首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain concentrations of salsolinol (SAL), a simple tetrahydroisoquinoline (sTIQ) condensation product of dopamine (DA) and acetaldehyde, are reported to increase in chow-fed rats drinking ethanol/H2O ad libitum. However, our analyses showed that rat chow contains traces of SAL and, as previously reported, appreciable 3,4-dihydroxyphenylalanine (DOPA), a sTIQ precursor. To examine the effect of consumption of ethanol in a DOPA- and SAL-free diet on endogenous sTIQs, we analyzed two brain regions and blood plasma of rats undergoing prolonged intake (3 weeks and 23 weeks) of liquid diet containing 6.6% ethanol or isocaloric carbohydrate. SAL and three other DA-related sTIQs were quantitated using capillary gas chromatography/mass spectrometry in the selected ion mode with deuterated standards. In accord with studies on ethanol/chow-fed rats, sTIQ concentrations in hypothalamus were elevated after 3 weeks of ethanol, although after 23 weeks, hypothalamic sTIQs were either unchanged or reduced (O-methylated SAL). Furthermore, sTIQ concentrations in corpus striatum and, with one exception, plasma were not altered by ethanol ingestion for either duration. (However, 23 weeks of ethanol intake significantly reduced the striatal concentrations of DA and its acid metabolite, presumably reflecting neurotoxicity.) Reasoning that DOPA in diet might underlie the reported ethanol-dependent increases in striatal sTIQs, we found that L-DOPA supplementation (500 micrograms/rat/day) of EtOH/liquid diet-fed rats for 13 weeks tended to increase striatal SAL. Overall, the data indicate that elevations in endogenous sTIQ concentrations due to prolonged ethanol intake depend on the brain region, duration of intake, and even associated dietary constituents. In that regard, the higher striatal SAL concentrations in rats drinking ethanol ad libitum could have been facilitated by DOPA and perhaps SAL consumed in lab chow.  相似文献   

2.
The diamines putrescine (PUT) and diaminopropane (DAP), the polyamines spermidine (SPD) and spermine (SPM), and the arylalkyl amines phenethylamine (PEA), tyramine (TYR), dopamine (DA), and salsolinol (SAL) were dansylated and baseline separated by LC using a Waters ODS-2 column. The dansyl derivatives were detected by fluorescence (lambda(ex): 337 nm; lambda(em): 520 nm). Besides the amine function, the phenolic OH groups of TYR, DA, and SAL were also dansylated (LC-MS, formation of N,O-didansyl [TYR] and N,O,O'-tridansyl derivatives [DA and SAL]). Calibration curves revealed response factors being appreciably lower for (N,O-didansyl) aminophenol TYR and (N,O,O'-tridansyl) DA and SAL than for N-dansylamines. However, the method is suitable as a cheap alternative to LC-MS for the simultaneous determination of polyamines and arylalkyl amines of large quantities of samples.  相似文献   

3.
Using a solid-phase extraction procedure, an enantioselective derivatization and a gas chromatographic-mass spectrometric method, the levels of dopamine (DA) and of the dopamine-derived tetrahydroisoquinoline alkaloids (R)/(S)-salsolinol (SAL) and norsalsolinol (NorSAL) were determined in human brain samples. A complex pre-analytical synthesis of reference substances as well as deuterated internal standards allowed the standardized and reproducible analysis. In this study, to our best knowledge for the first time, the regional distribution of (R)-SAL and (S)-SAL, as well as NorSAL is examined systematically in a large collective of human brain samples obtained by autopsy. The material comprises 91 brains and 8 standardized specimens in each case. Anatomical concentration differences and no ubiquitous occurence were encountered. Significant amounts of (R)-SAL, (S)-SAL and NorSAL were only found in dopamine-rich areas of the basal ganglia, whereas in other regions of the brain no tetrahydroisoquinolines were detected. These findings suggest that the concentration of the substrate dopamine may determine the alkaloid level during in vivo formation. In our opinion, non-enzymatic formation of SAL via the Pictet-Spengler reaction reveals both the SAL enantiomers. An additional enzymatic synthesis of only (R)-SAL could explain the predominant occurrence of this enantiomer. Especially in the nucleus caudatus, the concentrations of DA, SAL and NorSAL decreased significantly with rising age, which may be consistent with apoptotic effects of ageing. Our data can serve as reference for other studies in humans concerning the etiology of alcoholism or other neurodegenerative diseases with the involvement of tetrahydroisoquinolines.  相似文献   

