首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshwater biodiversity is the over‐riding conservation priority during the International Decade for Action ‐‘Water for Life’ ‐ 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8 % of the Earth's surface, yet this tiny fraction of global water supports at least 100 000 species out of approximately 1.8 million ‐ almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the ‘Water for Life’ decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as ‘receivers’ of land‐use effluents, and the problems posed by endemism and thus non‐substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and ‐ in the case of migrating aquatic fauna ‐ downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade‐offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long‐term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management ‐ one that has been appropriately termed ‘reconciliation ecology’.  相似文献   

2.
The growth response of freshwater bacteria from the St. Lawrence River, exposed to brackish waters (salinity of 0 to 20(permil)) from the upper estuary, was assessed by a methodology requiring the combined use of dilution cultures and diffusion chambers. The longitudinal distribution of bacterial abundance in waters within this salinity range was also examined. Growth of the freshwater bacteria was reduced by 15 and 50% after exposure to salinities of 10 and 20(permil), respectively. At lower salinities, no growth reduction was observed, and at a salinity of 2(permil), growth was even stimulated. Longitudinal distribution data showed that bacterial abundance also peaked at this salinity. In contrast with an earlier hypothesis, this study shows that the decline of bacterial abundance in the low-salinity waters of the estuary is not caused by salinity-related mortality of freshwater bacteria, because the mixing time between fresh and marine (>20(permil)) waters is relatively long (days). However, results suggest that mortality of freshwater bacteria can be an important process in estuaries with shorter mixing times (hours). The combined use of diffusion chambers and dilution cultures proved to be a valuable methodology for assessing growth (or mortality) of bacteria exposed to environmental gradients.  相似文献   

3.
Attempts to isolate estaurine bacteria capable of metabolizing nitrilotriacetate (NTA) as a sole carbon source from areas within Escambia Bay, Fla., were unsuccessful; however, bacteria from freshwater streams and from estaurine surface microlayers were easily adapted to degradation of NTA in freshwater medium. A Pseudomonas sp. strain (ATCC 29600), capable of growth on NTA as a sole carbon source, metabolized NTA at a reduced rate in a saline medium (15%), compared with a freshwater medium (0 to 15%). Microorganisms capable of degrading NTA exist in estuarine surface microlayers and in fresh subsurface waters just before entering the estuary; these data indicate an interference with NTA catabolism by some unknown factors of the estuarine environment rather than an absence of potential NTA-degrading bacteria.  相似文献   

4.
Chemical pollution is one of the major threats to global freshwater biodiversity and will be exacerbated through changes in temperature and rainfall patterns, acid–base chemistry, and reduced freshwater availability due to climate change. In this review we show how physico-chemical features of natural fresh waters, including pH, temperature, oxygen, carbon dioxide, divalent cations, anions, carbonate alkalinity, salinity and dissolved organic matter, can affect the environmental risk to aquatic wildlife of pollutant chemicals. We evidence how these features of freshwater physico-chemistry directly and/or indirectly affect the solubility, speciation, bioavailability and uptake of chemicals [including via alterations in the trans-epithelial electric potential (TEP) across the gills or skin] as well as the internal physiology/biochemistry of the organisms, and hence ultimately toxicity. We also show how toxicity can vary with species and ontogeny. We use a new database of global freshwater chemistry (GLORICH) to demonstrate the huge variability (often >1000-fold) for these physico-chemical variables in natural fresh waters, and hence their importance to ecotoxicology. We emphasise that a better understanding of chemical toxicity and more accurate environmental risk assessment requires greater consideration of the natural water physico-chemistry in which the organisms we seek to protect live.  相似文献   

