首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor-beta (TGF-beta) is a potent inducer of collagenase-3 (MMP-13) gene expression in human gingival fibroblasts, and this requires activation of the p38 mitogen-activated protein kinase pathway. Here, we have constructed recombinant adenoviruses harboring genes for hemagglutinin-tagged Smad2, Smad3, and Smad4 and used these in dissecting the role of Smads, the signaling mediators of TGF-beta, in regulation of endogenous MMP-13 gene expression in human gingival fibroblasts. Adenoviral expression of Smad3, but not Smad2, augmented the TGF-beta-elicited induction of MMP-13 expression. In addition, adenoviral gene delivery of dominant negative Smad3 blocked the TGF-beta-induced MMP-13 expression in gingival fibroblasts. Co-expression of Smad3 with constitutively active MKK3b and MKK6b, the upstream activators of p38, resulted in nuclear translocation of Smad3 in the absence of TGF-beta and in induction of MMP-13 expression. The induction of MMP-13 expression by Smad3 and constitutively active mutants of MKK3b or MKK6b was blocked by specific p38 inhibitor SB203580 and by the dominant negative form of p38alpha. These results show that TGF-beta-induced expression of human MMP-13 gene in gingival fibroblasts is dependent on the activation of two distinct signaling pathways (i.e. Smad3 and p38alpha). In addition, these findings provide evidence for a novel type of cross-talk between Smad and p38 mitogen-activated protein kinase signaling cascades, which involves activation of Smad3 by p38alpha.  相似文献   

2.
3.
Degradation of collagenous extracellular matrix by collagenase 1 (also known as matrix metalloproteinase 1 [MMP-1]) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, chronic ulcers, and tumor invasion and metastasis. Here, we have investigated the role of distinct mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-1 gene expression. The activation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (designated ERK1,2) pathway by oncogenic Ras, constitutively active Raf-1, or phorbol ester resulted in potent stimulation of MMP-1 promoter activity and mRNA expression. In contrast, activation of stress-activated c-Jun N-terminal kinase and p38 pathways by expression of constitutively active mutants of Rac, transforming growth factor beta-activated kinase 1 (TAK1), MAPK kinase 3 (MKK3), or MKK6 or by treatment with arsenite or anisomycin did not alone markedly enhance MMP-1 promoter activity. Constitutively active MKK6 augmented Raf-1-mediated activation of the MMP-1 promoter, whereas active mutants of TAK1 and MKK3b potently inhibited the stimulatory effect of Raf-1. Activation of p38 MAPK by arsenite also potently abrogated stimulation of MMP-1 gene expression by constitutively active Ras and Raf-1 and by phorbol ester. Specific activation of p38alpha by adenovirus-delivered constitutively active MKK3b resulted in potent inhibition of the activity of ERK1,2 and its upstream activator MEK1,2. Furthermore, arsenite prevented phorbol ester-induced phosphorylation of ERK1,2 kinase-MEK1,2, and this effect was dependent on p38-mediated activation of protein phosphatase 1 (PP1) and PP2A. These results provide evidence that activation of signaling cascade MKK3-MKK3b-->p38alpha blocks the ERK1,2 pathway at the level of MEK1,2 via PP1-PP2A and inhibits the activation of MMP-1 gene expression.  相似文献   

4.
Treatment with the lipid second messenger, ceramide, activates extracellular signal-regulated kinase-1/2 (ERK1/2), c-Jun N-terminal kinase, and p38 in human skin fibroblasts and induces their collagenase-1 expression (Reunanen, N., Westermarck, J., H?kkinen, L., Holmstr?m, T. H., Elo, I., Eriksson, J. E., and K?h?ri, V.-M. (1998) J. Biol. Chem. 273, 5137-5145). Here we show that C(2)-ceramide inhibits expression of type I and III collagen mRNAs in dermal fibroblasts, suppresses proalpha2(I) collagen promoter activity, and reduces stability of type I collagen mRNAs. The down-regulatory effect of C(2)-ceramide on type I collagen mRNA levels was abrogated by protein kinase C inhibitors H7, staurosporine, and Ro-31-8220 and potently inhibited by a combination of MEK1,2 inhibitor PD98059 and p38 inhibitor SB203580. Activation of ERK1/2 by adenovirus-mediated expression of constitutively active MEK1 resulted in marked down-regulation of type I collagen mRNA levels and production in fibroblasts, whereas activation of p38 by constitutively active MAPK kinase-3b and MAPK kinase-6b slightly up-regulated type I collagen expression. These results identify the ERK1/2 signaling cascade as a potent negative regulatory pathway with respect to type I collagen expression in fibroblasts, suggesting that it mediates inhibition of collagen production in response to mitogenic stimulation and transformation.  相似文献   