4.
A method was developed for the simultaneous determination of dopamine (DA), epinephrine (E), norepinephrine (NE), 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxy-4-hydroxyphenylglycol (MHPG), as well as L-3,4-dihydroxyphenylalanine (L-DOPA) with liquid chromatography (LC) using electrochemical (EC) detection. With a ODS column and a mobile phase consisting of a sodium acetate-citrate with heptasulfonic acid, this method was applied on simultaneous determination of catechols released from thalamic slices of ddY mouse. The pretreatment of the bathing medium required only centrifugation, and the supernatant was injected directly into the LCEC system. The high potassium stimulation of catecholaminergically innervated thalamic slices led to increase in the levels of DA, NE, DOPAC and MHPG, especially of NE, but not that of L-DOPA itself. In the present study, we designed to make simultaneous determination of catechols released from thalamic slices for estimation of the physiological status of catecholaminergic neuronal activity.  相似文献   

5.
This study investigated: (a) the effects of acute 17alpha-methyltestosterone (MT) or 17beta-estradiol (E(2)) administration on norepinephrine (NE), dopamine (DA), serotonin (5-HT), 3,4, dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) contents in the hypothalamus, telencephalon and pituitary of previtellogenic female rainbow trout Oncorhynchus mykiss, and (b) the effects of chronic MT administration on the levels of these neurotransmitters in these brain regions in immature male rainbow trout. The acute administration of MT induced a significant decrease in pituitary levels of DOPAC as well as in the DOPAC/DA ratio. On the other hand, the acute administration of E(2) induced an increase in pituitary 5-HT levels as well as a decrease in the 5-HIAA/5-HT ratio. In a second experiment, 20 mg MT per kilogram body weight was implanted for 10, 20 or 40 days into sexually immature male rainbow trout. Implanted rainbow trout showed increased testosterone and decreased E(2) levels. In the pituitary, MT induced long-term decreases in NE, DA, DOPAC and 5-HT levels, as well as in the DOPAC/DA ratio. Hypothalamic and telencephalic DA, NE and 5-HT levels were not affected by MT implantation. However, 5-HIAA levels and the 5-HIAA/5-HT ratio were reduced by MT implantation in both brain regions. These results show that chronic treatment with MT exerts both long-term and region-specific effects on NE, DA, and 5-HT contents and metabolism, and thus that this androgen could inhibit pituitary catecholamine and 5-HT synthesis. A possible role for testosterone in the control of pituitary dopaminergic activity and gonadotropin II release is also discussed.  相似文献   

6.
Salsolinol, an endogenous isoquinoline, induces selective prolactin release in rats [Tóth, B.E., Homicskó, K., Radnai, B., Maruyama, W., DeMaria, J.E., Vecsernyés, M., Fekete, M.I.K., Fül?p, F., Naoi, M., Freeman, M.E., Nagy, G.M., 2001. Salsolinol is a putative neurointermediate lobe prolactin releasing factor. J. Neuroendocrinol. 13, 1042-1050]. The possible role of dopaminergic and adrenergic signal transduction was investigated to learn the mechanism of this action. The effect of salsolinol (10mg/kg i.v.) was inhibited by reserpine treatment (2.5mg/kg i.p.) and reinstated by pretreatment with monoamine oxidase inhibitor (pargyline 75 mg/kg i.p.). Salsolinol did not affect the in vitro release of dopamine (DA) in the median eminence, and did not inhibit the L-DOPA induced increase of DA level in the median eminence. 1-Methyl dihydroisoquinoline (1MeDIQ) is an antagonist of salsolinol induced prolactin release and causes increase in plasma NE level [Mravec, B., Bodnár, I., Fekete, M.I.K., Nagy, G.M., Kvetnansky, R., 2004. An antagonist of prolactoliberine induces an increase in plasma catecholamine levels in the rat. Autonom. Neurosci. 115, 35-40]. Using tissue catecholamine contents as indicators of the interaction between salsolinol and 1MeDIQ we found no interaction between these two agents to explain the changes in prolactin release in the median eminence, lobes of the pituitary, superior cervical and stellate ganglion. Increasing doses of salsolinol caused a dose dependent decrease of tissue dopamine concentration and increase of NE/DA ratio in the salivary gland, atrium and spleen. These changes of DA level and NE/DA ratio run parallel in time with the increase of prolactin release. 1MeDIQ antagonized the increase of prolactin release and decrease of tissue DA content caused by salsolinol. Neither this increase of prolactin secretion nor the decrease of DA level in spleen could be demonstrated in NE transporter (NET) knock out mice. The results presented argue for the possible role of peripheral norepinephrine release as a target for salsolinol in its action releasing prolactin. The dominant role of norepinephrine transporter may be suggested.  相似文献   

