首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This work describes the first automated solid-phase synthesis of metal derivatives of peptide nucleic acid (PNA) oligomers and their interaction with DNA and PNA. PNA constitutes a relatively young and very promising class of DNA analogues with excellent DNA and RNA binding properties. However, PNA lacks a suitable handle that would permit its sensitive detection on its own as well as when hybridized with complementary oligonucleotides. Metal complexes, on the other hand, offer high potential as markers for biomolecules. In this paper, we describe the synthesis of PNA heptamers (tggatcg-gly, where gly is a C-terminal glycine carboxylic acid amide) with two covalently attached metal complexes at the PNA N-terminus, namely a ferrocene carboxylic acid derivative and a tris(bipyridine)ruthenium(II) derivative. We show how all synthesis steps may be carried out with high yield on a DNA synthesizer, including attachment of the metal complexes. The conjugates were characterized by HPLC (>90% purity) and ESI-MS. Binding studies of the purified Ru-PNA heptamer to complementary DNA and PNA and comparison to the isosequential metal-free acetyl PNA heptamer proves that the attached metal complex has an influence on the stability (UV-T(m)) and structure (CD spectroscopy) of the conjugates, possibly by disruption of the nearby A:T base pair.  相似文献   

2.
The peanut lectin-binding glycoproteins of human epidermal keratinocytes   总被引:3,自引:0,他引:3  
Peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes, both in intact epidermis and in culture. In order to investigate the significance of this change in cell-surface carbohydrate we have identified the PNA-binding glycoproteins of cultured human keratinocytes and raised antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of [14C]galactose- or [14C]mannose- and [14C]glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to Pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium (0.1 mM calcium ions) were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification.  相似文献   

3.
We have optimized a method involving continuous solid phase synthesis of chelator-peptide-PNA-peptide probes in order to noninvasively image oncogene mRNAs overexpressed in tumors. The PNA (peptide nucleic acid) probes carry cyclized peptide ligand analogs specific for receptors overexpressed on malignant breast or colorectal cancer cells, and chelators to bind radioactive metal ions, or a fluorophore. In vivo scintigraphic imaging of MCF7 xenografts in immunocompromised mice indicated that CCND1 and MYC [99sTc] chelator-PNA-D (CSKC) probes concentrated in MCF7 cells up to 7 times more than the corresponding mismatch controls.  相似文献   

4.
A peptide nucleic acid (PNA) oligomer and a series of PNA conjugates featuring covalently attached pendant 1,4,7,10-tetraazacyclododecane (cyclen) or bis((pyridin-2-yl)methyl)amine (DPA) moieties have been synthesized that are complementary to regions of the HIV-1 TAR messenger RNA stem-loop. Thermal denaturation studies, in conjunction win with native gel shift assays, suggest that the PNAs “invade” TAR to produce a mixture of two 1:1 PNA–TAR adducts, tentatively assigned as an “open-duplex” structure, in which the TAR stem-loop dissociates and the PNA hybridizes with its RNA complement via Watson–Crick base-pairing, and a triplex-type structure, in which the initially displaced RNA segment is bound to the PNA:RNA duplex through Hoogsteen base-pairing. Thermal denaturation experiments with the TAR sequence and single-stranded RNA and DNA oligonucleotides, both in the presence and in the absence of Zn2+ ions, show that the introduction of cyclen or DPA ligand arms into the PNA oligomer leads to a small but reproducible increase in the T m values. This is attributed to hydrogen-bonding and/or electrostatic interactions between protonated forms of cyclen/DPA and the cognate RNA or DNA oligonucleotide targets. Contrary to expectations, the addition of Zn2+ ions did not further enhance duplex formation through binding of Zn(II)–cyclen or Zn(II)–DPA moieties to the complementary RNA or DNA. Native gel shift assays further confirmed the stability increase of the metal-free cyclen- and DPA-modified PNA hybrids as compared with a control PNA sequence. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
We have optimized a method involving continuous solid phase synthesis of chelator-peptide-PNA-peptide probes in order to noninvasively image oncogene mRNAs overexpressed in tumors. The PNA (peptide nucleic acid) probes carry cyclized peptide ligand analogs specific for receptors overexpressed on malignant breast or colorectal cancer cells, and chelators to bind radioactive metal ions, or a fluorophore. In vivo scintigraphic imaging of MCF7 xenografts in immunocompromised mice indicated that CCND1 and MYC [99mTc]chelator-PNA-D(CSKC) probes concentrated in MCF7 cells up to 7 times more than the corresponding mismatch controls.  相似文献   