5.
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.  相似文献   

6.
7.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix (ECM) synthesis that leads to renal fibrosis. Intracellular signaling mechanisms involved in this process remain incompletely understood. Mitogen-activated protein kinase (MAPK) is a major stress signal-transducing pathway, and we have previously reported activation of p38 MAPK by TGF-beta1 in rat mesangial cells and its role in the stimulation of pro-alpha1(I) collagen. In this study, we further investigated the mechanism of p38 MAPK activation by TGF-beta1 and the role of MKK3, an upstream MAPK kinase of p38 MAPK, by examining the effect of targeted disruption of the Mkk3 gene. We first isolated glomerular mesangial cells from MKK3-null (Mkk3-/-) and wild-type (Mkk3+/+) control mice. Treatment with TGF-beta1 induced rapid phosphorylation of MKK3 as well as p38 MAPK within 15 min in cultured wild-type (Mkk3+/+) mouse mesangial cells. In contrast, TGF-beta1 failed to induce phosphorylation of either MKK3 or p38 MAPK in MKK3-deficient (Mkk3-/-) mouse mesangial cells, indicating that MKK3 is required for TGF-beta1-induced p38 MAPK activation. TGF-beta1 selectively activated the p38 MAPK isoforms p38alpha and p38delta in wild-type (Mkk3+/+) mesangial cells, but not in MKK3-deficient (Mkk3-/-) mesangial cells. Thus, activation of p38alpha and p38delta is dependent on the activation of upstream MKK3 by TGF-beta1. Furthermore, MKK3 deficiency resulted in a selective disruption of TGF-beta1-stimulated up-regulation of pro-alpha1(I) collagen expression but not TGF-beta1 induction of fibronectin and PAI-1. These data demonstrate that the MKK3 is a critical component of the TGF-beta1 signaling pathway, and its activation is required for subsequent p38alpha and p38delta MAPK activation and collagen stimulation by TGF-beta1.  相似文献   

8.
9.
10.
Collagenase-1 is a protease expressed by active fibroblasts that is involved in remodeling of the extracellular matrix (ECM). In this study, we characterize the intracellular signaling mechanism of collagenase-1 production by IL-1alpha in subcultured normal fibroblasts (NF) from uninjured normal corneas, compared to that in repair wound fibroblasts (WF). In NF, collagenase-1 was induced specifically after the exogenous addition of IL-1alpha via activation of ERK and p38MAPK. Collagenase-1 expression was strongly suppressed upon treatment with either a MEK or p38MAPK inhibitor. In contrast, repair WF constitutively synthesized both IL-1alpha and collagenase-1. Combined treatment with both mitogen-activated protein kinase (MAPK) inhibitors dramatically reduced collagenase-1 synthesis, while individual MEK1 or p38 inhibitors weakly modulated the collagenase-1 level. The results indicate that both pathways are crucial in the regulation of collagenase-1 synthesis. Furthermore, an IL-1alpha receptor antagonist (IL-1ra) could not abolish constitutive collagenase-1 synthesis, even at high doses, suggesting that other cytokines/factors are additionally involved in this process. We propose that induction of collagenase-1 by IL-1alpha in both WF and NF depends on a unique combination of cell type-specific signaling pathways.  相似文献   

11.
Matrix metalloproteinases (MMPs) play an important role in the invasive behavior of a number of cancers including oral squamous cell cancer (OSCC), and increased expression of MMP-9 is correlated with invasive and metastatic OSCC. Because calcium is an important regulator of keratinocyte function, the effect of modulating extracellular calcium on MMP-9 expression in OSCC cell lines was evaluated. Increasing extracellular calcium induced a dose-dependent increase in MMP-9 expression in immortalized normal and premalignant oral keratinocytes, but not in two highly invasive OSCC cell lines. Differential activation of MAPK signaling was also induced by calcium. p38 MAPK activity was down-regulated, whereas ERK1/2 activity was enhanced. Pharmacologic inhibition of p38 MAPK activity or expression of a catalytically inactive mutant of the upstream kinase MAPK kinase 3 (MKK3) increased the calcium induced MMP-9 gene expression, demonstrating that p38 MAPK activity negatively regulated this process. Interestingly blocking p38 MAPK activity enhanced ERK1/2 phosphorylation, suggesting reciprocal regulation between the ERK1/2 and p38 MAPK pathways. Together these data support a model wherein calcium-induced MMP-9 expression is differentially regulated by the ERK1/2 and p38 MAPK pathways in oral keratinocytes, and the data suggest that a loss of this regulatory mechanism accompanies malignant transformation of the oral epithelium.  相似文献   