5.
Limnological imbalances: an antipodean viewpoint   总被引:9,自引:0,他引:9  
SUMMARY. 1. It is argued that modern limnology is excessively concerned with the study of fresh waters in the northern temperate region. Limnology has been and is unbalanced in its interests and emphases and, as a result, many widely held limnological concepts need revision. 2. The genesis of the argument is outlined. It involved the initial assumption that Australia was limnologically distinctive. Later, it was realized that since most of the world is arid, semi-arid, tropical or semi-tropical, Australia was much less distinctive than originally thought. 3. Other limnological assumptions considered in the paper concern saline lakes and salinization, the importance and nature of temporary bodies of standing fresh water, biological diversity in tropical fresh waters, the evolutionary importance of permanent freshwater lakes, and the global applicability of the River Continuum Concept. Consideration suggests that some widely-held views on these matters are erroneous. 4. Thus, saline lakes are more important (scientifically, commercially), widespread and numerous environments than is generally thought. Salinization is a significant environmental hazard for many rivers in semiarid regions. Temporary bodies of standing fresh water are geographically widespread and abundant aquatic environments with high species diversity, and in which many species have restricted distributions and low dispersal abilities. Biological diversity appears to be low in tropical fresh waters. Permanent freshwater lakes are perhaps less important loci for the evolution of the freshwater biota than generally thought, temporary fresh waters more so. Finally, the River Continuum does not seem to be applicable to many running waters outside the north temperate region. 5. A number of suggestions are made of how a better balance in limnology may be arrived at: how a more globally comprehensive intellectual framework may be built. Suggestions include: an increased awareness of the frequently different natures of waters within and beyond the northern temperate region; recognition of the potential benefits to be gained from the study of waters outside the northern temperate region;  相似文献   

6.
Human uses of freshwater resources are increasing rapidly as the world population rises. As this happens, less water is left to support aquatic and associated ecosystems. To minimize future human water shortages and undesirable environmental impacts, more equitable sharing of water resources between society and nature is required. This will require physical quantities and social values to be placed on both human and aquatic ecosystem requirements. Current water valuation systems are dominated by economic values and this paper illustrates new quantification and valuation methods that take more account of human well-being and environmental impacts. The key to the effective implementation of these more equitable water allocation methods is the use of catchment-based integrated water resources management. This holistic framework makes it possible for human and ecosystem water requirements and the interactions between them to be better understood. This knowledge provides the foundation for incorporating relevant social factors so that water policies and laws can be developed to make best use of limited water resources. Catchment-based co-management can therefore help to ensure more effective sharing of water between people and nature.  相似文献   

7.
Synopsis Attempts have been made to explain the over-representation of parental care in teleost fish families in freshwater habitats by selection due to environmental conditions typical of freshwater. I argue that alternative hypotheses, such as selection for pelagic spawning in marine habitats, can account for the pattern. The fact that parental care is less common among primary freshwater fishes contradicts the view that there is strong selection for parental care in fresh waters, and suggests that phylogenetic relationships must be taken into account.  相似文献   

8.
In WI-38, a normal human fibroblast, the rates of degradation of short lived and long lived proteins are identical whether the cultures are growing exponentially or are density-inhibited. Replacement of the growth medium with fresh medium does not alter these rates. In VA-13, an SV-40 transformed derivative of WI-38, the rates of protein degradation are also independent of growth rate and fresh medium. However, in both WI-38 and VA-13 the rate of long lived protein degradation increases as the serum concentration is reduced below 5%. After complete serum withdrawal, the rate increases by 60 to 100% in both cell types. Withdrawal of arginine and phenylalanine triples the rate of long lived protein degradation, while addition of 10% dialyzed serum to this amino acid-deficient medium reduces the effect to twice that of the controls. Incubation of both types of cells in phosphate-buffered saline also increases protein degradation. This effect is reduced by glucose, albumin, and dialyzed serum. Therefore, the rate of protein degradation is independent of growth rate in normal and transformed human cells. However, the rate of degradation is closely coupled to certain medium alterations.  相似文献   

9.
In a review Lee and Bell (1999) state that recent invasions of fresh waters by saltwater species in many cases have been made possible by human activities. A considerable number of their examples are based on impoundments of brackish estuaries in the Netherlands. I show that they have wrongly interpreted the original literature and missed important publications. Lee & Bell (1999) define freshwater invaders as salt- or brackish-water populations that gain the ability to complete their entire life cycle in fresh water. I suggest that at least in the Dutch cases the species involved already possessed that ability before they developed new populations in freshwater lakes. Moreover, these lakes are still slightly brackish.  相似文献   

