首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antigenic reactions of 35 strains of four pathovars of Pseudomonas syringae (Ps. syr. aptata, Ps. syr. tabaci, Ps. syr. mors-prunorum and Ps. syr. phaseolicola ) were studied by double diffusion and indirect immunofluorescent staining, and anti-whole-cell and anti-LPS-extract sera. It had already been shown that the precipitating lines in Ouchterlony double-diffusion tests, due to bacterial LPS, were suitable for the distinction of O-serogroups. The investigation of serological cross-reactions between the 35 strains and 20 antisera revealed that three pathovars were serologically homogeneous: Ps. syr. aptata, Ps. syr. tabaci and Ps. syr. phaseolicola. They could fit into three O-serogroups formerly described: namely APTPIS, TAB and PHA. The O-serogroups APTPIS and TAB showed some common antigens. The 10 strains of Ps. syr. mors-prunorum studied were distributed into two O-serogroups (eight strains belonging to the O-serogroup MOP1, one strain to MOP2, and the last strain failed to react with any of the serogroups).  相似文献   

2.
Distinction between Pseudomonas syringae pathovar (pv.) pisi (Ps. syr. pisi) , responsible for bacterial blight of pea ( Pisum sativum ), and pv. syringae (Ps. syr. syringae) , still requires strain inoculation onto peas. Patterns of enzymes including esterase (EST) and superoxide dismutase (SOD) were examined for diagnostic purposes. Profiles of 59 Ps. syr . pisi strains and 53 Ps. syr . syringae strains were compared. Pseudomonas syringae pisi was characterized by one unique zymotype for SOD and two slightly different zymotypes for EST. Pseudomonas syringae syringae zymotypes were very heterogeneous with 10 different zymotypes for SOD and 32 for EST. Twenty-four percent of the Ps. syr . syringae strains shared SOD zymotype 1 of Ps. syr . pisi , thus preventing the use of this enzymatic system for identification. In contrast, the two EST zymotypes of Ps. syr. pisi strains were specific to the pathovar and could be used for its identification. The two Ps. syr. pisi EST patterns were correlated to race structure of the pathovar, zymotype 1 corresponding to races 2, 3, 4 and 6, and zymotype 2 to races 1, 5 and 7. Esterase isozyme profiling was proposed as a new identification procedure for bacterial pea blight agent.  相似文献   

3.
The relationships among strains of Pseudomonas syringae pv. tomato, Ps. syr. antirrhini, Ps. syr. maculicola, Ps. syr. apii and a strain isolated from squash were examined by restriction fragment length polymorphism (RFLP) patterns, nutritional characteristics, host of origin and host ranges. All strains tested except for Ps. syr. maculicola 4326 isolated from radish ( Raphanus sativus L.) constitute a closely related group. No polymorphism was seen among strains probed with the 5.7 and 2.3 kb Eco RI fragments which lie adjacent to the hrp cluster of Ps. syr. tomato and the 8.6 kb Eco RI insert of pBG2, a plasmid carrying the β-glucosidase gene(s). All strains tested had overlapping host ranges. In contrast to this, comparison of strains by RFLP patterns of sequences homologous to the 4.5 kb Hind III fragment of pRut2 and nutritional properties distinguished four groups. Group 1, consisting of strains of pathovars maculicola, tomato and apii , had similar RFLP patterns and used homoserine but not sorbitol as carbon sources. Group 2, consisting of strains of pathovars maculicola and tomato , differed from Group 1 in RFLP patterns and did not use either homoserine or sorbitol. Group 3 was similar to Group 2 in RFLP patterns but utilized homoserine and sorbitol. This group included strains of the pathovars tomato and antirrhini , and a strain isolated from squash. Group 4, a single strain of Ps. syr. maculicola isolated from radish, had unique RFLP patterns and resembled Group 3 nutritionally. The evolutionary relationships of these strains are discussed.  相似文献   

