首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared the distribution patterns of individual Plasmodium species and mixed-species infections in two geographically close endemic areas, but showing environmental differences. Comparisons concerned circulating Plasmodium infections in both human and mosquito vector populations in the dry and wet seasons, at a micro-epidemiological level (households). Both areas revealed a very high overall prevalence of infection, all year-round and in all age groups. Plasmodium falciparum was the predominant species, being found in the vast majority of infected individuals regardless of the presence of other species. Plasmodium malariae and Plasmodium ovale occurred almost exclusively in mixed infections. Seasonal variation in P. malariae prevalence was observed in one area but not in the other. A decrease in P. malariae prevalence concurred with a marked increase of P. falciparum prevalence. However this was strongly dependent on age and when analysing infections at the individual level, a different pattern between co-infecting species was unveiled. Regarding transmission patterns, in both areas, P. falciparum gametocytes predominated in single infections regardless of age and P. malariae gametocyte carriage increased when its overall prevalence decreased.  相似文献   

2.
Gametocytemia and fever in human malaria infections   总被引:2,自引:0,他引:2  
We examine the charts of 408 malaria-naive neurosyphilis patients given malaria therapy at the South Carolina USPHS facility, with daily records encompassing at least 93% of the duration of infection, and focus on the 152 patients infected with the St. Elizabeth strain of Plasmodium vivax, 82 with the McLendon strain of Plasmodium filciparum, 36 with the USPHS strain of Plasmodium malariae, and 15 with the Donaldson strain of Plasmodium ovale in whom gametocytes appeared before drug, or other, intervention. In P. vivax infections, fever and parasitemia were higher after gametocytes were first detected than before; in P. malariae infections, parasitemia was higher. In P. ovale infections, fever and parasitemia were similar before and after. In P. falciparum infections, fever, parasitemia, and fever frequency were lower after gametocytes were first detected than before. Parasitemia and temperature correlated in P. vivax infections, before and after gametocytes were first detected; parasitemia and temperature at first fever were not correlated in infections with any species. Gametocyte density correlated with parasitemia in P. malariae and sporozoite-induced P. falciparum and P. vivax infections. Fevers and detected gametocytemia coincided more often than expected by chance with P. vivax and P. ovale; fever temperature and gametocyte density were not correlated in infections with any species.  相似文献   

3.
We analyzed point-prevalence data from 19 recent studies of human populations in which either Plasmodium ovale or Plasmodium vivax co-occur with Plasmodium falciparum and Plasmodium malariae. Although the only statistical interactions among, sympatric congeners are pairwise, the frequencies of mixed-species infections relative to standard hypotheses of species sampling independence show no strong relation to overall malaria prevalence. The striking difference between the P. falciparum-P. malariae-P. ovale and the P. falciparum-P. malariae-P. vivax data is that the first typically shows a statistical surplus of mixed-species infections and the second a deficit. This suggests that the number of Plasmodium species present in a human population may be less important in determining the frequencies of mixed-species infections than is the identity of those species.  相似文献   

4.
Plasmodium malariae and Plasmodium ovale--the "bashful" malaria parasites   总被引:1,自引:0,他引:1  
Although Plasmodium malariae was first described as an infectious disease of humans by Golgi in 1886 and Plasmodium ovale identified by Stevens in 1922, there are still large gaps in our knowledge of the importance of these infections as causes of malaria in different parts of the world. They have traditionally been thought of as mild illnesses that are caused by rare and, in case of P. ovale, short-lived parasites. However, recent advances in sensitive PCR diagnosis are causing a re-evaluation of this assumption. Low-level infection seems to be common across malaria-endemic areas, often as complex mixed infections. The potential interactions of P. malariae and P. ovale with Plasmodium falciparum and Plasmodium vivax might explain some basic questions of malaria epidemiology, and understanding these interactions could have an important influence on the deployment of interventions such as malaria vaccines.  相似文献   

5.
We describe here the sequence of the circumsporozoite protein gene of the monkey malaria parasite Plasmodium brasilianum and show that the immunodominant repeat domain is the same as that of the human malaria parasite, Plasmodium malariae. The immunodominant epitope on the surface of sporozoites of a third species of human malaria parasite has, therefore, been identified. This genetic based data and the biological similarities between P. brasilianum and P. malariae support their putative zoonotic/anthroponotic relationship. We also show that an ape malaria parasite, Plasmodium reichenowi, and the human malaria parasite, Plasmodium falciparum, have a similar relationship. The implications of these observations are discussed with respect to vaccine development.  相似文献   

6.
The aim of this study was to determine the prevalence of malaria infection and antibodies against the repetitive epitopes of the circumsporozoite (CS) proteins of Plasmodium falciparum, P. malariae, P. vivax VK210, P. vivax VK247, and P. vivax-like in individuals living in the states of Rond?nia, Pará, Mato Grosso, Amazonas, and Acre. Active malaria transmission was occurring in all studied sites, except in Acre. P. falciparum was the predominant species in Pará and Rond?nia and P. vivax in Mato Grosso. Infection by P. malariae was low but this Plasmodium species was detected in Rond?nia (3.5%), Mato Grosso (2.5%), and Pará (0.8%). High prevalence and levels of serological reactivity against the CS repeat peptides of P. falciparum were detected in Rond?nia (93%) and Pará (85%). Sera containing antibodies against the CS repeat of P. malariae occurred more frequently in Rond?nia (79%), Pará (76%), and Amazonas (68%). Antibodies against the repeat epitope of the standard CS protein of P. vivax VK210, P. vivax VK247, and P. vivax-like were more frequent in Rond?nia, Pará, and Mato Grosso. The high frequency of reactions to P. malariae in most of the areas suggests that the infection by this Plasmodium species has been underestimated in Brazil.  相似文献   