7.
Catecholamine and metabolite excretion was studied in the cat after 6 h of 7.5% O2 hypoxia. Norepinephrine (NE) release from sympathetic nervous endings was strongly activated, whereas epinephrine (E) excretion was only slightly increased. A noteworthy result was the increase of dopamine (DA) and its metabolites [3-methoxytyramine (MT); 3,4-dihydroxyphenylacetic acid (DOPAC)] in urine samples. This increased release does not seem to originate from the central nervous system, but rather from peripheral dopaminergic structures; available knowledge on peripheral DA suggests that the hypoxia-induced DA release might be partly related to chemosensory or renal function. Indeed, in addition to enhanced DA and NE excretion, we observed an increase in sodium excretion that correlated with both DA and NE. Analysis of free and conjugated urinary metabolites showed that only free NE and both free and conjugated normetanephrine were increased in urine after hypoxic stress. Among DA metabolites, conjugated DOPAC was the main DA metabolite in the basal state and after hypoxia. Both the free and the conjugated forms of DA, MT, and DOPAC were increased by hypoxia.  相似文献   

8.
To examine the role of the GABA(A) receptor mediating systems in the control of gonadotropin-releasing hormone (GnRH) release from the ventromedial-infundibular region (VEN/IN) of anestrous ewes, the extracellular concentrations of GnRH, beta-endorphin, noradrenaline (NE), dopamine (DA), 4-hydroxy-3-methoxy-phenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC) were quantified during local stimulation or blockade of GABA(A) receptors with muscimol or bicuculline respectively. In most animals stimulation of GABA(A) receptors significantly attenuates GnRH release with concomitant increase of beta-endorphin and DA release, and MHPG and DOPAC levels. Blockade of the GABA(A) receptors generally did not affect GnRH and NE release but inhibited in most animals beta-endorphin release and decreased dopaminergic activity. These results suggest, that GABA may suppress GnRH release directly by GABA(A) receptor mechanism on the axon terminal of GnRH neurons or indirectly by GABA(A) receptor processes activating beta-endorphin-ergic and dopaminergic neurons in the VEN/NI. On the basis of these results in could not be distinguish between these two events. The decrease in extracellular beta-endorphin and dopamine concentration without evident changes in the GnRH level during GABA(A) receptor blockade may suggest that other neuronal systems are involved in this effect.  相似文献   

9.
The aim of the present study was to test the hypothesis that 3, 4-dihydroxyphenylalanine (DOPA) and dopamine (DA) in the gastrointestinal tract are to a large extent of exogenous origin and derived from food. Tissue concentrations of norepinephrine (NE), epinephrine (Epi), DA, DOPA, and 3,4-dihydroxyphenylacetic acid (DOPAC), as measured by reverse-phase HPLC with electrochemical detection, were studied in fed and 4-day-fasted Wistar rats as well as in sympathectomized and adrenodemedullated rats. Sympathectomy and adrenal demedullectomy decreased tissue concentrations of NE and Epi, respectively, but had no effect on the level of tissue DOPA. Large amounts of DOPA and DA were present in the gastrointestinal tract. Fasting decreased DOPA and DA in the stomach and DOPA concentrations in the quadriceps muscle but no concentrations in other organs. DOPAC in the heart decreased both in response to sympathectomy and to fasting, whereas DOPAC decreased in plasma after fasting and in skeletal muscle after sympathectomy. We conclude that the food content of DOPA and DA is of major importance for the metabolism of DA and, thus, for the dopamine-sulfate content in the gastrointestinal tract and in plasma. The decrease in muscle DOPA after fasting may be explained by less insulin being available during fasting for stimulation of DOPA uptake in the muscle depot. DOPAC in the organism seems to be of a dual origin, derived partly from DA in the food and partly from DA synthesized in sympathetic nerves.  相似文献   