10.
Four membrane filter methods for the enumeration of fecal coliforms were compared for accuracy, specificity, and recovery. Water samples were taken several times from 13 marine, 1 estuarine, and 4 freshwater sites around Puerto Rico, from pristine waters and waters receiving treated and untreated sewage and effluent from a tuna cannery and a rum distillery. Differences of 1 to 3 orders of magnitude in the levels of fecal coliforms were observed in some samples by different recovery techniques. Marine water samples gave poorer results, in terms of specificity, selectivity, and comparability, than freshwater samples for all four fecal coliform methods used. The method using Difco m-FC agar with a resuscitation step gave the best overall results; however, even this method gave higher false-positive error, higher undetected-target error, lower selectivity, and higher recovery of nontarget organisms than the method using MacConkey membrane broth, the worst method for temperate waters. All methods tested were unacceptable for the enumeration of fecal coliforms in tropical fresh and marine waters. Thus, considering the high densities of fecal coliforms observed at most sites in Puerto Rico by all these methods, it would seem that these density estimates are, in many cases, grossly overestimating the degree of recent fecal contamination. Since Escherichia coli appears to be a normal inhabitant of tropical waters, fecal contamination may be indicated when none is present. Using fecal coliforms as an indicator is grossly inadequate for the detection of recent human fecal contamination and associated pathogens in both marine and fresh tropical waters.  相似文献   

11.
Whilst changes in freshwater assemblages along gradients of environmental stress have been relatively well studied, we know far less about intraspecific variation to these same stressors. A stressor common in fresh waters worldwide is leachates from terrestrial plants. Leachates alter the physiochemical environment of fresh waters by lowering pH and dissolved oxygen and also releasing toxic compounds such as polyphenols and tannins, all of which can be detrimental to aquatic organisms. We investigated how chronic exposure to Eucalyptus leaf leachate affected the growth and survival of juvenile southern pygmy perch (Nannoperca australis) collected from three populations with different litter inputs, hydrology and observed leachate concentrations. Chronic exposure to elevated leachate levels negatively impacted growth and survival, but the magnitude of these lethal and sublethal responses was conditional on body size and source population. Bigger fish had increased survival at high leachate levels but overall slower growth rates. Body size also varied among populations and fish from the population exposed to the lowest natural leachate concentrations had the highest average stress tolerance. Significant intraspecific variation in both growth and survival caused by Eucalyptus leachate exposure indicates that the magnitude (but not direction) of these stress responses varies across the landscape. This raises the potential for leachate‐induced selection to operate at an among‐population scale. The importance of body size demonstrates that the timing of leachate exposure during ontogeny is central in determining the magnitude of biological response, with early life stages being most vulnerable. Overall, we demonstrate that Eucalyptus leachates are prevalent and potent selective agents that can trigger important sublethal impacts, beyond those associated with more familiar fish kills, and reiterate that dissolved organic carbon is more than just an energy source in aquatic environments.  相似文献   

12.
Biodiversity of North American freshwaters is among the greatest in the world. However, due to extensive habitat degradation, pollution, and introductions of nonindigenous species, this biodiversity is also among the most endangered. Unlike habitat degradation and pollution, nonindigenous species represent a permanent loss of biodiversity because their removal or control is often impossible. Most species introduced into nonnative North American ranges, however, are not from Eurasia but have been introduced from geographically isolated regions within North America. Although the ecological effects of introduced species have been widely documented, the effects of hybridization, especially between closely related species, represents an equally serious mechanism of extinction but is much less studied. Identification of which species are likely to hybridize after contact is of critical importance to prevent the further loss of native species. Molecular phylogenetics serves as a powerful tool to identify freshwater species at risk of introgression, if we can assume that genetic distance is a good predictor of the potential for hybridization. Although not a thorough review of all cases of hybridization, this article documents the extent and effects of hybridization in fishes, crayfishes, mussels, and other invertebrates in light of the currently accepted phylogenetic relationships. We suggest this approach may be the first step in addressing the potential threat of hybridization between many of the closely related species in North American fresh waters.  相似文献   