6.
We explored bacterial RNase P as a drug target using antisense oligomers against the P15 loop region of Escherichia coli RNase P RNA. An RNA 14-mer, or locked nucleic acid (LNA) and peptide nucleic acid (PNA) versions thereof, disrupted local secondary structure in the catalytic core, forming hybrid duplexes over their entire length. Binding of the PNA and LNA 14-mers to RNase P RNA in vitro was essentially irreversible and even resisted denaturing PAGE. Association rates for the RNA, LNA, and PNA 14-mers were approximately 10(5) m(-1) s(-1) with a rate advantage for PNA and were thus rather fast despite the need to disrupt local structure. Conjugates in which the PNA 14-mer was coupled to an invasive peptide via a novel monoglycine linker showed RNase P RNA-specific growth inhibition of E. coli cells. Cell growth could be rescued when expressing a second bacterial RNase P RNA with an unrelated sequence in the target region. We report here for the first time specific and growth-inhibitory drug targeting of RNase P in live bacteria. This is also the first example of a duplex-forming oligomer that invades a structured catalytic RNA and inactivates the RNA by (i) trapping it in a state in which the catalytic core is partially unfolded, (ii) sterically interfering with substrate binding, and (iii) perturbing the coordination of catalytically relevant Mg2+ ions.  相似文献   

7.
Invasion of two PNA strands to double-stranded DNA is one of the most promising methods to recognize a predetermined site in double-stranded DNA (PNA = peptide nucleic acid). In order to facilitate this 'double-duplex invasion', a new type of PNA was prepared by using chiral PNA monomers in which a nucleobase was bound to the alpha-nitrogen of N-(2-aminoethyl)-d-lysine. These positively charged monomer units, introduced to defined positions in Nielsen's PNAs (poly[N-(2-aminoethyl)glycine] derivatives), promoted the invasion without impairing mismatch-recognizing activity. When pseudo-complementary nucleobases 2,6-diaminopurine and 2-thiouracil were bound to N-(2-aminoethyl)-d-lysine, the invasion successfully occurred even at highly G-C-rich regions [e.g. (G/C)7(A/T)3 and (G/C)8(A/T)2] which were otherwise hardly targeted. Thus, the scope of sequences available as the target site has been greatly expanded. In contrast with the promotion by the chiral PNA monomers derived from N-(2-aminoethyl)-d-lysine, their l-isomers hardly invaded, showing crucial importance of the d-chirality. The promotion of double-duplex invasion by the chiral (d) PNA monomer units was ascribed to both destabilization of PNA/PNA duplex and stabilization of PNA/DNA duplexes.  相似文献   