12.
Transforming growth factor-beta (TGF-beta) plays a pivotal role in the extracellular matrix accumulation observed in chronic progressive tissue fibrosis, but the intracellular signaling mechanism by which TGF-beta stimulates this process remains poorly understood. We examined whether mitogen-activated protein kinase (MAPK) routes were involved in TGF-beta1-induced collagen expression in L(6)E(9) myoblasts. TGF-beta1 induced p38 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation whereas no effect on Jun N-terminal kinase phosphorylation was observed. Biochemical blockade of p38 but not of the ERK MAPK pathway abolished TGF-beta1-induced alpha(2)(I) collagen mRNA expression and accumulation. These data indicate that TGF-beta1-induced p38 activation is involved in TGF-beta1-stimulated collagen synthesis.  相似文献   

13.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix synthesis leading to progressive glomerular fibrosis. The intracellular signaling mechanisms involved in this process remain incompletely understood. The p38 mitogen-activated protein kinase (MAPK) is a major stress signal transducing pathway that is rapidly activated by TGF-beta1 in mesangial cells. We have previously demonstrated MKK3 as the immediate upstream MAPK kinase required for selective activation of p38 MAPK isoforms, p38alpha and p38delta, and stimulation of pro-alpha1(I) collagen by TGF-beta1 in murine mesangial cells. In this study, we further sought to determine MAPK kinase 3 (MKK3)-dependent TGF-beta1 responses by gene expression profiling analysis utilizing mesangial cells isolated from Mkk3-/- mice compared with Mkk3+/+ controls. Interestingly, vascular endothelial growth factor (VEGF) was identified as a TGF-beta1-induced gene affected by deletion of Mkk3. VEGF is a well known endothelial mitogen, whose actions in nonendothelial cell types are still not well understood. We confirmed that TGF-beta1 increased VEGF mRNA and protein synthesis of VEGF164 and VEGF188 isoforms in wild-type mesangial cells. However, in the Mkk3-/- mesangial cells, both TGF-beta1-induced VEGF mRNA and VEGF164 protein expression were inhibited, whereas TGF-beta1-induced VEGF188 protein expression was unaffected. Furthermore, transfection of dominant negative mutants of p38alpha and p38delta resulted in marked inhibition of TGF-beta1-induced VEGF164 expression but not VEGF188, and treatment with recombinant mouse VEGF164 increased collagen and fibronectin mRNA expression in mesangial cells. Taken together, our findings suggest a critical role for the MKK3-p38alpha and p38delta MAPK pathway in mediating VEGF164 isoform-specific stimulation by TGF-beta1 in mesangial cells. Further, VEGF164 stimulates collagen and fibronectin expression in mesangial cells and thus in turn enhances TGF-beta1-induced extracellular matrix and may play an important role in progressive glomerular fibrosis.  相似文献   

14.
We reported previously that down-regulating or functionally blocking alphav integrins inhibits endogenous p38 mitogen-activated protein kinase (MAPK) activity and urokinase plasminogen activator (uPA) expression in invasive MDA-MB-231 breast cancer cells whereas engaging alphav integrins with vitronectin activates p38 MAPK and up-regulates uPA expression (Chen, J., Baskerville, C., Han, Q., Pan, Z., and Huang, S. (2001) J. Biol. Chem. 276, 47901-47905). Currently, it is not clear what upstream and downstream signaling molecules of p38 MAPK mediate alphav integrin-mediated uPA up-regulation. In the present study, we found that alphav integrin ligation activated small GTPase Rac1 preferentially, and dominant negative Rac1 inhibited alphav integrin-mediated p38 MAPK activation. Using constitutively active MAPK kinases, we found that both constitutively active MKK3 and MKK6 mutants were able to activate p38 MAPK and up-regulate uPA expression, but only dominant negative MKK3 blocked alphav integrin-mediated p38 MAPK activation and uPA up-regulation. These results suggest that MKK3, rather than MKK6, mediates alphav integrin-induced p38 MAPK activation. Among the potential downstream effectors of p38 MAPK, we found that only MAPK-activated protein kinase 2 affects alphav integrin-mediated uPA up-regulation significantly. Finally, using beta-globin reporter gene constructs containing uPA mRNA 3'-untranslated region (UTR) and adenosine/uridine-rich elements-deleted 3'-UTR, we demonstrated that p38 MAPK/MAPK-activated protein kinase 2 signaling pathway regulated uPA mRNA stability through a mechanism involving the adenosine/uridine-rich elements sequence in 3'-UTR of uPA mRNA.  相似文献   