4.
AIMS: The present study describes a system based on PCR to distinguish tabtoxin-producing strains of Pseudomonas syringae from other Ps. syringae plant pathogens that produce chlorosis-inducing phytotoxins. METHODS AND RESULTS: Thirty-two strains of Ps. syringae and related species were examined. Two sets of PCR primers were developed to amplify genes (tblA and tabA) required for tabtoxin production. Only a PCR product of 829 bp or 1020 bp was produced in PCR reactions with the tblA or tabA primer sets, respectively, and cells from tabtoxin-producing pathovars of Pseudomonas syringae. All known non-tabtoxin producing bacterial species failed to produce an amplification product with either primer set. CONCLUSIONS: PCR of genes required for tabtoxin production is a simple, rapid and reliable method for identifying tabtoxin-producing strains of Ps. syringae. SIGNIFICANCE AND IMPACT OF THE STUDY: The protocol can effectively distinguish tabtoxin-producing strains of Ps. syringae from other Ps. syringae pathovars and Ps. syringae pv. tabaci strains from other tabtoxin-producing Ps. syringae pathovars.  相似文献   

5.
The O polysaccharide (OPS) of the lipopolysaccharide (LPS) of Pseudomonas syringae pv. atrofaciens IMV 7836 and some other strains that are classified in serogroup O1 was shown to be a novel linear alpha-D-rhamnan with the tetrasaccharide O repeat -->3)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->2)-alpha-D-R hap-(1-->2)- alpha-D-Rhap-(1--> (chemotype 1A). The same alpha-D-rhamnan serves as the backbone in branched OPSs with lateral (alpha1-->3)-linked D-Rhap, (beta1-->4)-linked D-GlcpNAc, and (alpha1-->4)-linked D-Fucf residues (chemotypes 1B, 1C, and 1D, respectively). Strains of chemotype 1C demonstrated variations resulting in a decrease of the degree of substitution of the backbone 1A with the lateral D-GlcNAc residue (chemotype 1C-1A), which may be described as branched regular left arrow over right arrow branched irregular --> linear OPS structure alterations (1Cleft arrow over right arrow 1C-1A --> 1A). Based on serological data, chemotype 1D was suggested to undergo a 1D left arrow over right arrow 1D-1A alteration, whereas chemotype 1B showed no alteration. A number of OPS backbone-specific monoclonal antibodies (MAbs), Ps(1-2)a, Ps(1-2)a(1), Ps1a, Ps1a(1), and Ps1a(2), as well as MAbs Ps1b, Ps1c, Ps1c(1), Ps1d, Ps(1-2)d, and Ps(1-2)d(1) specific to epitopes related to the lateral sugar substituents of the OPSs, were produced against P. syringae serogroup O1 strains. By using MAbs, some specific epitopes were inferred, serogroup O1 strains were serotyped in more detail, and thus, the serological classification scheme of P. syringae was improved. Screening with MAbs of about 800 strains representing all 56 known P. syringae pathovars showed that the strains classified in serogroup O1 were found among 15 pathovars and the strains with the linear OPSs of chemotype 1A were found among 9 of the 15 pathovars. A possible role for the LPS of P. syringae and related pseudomonads as a phylogenetic marker is discussed.  相似文献   

6.
Strains representing the fluorescent plant pathogenic Pseudomonas spp., Ps. agarici , Ps. asplenii , Ps. avellanae , Ps. beteli , Ps. caricapapayae , Ps. cichorii , Ps. corrugata , Ps. ficuserectae , Ps. flectens , Ps. fuscovaginae , Ps. marginalis , Ps. meliae , Ps. savastanoi , Ps. syringae , Ps. tolaasii and Ps. viridiflava were tested for biocidal activity using Aspergillus niger as assay organism. Inhibitory behaviour was found in strains of Ps. asplenii , Ps. blatchfordae , Ps. cichorii , Ps. corrugata , Ps. fuscovaginae , Ps. marginalis , Ps. marginalis pv. pastinacea , Ps. syringae pv. syringae , Ps. syringae pv. aptata , Ps. syringae pv. atrofaciens , Ps. syringae pv. lapsa , Ps. tolaasii , and strains of a Pseudomonas sp. pathogenic to Actinidia , in the Ps. savastanoi genomic sp. Antifungal activity could be identified with the production of members of the syringomycin family of toxins by strains in Ps. syringae , Ps. asplenii and Ps. fuscovaginae . These toxin reactions support suggestions made elsewhere of the synonymy of the latter two species. In a preliminary characterization using tests for stability to heat, protease, acid and alkaline treatments, unknown toxins consistent with syringomycin-like toxins the strains from Actinidia speciesColour RGB 0,0,128. The toxins from Ps. cichorii and from Ps. corrugata differed in their reactions from all other agents. Pseudomonas tolaasii produces the antifungal compound tolaasin. The white line reaction with ' Ps. reactans ', a test for tolaasin production by strains of Ps. tolaasii , was confirmed as specific for this compound. Some of these low molecular weight toxins may be produced by some of these plant pathogenic strains.  相似文献   