10.
The concentrations of dopamine (DA), norepinephrine (NE), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the right and left cortex, striatum, and nucleus accumbens of adult Purdue-Wistar rats. There was more DA in the right cortex and accumbens and a greater concentration of NE in the left striatum. There is more 5-HT in the left striatum and right accumbens, more 5-HIAA in the left cortex, as well as a greater 5-HT turnover in the left accumbens. These results are considered in the light of previous findings concerning the relationship of neurochemical asymmetries and behavioral lateralization.  相似文献   

11.
Significant changes in monoamine levels and utilization were noted in certain brain regions of middle-aged Fisher 344 rats when compared with young adult controls. In the prefrontal cortex and septum, 3,4 dihydroxyphenylglycol (MHPG) and the MHPG/norepinephrine (NE) ratio were decreased. The septum also showed increases in dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) but there was a decrease in the DOPAC/DA ratio. The striatum showed an increase in the MPHG/NE ratio and an increase in DOPAC. The hippocampus and thalamus showed an increase in 5-hydroxyindoleacetic acid (5HIAA). This demonstrates that selected neurotransmitter systems in the brain are altered at an early stage of senescence. This could lead to ensuing neurological deficits.  相似文献   

12.
Transsynaptic Regulation of Olfactory Bulb Catecholamines in Mice and Rats   总被引:4,自引:2,他引:2  
Norepinephrine (NE), dopamine (DA), 3,4-dihydroxyphenylalanine (DOPA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured simultaneously by high performance liquid chromatography with electrochemical detection in extracts of olfactory bulbs at various intervals after chemical or surgical deafferentation. Chemical deafferentation of mice by intranasal irrigation with Triton X-100 or of rats by olfactory axotomy resulted in a rapid progressive decline of DA and DOPAC and an associated rise in NE in the olfactory bulb. However, after several weeks, these values returned to prelesion levels concomitant with reinnervation of the bulb by the afferent neurons. In contrast, deafferentation by procedures known to prevent reinnervation of the bulb by the afferent chemoreceptor neurons (i.e., a ZnSo4 solution in mice or a surgical procedure in rats) completely blocked the return to pre-lesion values of DA, DOPAC, and NE. The specificity of these effects was demonstrated by the inability of intranasal administration of the neurotoxin 6-hydroxydopamine to alter DA levels, resulting instead in a significant decline in olfactory bulb NE content. These data demonstrate that the DA content of the olfactory bulb can be influenced by either chemical or surgical modulation of the afferent pathway in two different species. This offers additional support for our hypothesis of transsynaptic regulation of intrinsic DA neurons of the bulb by the afferent olfactory chemoreceptor neurons.  相似文献   

13.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

14.
A rapid and simple chromatographic procedure using HPLC with electrochemical detection is described for simultaneous determination of the substrates from precursor amino acids to metabolites related to synthesis and metabolism of three monoamine neurotransmitters--norepinephrine (NE), dopamine (DA), and 5-hydroxytryptamine (5-HT, serotonin)--in discrete brain areas of the mouse. Under the present instrumental and mobile phase conditions, the procedure permits simultaneous determination of three monoamines (NE, DA, and 5-HT), two precursor amino acids (tyrosine and tryptophan), and four respective metabolites (3-methoxy-4-hydroxyphenylglycol, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid) within 10 min in one chromatographic run. By varying column temperature, this procedure also permits simultaneous determination of 10-14 monoamine-related substrates including the nine substrates described above within 15-21 min. The validity of the present procedure is demonstrated by analyzing the effect of an alpha 2-adrenergic agonist (clonidine) and an alpha 2-antagonist (yohimbine) in mouse hypothalamus.  相似文献   

15.
Norepinephrine (NE), dopamine (DA) and its metabolites homovanillic acid (HVA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) were analyzed in human ventral spinal nerve roots and peripheral nerves by gas chromatography-mass spectrometry. High concentrations of DA and HVA were found in almost all tissues analyzed. The concentration of DA and HVA was usually higher than in blood. In vagus nerve and in some spinal nerve roots, the concentration of DA was higher than that of NE, while in other nerves (splanchnic nerve and genitofemoral nerve) DA represented 20 or more percent of NE. The concentration of HVA was usually higher than the concentration of DA indicating that a large portion of DA in peripheral nerves is catabolized and not converted to NE. High concentrations of DA and HVA in human peripheral nerves indicate that a wide distribution of peripheral DA-containing nerves might exist. The distribution of DA in different nerves suggests an association of potential DA-containing nerves with the autonomic nervous system.  相似文献   