15.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

16.
17.
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest.  相似文献   

18.
Matrix metalloproteinase-1 (MMP-1) plays an important role in the degradation of collagen in inflammatory diseases. The aim of this study was to investigate the cellular expression of MMP-1 and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), in gingival fibroblasts co-cultured with monocytes and the possible mediating role of intercellular adhesion molecule-1 (ICAM-1). In co-cultures, the expression of MMP-1 and TIMP-1 increased in fibroblasts, but not in monocytes, although the number of MMP-1+ and TIMP-1+ adhered monocytes increased. Moreover, ICAM-1 expression in both fibroblasts and adhered monocytes increased. In the presence of an anti-ICAM-1 antibody, the expression of MMP-1 in fibroblasts decreased whereas the number of TIMP-1+ adhered monocytes increased. The p38 MAPK inhibitor SB203580 reduced MMP-1 expression in fibroblasts, as well as ICAM-1 expression in both fibroblasts and adhered monocytes. The results suggest that co-culture with monocytes enhances cellular expression of MMP-1 and TIMP-1 in gingival fibroblasts, and that the increased MMP-1 expression, in contrast to TIMP-1, is partly mediated by the adhesion molecule ICAM-1 and the p38 MAPK signal pathway.  相似文献   

19.
BACKGROUND/AIMS: Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in the extracellular matrix accumulation observed in fibrotic diseases. Endoglin is an important component of the TGF-beta receptor complex highly expressed in tissues undergoing fibrotic processes. Endoglin expression regulates the effect of TGF-beta on extracellular matrix synthesis. The purpose of our study has been to understand the molecular mechanism by which endoglin exerts its effects on fibrosis and the possible role of MAP kinases in these effects. METHODS: We have assessed in mock and in endoglin-transfected L6E9 myoblasts the effect of TGF-beta1 on collagen mRNA by Northern blot and effect of TGF-beta1 on collagen content in the cultured medium by [(3)H]-Proline incorporation into collagen proteins. Total and activated MAPK and their role on collagen synthesis were assessed by Western blot. RESULTS: TGF-beta1 induced an increase on alpha(2) (I) collagen mRNA expression and collagen accumulation in mock-transfected myoblasts, whereas the response was much lower in endoglintransfected cells. TGF-beta1 activated the ERK1/2 and p38 MAPK pathways but not the JNK pathway in L6E9 myoblasts. TGF-beta1-induced alpha(2) (I) collagen mRNA expression and collagen accumulation were completely inhibited by SB203580, in either mock or endoglintransfected myoblasts. PD98059 increased TGF-beta1 induced-collagen synthesis and accumulation in endoglin-transfected myoblasts but not in mock cells. CONCLUSION: Our studies demonstrate that TGF-beta1- induced collagen synthesis is mediated by p38 MAPK activation in L6E9 myoblasts. Furthermore, endoglin expression reduces basal and TGF-beta1 induced collagen synthesis when ERK1/2 pathway is operating.  相似文献   

20.
Indian hedgehog (Ihh) is produced by growth plate pre-hypertrophic chondrocytes, and is an important regulator of endochondral ossification. However, little is known about the regulation of Ihh in chondrocytes. We have examined the role of integrins and mitogen-activated protein (MAP) kinases in Ihh mRNA regulation in CFK-2 chondrocytic cells. Cells incubated with the beta1-integrin blocking antibody had decreased Ihh mRNA levels, which was accompanied by decreases of activated extracellular signal-regulated kinases (ERK1/2) and activated p38 MAPK. Ihh mRNA levels were also inhibited by U0126, a specific MEK1/2 inhibitor, or SB203580, a specific p38 MAPK inhibitor. Cells transfected with constitutively active MEK1 or MKK3 had increased Ihh mRNA levels, which were diminished by dominant-negative MEK1, p38alpha or p38beta. Stimulation of the PTH1R with 10(-8) M rPTH (1-34) resulted in dephosphorylation of ERK1/2 that was evident within 15 min and sustained for 1 h, as well as transient dephosphorylation of p38 MAPK that was maximal after 25 min. PTH stimulation decreased Ihh mRNA levels, and this effect was blocked by transfecting the cells with constitutively active MEK1 but not by MKK3. These studies demonstrated that activation of ERK1/2 or p38 MAPK increased Ihh mRNA levels. Stimulation of the PTH1R or blocking of beta1-integrin resulted in inhibition of ERK1/2 and p38 MAPK and decreased levels of Ihh mRNA. Our data demonstrate the central role of MAPK in the regulation of Ihh in CFK-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号