7.
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.  相似文献   

8.
Polyacrylamide gel electrophoresis of proteins was carried out to characterize eight bacterial strains belonging to the genus Pseudomonas. The sampling included three species (P. cichorii, P. viridiflava and P. syringae), with three pathovars for this last species (pv. pisi, pv. syringae, pv. tomato). Several molecular markers were evaluated: native proteins, denatured proteins, esterases, superoxide dismutases (SOD) and polyphenoloxidases (PPO). Each species or pathovar of Pseudomonas was clearly differentiated by esterase patterns. SOD, PPO and native protein patterns allowed strains of P. cichorii, P. viridiflava and P.s. pv. tomato also to be distinguished. Strains of P.s. pv. pisi and P.s. pv. syringae were identical for these criteria. Denatured protein patterns of these two pathovars and P. viridiflava were similar.  相似文献   

9.
Genetic and phenotypic mapping of an approximately 145-kb DraI fragment of Pseudomonas syringae pv. syringae strain B301D determined that the syringomycin (syr) and syringopeptin (syp) gene clusters are localized to this fragment. The syr and syp gene clusters encompass approximately 55 kb and approximately 80 kb, respectively. Both phytotoxins are synthesized by a thiotemplate mechanism of biosynthesis, requiring large multienzymatic proteins called peptide synthetases. Genes encoding peptide synthetases were identified within the syr and syp gene clusters, accounting for 90% of the DraI fragment. In addition, genes encoding regulatory and secretion proteins were localized to the DraI fragment. In particular, the salA gene, encoding a regulatory element responsible for syringomycin production and lesion formation in P. syringae pv. syringae strain B728a, was localized to the syr gene cluster. A putative ATP-binding cassette (ABC) transporter homolog was determined to be physically located in the syp gene cluster, but phenotypically affects production of both phytotoxins. Preliminary size estimates of the syr and syp gene clusters indicate that they represent two of the largest nonribosomal peptide synthetase gene clusters. Together, the syr and syp gene clusters encompass approximately 135 kb of DNA and may represent a genomic island in P. syringae pv. syringae that contributes to virulence in plant hosts.  相似文献   

10.
Strains of Pseudomonas syringae pv. syringae were isolated from healthy and diseased stone fruit tissues sampled from 43 orchard sites in California in 1995 and 1996. These strains, together with P. syringae strains from other hosts and pathovars, were tested for pathogenicity and the presence of the syrB and syrC genes and were genetically characterized by using enterobacterial repetitive intergenic consensus (ERIC) primers and PCR. All 89 strains of P. syringae pv. syringae tested were moderately to highly pathogenic on Lovell peach seedlings regardless of the host of origin, while strains of other pathovars exhibited low or no pathogenicity. The 19 strains of P. syringae pv. syringae examined by restriction fragment length polymorphism analysis contained the syrB and syrC genes, whereas no hybridization occurred with 4 strains of other P. syringae pathovars. The P. syringae pv. syringae strains from stone fruit, except for a strain from New Zealand, generated ERIC genomic fingerprints which shared four fragments of similar mobility. Of the P. syringae pv. syringae strains tested from other hosts, only strains from rose, kiwi, and pear generated genomic fingerprints that had the same four fragments as the stone fruit strains. Analysis of the ERIC fingerprints from P. syringae pv. syringae strains showed that the strains isolated from stone fruits formed a distinct cluster separate from most of the strains isolated from other hosts. These results provide evidence of host specialization within the diverse pathovar P. syringae pv. syringae.  相似文献   