13.
Temperate-zone anguillid eels use both saline (marine or brackish) and fresh waters during their continental phase, but use of fresh waters is paradoxical because on average these fishes grow more rapidly in saline than in fresh waters. Based on data from anguillid eels whose habitat-residency histories had been determined by Sr:Ca otolithometry, superiority of growth rates in saline water is much greater in American eels Anguilla rostrata in north-eastern North America (mean saline:fresh growth rate ratio 2·07) than in European Anguilla anguilla , Japanese Anguilla japonica and shortfinned Anguilla australis eels (range of mean ratios 1·12–1·14). Data from A. rostrata in the Hudson Estuary, U.S.A., and Prince Edward Island, Canada, were used to test adaptive explanations of catadromous migrations. The hypothesis that lower mortality in fresh water offsets faster growth in saline water was not supported because loss (mortality + emigration ) rates did not vary between saline and fresh zones of the Hudson Estuary. Hypotheses that anguillid eels move to fresh water to escape from larger anguillid eels in saline water or to evaluate habitat quality were not supported by size and age distributions. Catadromy in temperate-zone anguillid eels increases the diversity of occupied habitats and therefore lowers fitness variance caused by environmental fluctuations. Catadromy in temperate-zone anguillid eels could be due to natural selection for maximum geometric mean fitness which is sensitive to fitness variance. Temperate-zone catadromy might also be maladaptive, at least in local areas, due to shifts over time in selective pressures or to inability of panmictic genetic systems to adapt to local conditions.  相似文献   

14.
Relationships between freshwater flows and growth rates of the opportunistic predatory finfish barramundi Lates calcarifer in a dry tropical estuary were examined using data from a long-term tag-recapture programme. Lagged effects were not investigated. After accounting for length at release, time at liberty and seasonal variation ( e.g. winter, spring, summer and autumn), growth rates were significantly and positively related to fresh water flowing to the estuary. Effects were present at relatively low levels of freshwater flow ( i.e. 2·15 m3 s−1, the 5th percentile of the mean flow rate experienced by fish in the study during time at liberty). The analysis, although correlative, provides quantitative evidence to support the hypothesis that freshwater flows are important in driving the productivity of estuaries and can improve growth of species high in the trophic chain.  相似文献   

15.
Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the light and remobilize it to support maintenance and growth at night. Starch synthesis and degradation are usually viewed as temporally separate processes. Recently, we reported that starch is also degraded in the light. Degradation rates are generally low early in the day but rise with time. Here, we show that the rate of degradation in the light depends on time relative to dawn rather than dusk. We also show that degradation in the light is inhibited by trehalose 6-phosphate, a signal for sucrose availability. The observed responses of degradation in the light can be simulated by a skeletal model in which the rate of degradation is a function of starch content divided by time remaining until dawn. The fit is improved by extension to include feedback inhibition of starch degradation by trehalose 6-phosphate. We also investigate possible functions of simultaneous starch synthesis and degradation in the light, using empirically parameterized models and experimental approaches. The idea that this cycle buffers growth against falling rates of photosynthesis at twilight is supported by data showing that rates of protein and cell wall synthesis remain high during a simulated dusk twilight. Degradation of starch in the light may also counter over-accumulation of starch in long photoperiods and stabilize signaling around dusk. We conclude that starch degradation in the light is regulated by mechanisms similar to those that operate at night and is important for stabilizing carbon availability and signaling, thus optimizing growth in natural light conditions.

Starch degradation in the light is regulated by similar mechanisms to those operating at night, stabilizing carbon availability, and thereby optimizing growth in natural light conditions  相似文献   

16.
The life histories of the pond smelt Hypomesus nipponensis collected from Japanese fresh waters and brackish (sea) waters were studied by examining the strontium (Sr) and calcium (Ca) concentrations in their otoliths. The Sr:Ca ratios in the otoliths changed with the salinity of the habitat. The pond smelt living in a freshwater environment showed consistently low Sr:Ca ratios throughout the otolith, averaging 1·2–1·3 × 10−3. These samples were identified as a standard freshwater type. In contrast, fish collected from the intertidal zone showed higher otolith Sr:Ca ratios than those in the standard freshwater type, and the ratios fluctuated along the growth phase. In addition to the two representative life‐history types of H. nipponensis , i. e . freshwater and anadromous life‐history types, other pond smelts were found to have an estuarine resident life history‐type with no freshwater phase, indicating that the pond smelt has a flexible migration strategy with a high degree of behavioural plasticity and an ability to utilize the full range of salinity in its life history.  相似文献   