8.
Wrzesinski J  Ciesiolka J 《Biochemistry》2005,44(16):6257-6268
Studies on RNA motifs capable of binding metal ions have largely focused on Mg(2+)-specific motifs, therefore information concerning interactions of other metal ions with RNA is still very limited. Application of the in vitro selection approach allowed us to isolate two RNA aptamers that bind Co(2+) ions. Structural analysis of their secondary structures revealed the presence of two motifs, loop E and "kissing" loop complex, commonly occurring in RNA molecules. The Co(2+)-induced cleavage method was used for identification of Co(2+)-binding sites after the determination of the optimal cleavage conditions. In the aptamers, Co(2+) ions seem to bind to N7 atoms of purines, inducing cleavage of the adjacent phosphodiester bonds, similarly as is the case with yeast tRNA(Phe). Although the in vitro selection experiment was carried out in the presence of Co(2+) ions only, the aptamers displayed broader metal ions specificity. This was shown by inhibition of Co(2+)-induced cleavages in the presence of the following transition metal ions: Zn(2+), Cd(2+), Ni(2+), and Co(NH(3))(6)(3+) complex. On the other hand, alkaline metal ions such as Mg(2+), Ca(2+), Sr(2+), and Ba(2+) affected Co(2+)-induced cleavages only slightly. Multiple metal ions specificity of Co(2+)-binding sites has also been reported for other in vitro selected or natural RNAs. Among many factors that influence metal specificity of the Co(2+)-binding pocket, chemical properties of metal ions, such as their hardness as well as the structure of the coordination site, seem to be particularly important.  相似文献   

9.
In order to study the possibility of using titanium dioxide (TiO2) nanoparticles to deliver peptide nucleic acids (PNA) in eukaryotic cells, a PNA oligomer was synthesized, and a method of PNA immobilization in the form of hybrid DNA/PNA duplexes on the surface of TiO2 nanoparticles covered with polylysine (PL) was developed. The attachment of a DNA/PNA duplex to TiO2 · PL nanoparticles occurs due to electrostatic interactions between the negatively charged DNA chain and the positively charged amino groups of PL. The binding of the PNA to the nanocomposite is achieved through noncovalent Watson-Crick interactions between PNA and complementary DNA. The capacity of the obtained TiO2 · PL · DNA/PNA nano-composites depending on immobilization conditions was 10?C30 nmol PNA per 1 mg of TiO2 particles, which corresponds to ??1?C3 PNA molecules per one TiO2 particle with a size of 4?C6 nm. It was shown by confocal laser scanning microscopy that fluorescently-labeled PNA molecules in the TiO2 · PL · DNA/FluPNA nano-composites effectively penetrate into HeLa cells without transfection agents, electroporation, or other auxiliary procedures.  相似文献   

10.
The effect of four metal ions Cu(2+), Ni(2+), Zn(2+) and Co(2+) on the interaction between bovine serum albumin (BSA) and berberine chloride (BC) extracted from a traditional Chinese Herb coptis chinensis franch, was investigated mainly by means of UV and fluorescence spectroscopy in this paper. The four metal ions make the quenching efficacy of BC to BSA higher than that in the absence of these metal ions because of the possible transition of BSA molecular conformation caused by metal ions. It was found that the quenching mechanism is a combination of static quenching with nonradiative energy transfer. In the presence of metal ions, the apparent association constant K(A) and the number of binding sites of BC on BSA are both decreased in a range of 8-19% and 25-28%, respectively, which indicates that the metal ions decrease the binding efficacy of BC on BSA and increase the concentration of free BC simultaneously. The scheme of interaction between BC and BSA in the presence of metal ions is a strong quenching but a weak binding.  相似文献   

11.
In this report we describe the synthesis of a new class of cyclen-contained compounds with novel peptide nucleic acid (PNA) analog motif. Target bis-cyclen derivative B was prepared and characterized by ESI-MS, NMR and HPLC. Interactions between compound B and calf thymus DNA were studied by thermal denaturation. Results indicate that the DNA binding affinity of B is stronger than that of mono-cyclen compound A, and the binding ability is little affected by the change of ionic strength. Agarose and denaturing polyacrylamide gel electrophoresis were used to assess the DNA cleavage activities. The macrocyclic polyamine-PNA analog conjugate B as a nuclease model can effectively cleave DNA via an oxidative pathway at micromolar concentration (10 μM) without the use of any additional metal ions. Meanwhile, the mono-cyclen compound A shows nearly no DNA cleavage effect under the same conditions.  相似文献   