11.
In 290 strains of bacteria belonging to the genus Pseudomonas, 120 morphological and physiologo-biochemical characters were studied and the results obtained thereby were analyzed by the methods of numerical taxonomy using computers. The majority of strains were subdivided into 11 clusters: Ps. aeruginosa (1), Ps. putida (2), Ps. rathonis (5), Ps. syringae (8), Ps. pseudoalcaligenes (9), Ps. maltophilia (10), Ps. acidovorans (11), Ps. testosteroni (12), Ps. mendocina (13), Ps. cepacia (14), Ps. fluorescens (3). The latter cluster included also the strains identified earlier as Ps. aurantiaca, Ps. lemonnieri, Ps. fluoro-violaceus, and Ps. aureofaciens. Three clusters contained strains which could not be identified and probably should be regarded as distinct species. The characteristics have been selected useful for diagnostics of the above Pseudomonas bacteria and the subgroups of Ps. fluorescens.  相似文献   

12.
Toxin-based identification procedures are useful for differentiating Pseudomonas syringae pathovars. A biological test on peptone-glucose-NaCl agar in which the yeast Rhodotorula pilimanae was used proved to be more reliable for detecting lipodepsipeptide-producing strains of P. syringae than the more usual test on potato dextrose agar in which Geotrichum candidum is used. A PCR test performed with primers designed to amplify a 1, 040-bp fragment in the coding sequence of the syrD gene, which was assumed to be involved in syringomycin and syringopeptin secretion, efficiently detected the gene in pathovars that produce the lipodepsipeptides. Comparable results were obtained in both tests performed with strains of the syringomycin-producing organisms P. syringae pv. syringae, P. syringae pv. atrofaciens, and P. syringae pv. aptata, but the PCR test failed with a syringotoxin-producing Pseudomonas fuscovaginae strain. The specificity of the test was verified by obtaining negative PCR test results for related pathovars or species that do not produce the toxic lipodepsipeptides. P. syringae pv. syringae was detected repeatedly in liquid medium inoculated with diseased vegetative tissue and assayed by the PCR test. Our procedure was also adapted to detect P. syringae pv. morsprunorum with a cfl gene-based PCR test.  相似文献   

13.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Pseudomonas strains with an atypical LOPAT profile (where LOPAT is a series of determinative tests: L, levan production; O, oxidase production; P, pectinolitic activity; A, arginine dihydrolase production; and T, tobacco hypersensibility) can be regarded as emergent pathogens in the Principality of Asturias (Spain), where they have been causing, since 1999, severe damage in at least three taxonomically unrelated orchard plants of agronomic importance: common bean (Phaseolus vulgaris), kiwifruit (Actinidia deliciosa), and lettuce (Lactuca sativa). These strains are mainly differentiated by production of yellowish mucoid material in hypersucrose medium, used for the levan test, and by a variable pectinolytic activity on different potato varieties. The atypical organisms were identified as Pseudomonas viridiflava based on their 16S rRNA sequences. Among them a certain intraspecies genetic heterogeneity was detected by randomly amplified polymorphic DNA (RAPD) typing. To differentiate between isolates of P. viridiflava and Pseudomonas syringae pathovars, a 16S ribosomal DNA restriction fragment length polymorphism method employing the restriction endonucleases SacI and HinfI was developed. This could be used as a means of reliable species determination after the usual phenotypical characterization, which includes the LOPAT tests.  相似文献   