17.
Variation in the life cycle of diadromous fishes can be explained by differential food availability between marine and freshwater habitats, since migration is often interpreted as a mechanism for exploiting food resources. Theoretically, a migration pattern of mainly remaining in freshwater occurs in tropical and subtropical habitats where fluvial productivity possibly exceeds marine productivity. However, in Yakugachi River, Amami-Oshima Island, southern Japan, low nutrient concentrations in the river suggest that food availability is limited for the subtropical Ryukyu-ayu Plecoglossus altivelis ryukyuensis. Since Ryukyu-ayu is an amphidromous fish that mainly grows in rivers after spending 2 months in the sea, limited food availability in rivers would force this species to migrate to other habitats with better food availability. Otolith increment and Sr:Ca analyses of 48 adult Ryukyu-ayu collected from the Yakugachi River revealed that all individuals visited estuaries more than three times after moving upstream. Although the specific growth rates of this species in the river had no correlation with the salinity profile in the fluvial period, this movement may be an adaptive choice because the salinity profile significantly affected the body size at maturity. Our results highlighted individual-based variations in amphidromous migration for utilizing estuaries, which could be explained by relatively higher productivity in estuarine than in freshwater and marine habitats.  相似文献   

18.
The purpose of this research was to assess growth response of a Salmonella typhimurium poultry marker strain to fresh homogenized vegetables. Salmonella growth rates were significantly higher (p<0.05) in jalapeno extracts than any other produce extract examined. Growth rates on samples of broccoli and lettuce extracts were greater (p<0.05) than the respective growth rates on bell pepper and tomato. Broccoli extracts yielded the highest extent of growth (4 h optical density) followed by jalapeno and bell pepper extracts. From this study, it appears that fresh produce extracts have different abilities to significantly alter growth response in Salmonella. This could potentially be explained by the variations of pH, nutrient availability to the bacteria, or unknown components found within fresh produce.  相似文献   

19.
The European catfish, Silurus glanis, is native to eastern Europe and western Asia and is among the largest freshwater fish in the world. Despite its increasing economic importance and its frequent introductions, the ecology and life-history of this species is poorly known due to the difficulty of sampling such a large species in large rivers and standing waters. Our study provides the first data on age and growth of this species in Turkish waters, where it is native. We report the length-weight relationships and age and size structure of this population, which were significantly different between females and males. A marginal increment analysis indicated that annulus formation occurred between May and June. The estimates of three growth functions (von Bertalanffy, logistic and Gompertz) are reported, with the von Bertalanffy growth providing a better fit and more realistic parameter estimates. Growth rates were significantly higher in males than in females and were overall higher compared to other native populations but similar to introduced populations of similar latitude.  相似文献   

20.
Ecological diversification of aquatic insects has long been suspected to have been driven by differences in freshwater habitats, which can be classified into flowing (lotic) waters and standing (lentic) waters. The contrasting characteristics of lotic and lentic freshwater systems imply different ecological constraints on their inhabitants. The ephemeral and discontinuous character of most lentic water bodies may encourage dispersal by lentic species in turn reducing geographical isolation among populations. Hence, speciation probability would be lower in lentic species. Here, we assess the impact of habitat use on diversification patterns in dragonflies (Anisoptera: Odonata). Based on the eight nuclear and mitochondrial genes, we inferred species diversification with a model‐based evolutionary framework, to account for rate variation through time and among lineages and to estimate the impact of larval habitat on the potentially nonrandom diversification among anisopteran groups. Ancestral state reconstruction revealed lotic fresh water systems as their original primary habitat, while lentic waters have been colonized independently in Aeshnidae, Corduliidae and Libellulidae. Furthermore, our results indicate a positive correlation of speciation and lentic habitat colonization by dragonflies: speciation rates increased in lentic Aeshnidae and Libellulidae, whereas they remain mostly uniform among lotic groups. This contradicts the hypothesis of inherently lower speciation in lentic groups and suggests species with larger ranges are more likely to diversify, perhaps due to higher probability of larger areas being dissected by geographical barriers. Furthermore, larger range sizes may comprise more habitat types, which could also promote speciation by providing additional niches, allowing the coexistence of emerging species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号