12.
When delivering peptide nucleic acids (PNA) into cells in the TiO2 · PL · DNA/PNA nanocomposites consisting of titanium dioxide nanoparticles coated with polylysine (PL) and immobilized DNA/PNA duplexes, it is important to control the rate of the release of PNA from the carrier due to dissociation of the immobilized DNA/PNA duplex, followed by the desorption of PNA to solution while the DNA remains on the carrier. It was found that the rate constant of dissociation of the DNA/PNA duplex in the TiO2 · PL · DNA/PNA nanocomposites depended on the number of complementary bases in the duplex. The half-retention time values for PNA in the studied nanocomposites containing the duplexes with 10, 12, 14, and 16 overlapping complementary base pairs were 10, 14, 22, and 70 min, respectively. Thus, it was shown that the rate of the release of PNA from the proposed nanocomposites can be controlled by varying the number of overlapping complementary base pairs in the immobilized DNA/PNA duplex. The method of the PNA immobilization may be used for designing nanocomposites having the optimum time value of the PNA release. The proposed TiO2 · PL · DNA/PNA nanocomposites can be used to efficiently deliver therapeutically significant PNA drugs for their selective effect on pathogenic nucleic acids in cells.  相似文献   

13.
A nickel(II)-PNA bioconjugate was prepared by formation of a salicylaldimine complex with the amino terminus of a peptide-PNA hybrid with the sequence Arg-His-Gly-[TACCTAGCAT]PNA-Arg-CONH2. Hybridization to complementary oligodeoxynucleotides was demonstrated, and covalent adduct formation was observed upon addition of KHSO5 as oxidant. In the absence of PNA, the reactivity of the phenolic radical generated as an intermediate was found to be G > T > C, A; by inclusion of the PNA delivery agent, cross-links between the two oligomers could be observed with T and C bases in the vicinity of the nickel complex, although G was still the most reactive site. The metal complex could be removed by treatment with EDTA following which the Schiff base linkage was readily hydrolyzed. The final result in this case is a salicylaldehyde moiety appended at the target site in DNA.  相似文献   

14.
Effect of metal ions on the activity of the catalytic domain of calcineurin   总被引:1,自引:0,他引:1  
Calcineurin (CN) is a heterodimer, composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). There are four functional domains present in CNA, which are catalytic domain (CNa), CNB-binding domain (BBH), CaM-binding domain (CBH) and autoinhibitory domain (AI). It has been shown previously that the in vitro activity of calcineurin is relied primarily on the binding of metal ions. Mn2+ and Ni2+ are the most crucial cation-activators for this enzyme. In order to determine which domain(s) in CN is functionally regulated by metal ions, the rat CNA alpha subunit and its catalytic domain (CNa) were cloned and expressed in E. coli. The effects of Mn2+, Ni2+ and Mg2+ on the catalytic activity of these purified proteins were examined. Our results demonstrate that all the metal ions tested in this study activated either CNA or CNa. However, the activation degree of CNa by the metal ions was much higher than that of CNA. In term of different metal ions, the activating extents to CNA and CNa were different. To CNA, the activating order from high to low was Mg2+ > > Ni2+ > Mn2+, but Mn2+ > Ni2+ > > Mg2+ to CNa. No effect of CaM/Ca2+ and CNB/Ca2+ on the activity of CNa was observed in our experiments. Moreover, a weak interaction (or untight coordination binding) between metal ions and the enzyme molecule was also identified. These results suggest that the activation of these enzymes by the exogenous metal ions might be via both regulating fragment of CNA (including BBH, CBH and AI) and catalytic domain (CNa), and mainly via regulating fragment to CNA and mainly via catalytic domain to CNa. The activating extents of metal ions via catalytic domain were higher than that via regulating fragment. The results obtained in this study should be very useful for understanding the molecular mechanism underlying the interaction between calcineurin and metal ions, especially Mn2+, Ni2+ and Mg2+.  相似文献   

15.
Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites was assayed. The following PNAs were used: T10-LysNH2, T5CT4-LysNH2 and T2CT2CT4-LysNH2 and the corresponding targets cloned into pUC 19 were flanked by BamH1, Sal1 or Pstl sites, respectively. In all cases it was found that complete inhibition of restriction enzyme cleavage was obtained with the complementary PNA, a significantly reduced effect was seen with a PNA having one mismatch, and no effect was seen with a PNA having two mismatches. These results show that PNA can be used as sequence specific blockers of DNA recognizing proteins.  相似文献   

