1.91 and 43.09 ind. L−1. The seasonal variation was strongly influenced by the presence of rotifers, which accounting on average for 68.4% in total. Among them Keratella cochlearis and the order Bdelloidea were numerically the most important, while Macrocyclops albidus prevailed among the copepods and Bosmina longirostris among the cladocerans. Dreissena polymorpha was the only mollusk found in the zooplankton community. Rotifers, copepods and cladocerans showed a seasonal succession with the former preceding in the abundance having their first maximum in spring, while copepods and cladocerans followed, having peaks of abundance in early summer and in autumn, respectively. No seasonal succession among the cladoceran species was observed. The intense water flow in the upstream part of the reservoir, as well as temperature, conductivity, DO, pH, phosphates and silicates, were significant parameters controlling abiotic and biotic elements of the ecosystem and consequently influencing the seasonal variation and the dynamics of the zooplankton community.  相似文献   

19.
Zooplankton were collected by vertical tows with 102 µm mesh at ten stations in Boston Harbor, Massachusetts Bay and Cape Cod Bay in February, March, April, June, August, and October, 1992. This study was part of a larger monitoring program to assess the effects of a major sewage abatement project, and sampling periods were designed around periods of major phytoplankton events such as the winter-spring diatom bloom, the stratified summer flagellate period, and the autumn transition from stratified to mixed waters. There was considerable seasonal variation in total zooplankton abundance, with minimal values in April (1929–11631 animals m–3) during a massive bloom of Phaeocystis pouchetii, and maximum values (67 316–261075 animals m–3) in August. There were no consistent trends of total abundance where any particular station had greater or lesser abundance than others over the entire year. Zooplankton abundance was dominated by copepods (adults + copepodites) and copepod nauplii (30.4–100.0% of total zooplankton, mean= 83.2%). Despite the large seasonal variation in zooplankton and copepod abundance, the copepod assemblage was dominated throughout the entire year by the small copepod Oithona similis, followed by Paracalanus parvus. Other less-abundant copepods present year-round were Pseudocalanus newmani, Temora longicornis, Centropages hamatus, C. typicus, and Calanus finmarchicus. Two species of Acartia were present, primarily in low-salinity waters of Boston Harbor: A. hudsonica during cold periods, and A. tonsa in warm ones. Eurytemora herdmani was also a subdominant in Boston Harbor in October. The potential role of zooplankton grazing in phytoplankton dynamics and bloom cycles in these waters must be considered in view of the overwhelming numerical dominance of the zooplankton by Oithona similis which may feed primarily as a carnivore. Furthermore, it seems unlikely that eutrophication-induced alteration of phytoplankton assemblages could cause significant trophic domino effects, reducing abundances of Calanus finmarchicus that are forage of endangered right whales seasonally utilizing Cape Cod Bay because C. finmarchicus has long been known to be a relatively unselective grazer, and most importantly, it is a trivial component of total zooplankton or total copepod abundance in these waters.  相似文献   

20.
Cercopagis pengoi, a recent invader to the Baltic Sea and the Laurentian Great Lakes, is a potential competitor with fish for zooplankton prey. We used stable C and N isotope ratios to elucidate trophic relationships between C. pengoi, zooplankton (microzooplankton, 90–200 m, mostly copepod nauplii and rotifers; mesozooplankton, >200 m, mostly copepods), and zooplanktivorous fish (herring, size range 5–15 cm and sprat, 9–11 cm) in a coastal area of the northern Baltic Sea. The isotope ratios in C. pengoi and fish were much higher than those of zooplankton, showing general trends of enrichment with trophic level. Young-of-the-year (YOY) herring had a significantly higher 15N/14N ratio than C. pengoi, suggesting of a trophic linkage between the two species. To evaluate the possible relative importance of different food sources for C. pengoi and YOY herring, two-source isotope-mixing models for N were used, with micro- and mesozooplankton as prey for C. pengoi and mesozooplankton and C. pengoi as prey for YOY herring. These models indicate that mesozooplankton was the major food source of both species. However, microzooplankton may be important prey for young stages of C. pengoi. Comparative analyses of the herring trophic position before and after the invasion by C. pengoi showed a trophic level shift from 2.6 to 3.4, indicating substantial alterations in the food web structure. Our findings contribute to a growing body of evidence, showing that C. pengoi can modify food webs and trophic interactions in invaded ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号