15.
PCR fingerprinting using primers corresponding to repetitive (ERIC and REP) and insertion sequences (IS50) was investigated as a method to distinguish the pathovars of Pseudomonas syringae . After amplification of total DNA with the ERIC-, REP-, and IS50-PCR followed by agarose gel electrophoresis. most of the tested pathovars showed specific patterns of PCR products. The differences between the fingerprints among strains within a pathovar were small, with the exception of pathovars syringae, aptata , and atrofaciens . The fingerprints of the related pathovars savastanoi, phaseolicola, glycinea, morsprunorum, tabaci, lachrymans , and mori generated with the ERIC- and REP-primers were found to be very similar, showing the potential of this technique for taxonomical studies. In contrast, the IS50-PCR fingerprints of these pathovars were clearly distinguishable. The fingerprint patterns of a strain were highly reproducible with all three tested primer sets, also when whole cells were added to the reaction mixture. Thus, the PCR technique with the ERIC-, REP-, and IS50-primers is a rapid, simple, reproducible, and low cost method to identify and classify strains of the Pseudomonas syringae pathovars.  相似文献   

16.
An investigation of the biochemical, nutritional and pathogenic reactions of strains of Pseudomonas syringae pv. japonica and Ps. syringae pv. syringae showed them to be indistinguishable. Pseudomonas syringae pv. japonica is a junior synonym of Ps. syringae pv. syringae.  相似文献   

17.
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.  相似文献   

18.
Bacterial whole cell protein profiles of the rRNA group II pseudomonads   总被引:1,自引:0,他引:1  
Studies on bacterial whole cell protein profiles showed that members of the rRNA group II pseudomonads were distinct from other non-fluorescent and fluorescent pseudomonads, including Pseudomonas aeruginosa, the type species of the genus Pseudomonas. Strains of Ps. andropogonis, Ps. caryophylli, Ps. gladioli pv. gladioli, Ps. pickettii, Ps. pseudomallei and Ps. rubrisubalbicans showed uniform and distinct protein patterns, while strains of Ps. solanacearum and Ps. cepacia displayed differences within species. Numerical analysis of their protein profiles with GelManager and Taxan programs generated dendrograms comprising 16 clusters at 89% similarity. Each cluster included strains belonging to the same species with the exception of Ps. solanacearum, which fragmented into three clusters. Pseudomonas solanacearum showed different protein patterns correlating with different biovars and the two divisions of Cook et al. (1989), as well as the results of 16S rRNA gene sequencing. The whole cell protein profiles of a total of 83 strains belonging to 14 bacterial species were numerically analysed.  相似文献   

19.
S ummary : A group of 23 phages, mainly isolated with Pseudomonas mors-prunorum and Ps. syringae as the propagating strains, was tested against more than 200 pseudomonads including named plant pathogens and a variety of saprophytes. The majority of the phages had a wide host range, and did not distinguish between plant pathogens and saprophytes, thus confirming the close relationship between these two groups. The most reactive bacteria were 60 English isolates of Ps. mors-prunorum , 48 from cherry and 12 from plum, and 28 isolates of Ps. syringae from pear. Patterns of reaction within these 3 groups were relatively homogeneous and each group was distinct and differed from all other isolates tested. Ps. syringae isolates from other hosts were less uniform and occasionally shared reaction patterns with other species, e.g. Ps. cannabina and Ps. glycinea. Similar relationships were observed with phages at both high titre and at routine test dilution including the difference in phage sensitivity between the cherry and plum strains of Ps. mors-prunorum. On the basis of 7 biochemical tests the plum and cherry strains were indistinguishable but they differed from all Ps. syringae isolates tested by giving white growth in 5% sucrose broth and in failing to liquefy gelatin. Furthermore, unlike most Ps. syringae isolates they were also unable to hydrolyze aesculin and were tyrosinase positive. There was no clear evidence in this investigation of correlation between phage sensitivity and biochemical activity. Eleven isolates from various European countries, designated Ps. mors-prunorum , differed widely both in phage sensitivity and biochemical activity and some of them may be more appropriately called Ps. syringae. Others may be intermediate forms between these species. The relationship between Ps. mors-prunorum and Ps. syringae and the nomenclature of these organisms are discussed and a concept of ecotypes suggested as a substitute for species.  相似文献   

20.
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号