16.
17.
A heavy metal ion sensor was constructed by cross-linking melanin onto the gold electrode of quartz crystal microbalance (QCM). A mercury ion sensitivity of 518+/-37 Hz/ppm was observed, a substantial increase in sensitivity compared to previous reports of 10-50 Hz/ppm with the limit of detection at 5 ppb. Detection of other metal ions including Sn(2+), Ge(4+), Li(+), Zn(2+), Cu(2+), Bi(3+), Co(2+), Al(3+), Ni(2+), Ag(+), and Fe(3+) were also performed. Unexpectedly, binding of Mn(7+), Pb(2+), Cd(2+), and Cr(3+) increased resonant frequencies. The surface profile of melanin thin film upon binding to metal ions was investigated by atomic force microscopy (AFM). Structural change of melanin upon binding to metal ions was characterized by circular dichroism and by infrared spectroscopy. The current study provides the first example of melanin-coated piezoelectric sensor showing high sensitivity and selectivity to metal ions.  相似文献   

18.
2-5A was conjugated to N-(2-aminoethyl)-glycyl PNA by periodate oxidization, followed by coupling with amino-derivatized PNA and final cyanoborohydride reduction. An adduct of 2-5A pentamer with tetrameric thymine PNA activated RNase L with the same potency as earlier versions of 2-5A-PNA or 2-5A-DNA.  相似文献   

19.
The removal by crab shell of mixed heavy metal ions in aqueous solution   总被引:12,自引:0,他引:12  
In order to examine the inhibition effect of other heavy metal ions on the removal by crab shell of heavy metal ions in aqueous solutions, three ions (Pb(2+), Cd(2+), Cr(3+)) were used in single, binary and ternary systems. In single heavy metal ion systems, the removals of Cr(3+) and Pb(2+) were much higher than that of Cd(2+). In binary heavy metal ions systems, Cd(2+) did not affect Pb(2+) removal while Cr(3+) had a severe inhibition effect on the removal of Pb(2+). Cd(2+) removal was slightly affected by the presence of Pb(2+); however, it was severely affected by the presence of Cr(3+). The inhibitory effect of Cd(2+) on Cr(3+) was relatively lower than that of Pb(2+).  相似文献   

20.
A series of N-(2-aminoethyl)-alpha-amino acid thymine peptide nucleic acid (PNA) monomers bearing glycosylated side chains in the alpha-amino acid position have been synthesized. These include PNA monomers where glycine has been replaced by serine and threonine (O-glycosylated), derivatives of lysine and nor-alanine (C-glycosylated), and amide derivatives of aspartic acid (N-glycosylated). The Boc and Fmoc derivatives of these monomers were used for incorporation in PNA oligomers. Twelve PNA decamers containing the glycosylated units in one, two, or three positions were prepared, and the thermal stability (T(m)) of their complexes with a complementary RNA was determined. Incorporation of the glycosyl monomers reduced the duplex stability by 0-6 degrees C per substitution. A cysteine was attached to the amino terminus of eight of the PNA decamers (Cys-CTCATACTCT-NH(2)) for easy conjugation to a [(18)F]radiolabeled N-(4-fluorobenzyl)-2-bromoacetamide. The in vivo biodistribution of these PNA oligomers was determined in rat 2 h after intravenous administration. Most of the radioactivity was recovered in the kidneys and in the urine. However, N-acetylgalactosamine (and to a lesser extent galactose and mannose)-modified PNAs were effectively targeting the liver (40-fold over unmodified PNA). Thus, the pharmacodistribution in rats of PNA oligomers can be profoundly changed by glycosylation. These results could be of great significance for PNA drug development, as they should allow modulation and fine-tuning of the pharmacokinetic profile of a drug lead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号