16.
Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and norepinephrine (NE) are present in the rat cardiovascular system. All of the catechols can be partially depleted by administering 6-hydroxydopamine (6-HODA). When animals are pretreated with desipramine before 6-HODA, there is a selective partial depletion of DA and DOPAC. NE can be partially depleted with minimal effects on DA and DOPAC by administering N-(2-chloroethyl)N-ethyl-2-bromobenzylamine (DSP-4). These results are consistent with the hypothesis that independent dopaminergic and noradrenergic elements are present in the rat cardiovascular system and that DA is not solely a precursor for NE. NE, DA and DOPAC were assayed in human vessels and the pattern of distribution of the catechols is consistent with the results reported for animals.  相似文献   

17.
The urine concentrations of free salsolinol were determined in six healthy volunteers, using a gas chromatographic—mass spectrometric method with electron-capture negative-ion chemical ionization after derivatization with pentafluoropropionyl anhydride. The sensitivity of this method allows the quantification of salsolinol concentrations of 0.55 pmol/ml. The synthesis of [2H4]salsolinol from dopamine and [2H4]acetaldehyde via a Pictet—Spengler condensation is described; [2H4]salsolinol was used as the internal standard for salsolinol quantification. The urine concentrations of free salsolinol ranged from ca. 1 to 6 pmol/ml.  相似文献   

18.
A reversed-phase chromatographic method with electrochemical detection was developed for the simultaneous determination of 2,3- and 2,5-dihydroxybenzoates, indicators of in vivo hydroxyl free radical formation, monoamines (NE, DA, 5-HT) and their metabolites (MHPG, DOPAC, HVA, 3MT, 5-HIAA). Linearity was observed from 10 pg to 10 ng injected. Reproducibility is correct (C.V. about 9%) except for 3MT and 5-HT. The limit of detection for almost all products was about 20 pg injected on the column. An application of this method in the study of the neurotoxicity of high pressure oxygen in rat is described. The limit of quantification for all compounds was 5 ng/ml except for HVA (10 ng/ml). Some basal levels DA, 5-HT, 5-HIAA, HVA, DOPAC, 3MT, 2,5-DHBA and 2,3-DHBA in microdialysates coming from striatum of normoxic restrained rats are given.  相似文献   

19.
Endogenous levels of salsolinol and dopamine were measured by a gas chromatography/mass spectrometry (GC/MS) - selected ion monitoring technique using deuterated internal standards in Long Evans rats chronically exposed to ethanol for ten months. Chronic ethanol exposure produced significant increases of dopamine and salsolinol concentrations in the medial basal hypothalamus but not striatum. The data suggest that the occurrence of salsolinol in rat brain tissue is a consequence of an in vivo Pictet-Spengler cyclization.  相似文献   

20.
K A Young  R E Wilcox 《Life sciences》1991,48(19):1845-1852
We kinetically characterized D2 receptors in thalami pooled from a group of Sprague-Dawley rats and then determined thalamic levels of dopamine (DA), homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), and norepinephrine (NE) in relation to a measure of thalamic DA D2 receptor densities in another group of rats. The equilibrium dissociation constant (kd) was estimated as 0.1 nM by three independent methods, while the Bmax for thalamic D2 receptors was found to be 6.4 fmol/mg p using 3H-spiperone as ligand and ketanserin to occlude 5HT2 binding. Kinetic constants were in agreement with previously reported kinetic data from rodent caudate-putamen. This suggests that thalamic D2 receptors are similar to D2 receptors from other brain areas. Mean thalamic levels of DA (22.6 ng/mg p), DOPAC (1.19 ng/mg p) and HVA (0.31 ng/mg p) concur with previous reports of a sparse distribution of thalamic DA neurons. D2 receptor densities were positively correlated with DA metabolites DOPAC (P less than .05; r = 0.423) and HVA (P less than .05; r = 0.368), but not DA or NE. These results establish fundamental characteristics of thalamic DA neurotransmission to assist in the investigation of behavioral pharmacology of this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号