7.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   

8.
A longitudinal epidemiological and entomological study was carried out in Ocamo, Upper Orinoco River, between January 1994 and February 1995 to understand the dynamics of malaria transmission in this area. Malaria transmission occurs throughout the year with a peak in June at the beginning of the rainy season. The Annual Parasite Index was 1,279 per 1,000 populations at risk. Plasmodium falciparum infections accounted for 64% of all infections, P. vivax for 28%, and P. malariae for 4%. Mixed P. falciparum/P. vivax infections were diagnosed in 15 people representing 4% of total cases. Children under 10 years accounted for 58% of the cases; the risk for malaria in this age group was 77% higher than for those in the greater than 50 years age group. Anopheles darlingi was the predominant anopheline species landing on humans indoors with a biting peak between midnight and dawn. A significant positive correlation was found between malaria monthly incidence and mean number of An. darlingi caught. There was not a significant relationship between mean number of An. darlingi and rainfall or between incidence and rainfall. A total of 7295 anophelines were assayed by ELISA for detection of Plasmodium circumsporozoite (CS) protein. Only An. darlingi (55) was positive for CS proteins of P. falciparum (0.42%), P. malariae (0.25%), and P. vivax-247 (0.1%). The overall estimated entomological inoculation rate was 129 positive bites/person/year. The present study was the first longitudinal entomological and epidemiological study conducted in this area and set up the basic ground for subsequent intervention with insecticide-treated nets.  相似文献   

9.
A PCR method involving a genus-specific oligonucleotides set and Southern blot hybridization with four species-specific probes to P. falciparum, P. vivax, P. malariae and P. ovale was evaluated for the detection of malaria parasites in blood samples from 101 patients with clinically suspect malaria infection imported to Italy. Plasmodium falciparum was the main species detected. As determined by microscopy, 53 (52.4%) patients had malaria and of these: 40 (75.5%) were infected with P. falciparum; 7 (13.2%) with P. vivax; 1 (1.9%) with P. ovale; 3 (5.7%) with P. malariae; 1 (1.9%) with P. vivax or P. ovale; and 1 (1.9%) with P. falciparum or P. vivax. Ninety-seven out 101 blood samples were submitted to ParaSight-F test which showed a sensitivity of 94.73%, and a specificity of 93.22%, as compared to microscopy. The PCR assay using the genus-specific oligonucleotide primer set (pg-PCR) was able to detect 53 (52.4%) infections and showed a sensitivity of 100% and a specificity of 100%, when compared to microscopy. The parasite species were identified by Southern blot hybridization using species-specific probes and 40 (75.5%) samples were P. falciparum positive, 5 (9.4%) P. vivax positive, 4 (7.5%) P. ovale positive, and 2 (3.8%) P. malariae positive. When the Southern blot results were compared to those of blood-film diagnosis, we observed some disagreement. In particular, compared to Southern blot, microscopy underestimated P. ovale infection; blood film analysis recognised only 1 P. ovale sample, whereas Southern blot recognised 4 P. ovale positive samples (by microscopy, 2 of these were detected as P. vivax, 1 as P. ovale or P. vivax, and the other as P. falciparum or P. vivax). Southern blot hybridization was unable to identify one P. falciparum and one P. vivax positive case detected by microscopy. We also plan to use a reference nested-PCR assay to clarify the disagreement observed between microscopy and Southern blot hybridization.  相似文献   

10.
Aotus nancymai (karyotype I) monkeys from Peru were studied for their susceptibility to infection with Plasmodium falciparum, P. vivax, and P. malariae. Three strains of P. falciparum (Santa Lucia from El Salvador, Indochina I/CDC from Thailand, and Uganda Palo Alto) were inoculated into 38 monkeys. The results indicated that this species of Aotus monkey is highly susceptible to infection. The Uganda Palo Alto and the Santa Lucia strain parasites appear to be the most useful for immunologic and chemotherapeutic studies. Five strains of P. vivax (Chesson, ONG, Vietnam Palo Alto, Salvador I, and Honduran I/CDC) were inoculated into 28 monkeys. The Vietnam Palo Alto strain produced the highest level parasitemias ranging from 23,800 to 157,000/mm3. Mosquito infections were obtained with the ONG, Chesson, and Salvador I strains. Two out of 6 attempts to transmit P. vivax via sporozoite inoculation to splenectomized monkeys were successful with prepatent periods of 39 and 57 days. Five monkeys were infected with the Uganda I/CDC strain of P. malariae. Maximum parasitemias ranged from 10 to 5,390/mm3.  相似文献   

11.
ABSTRACT: BACKGROUND: The simian parasite Plasmodium knowlesi is recognized as a common cause of severe and fatal human malaria in Sabah, Malaysia, but is morphologically indistinguishable from and still commonly reported as Plasmodium malariae, despite the paucity of this species in Sabah. Since December 2008 Sabah Department of Health has recommended intravenous artesunate and referral to a general hospital for all severe malaria cases of any species. This paper reviews all malaria deaths in Sabah subsequent to the introduction of these measures. Reporting of malaria deaths in Malaysia is mandatory. METHODS: Details of reported malaria deaths during 2010-2011 were reviewed to determine the proportion of each Plasmodium species. Demographics, clinical presentations and management of severe malaria caused by each species were compared. RESULTS: Fourteen malaria deaths were reported, comprising seven Plasmodium falciparum, six P. knowlesi and one Plasmodium vivax (all PCR-confirmed). Of the six P. knowlesi deaths, five were attributable to knowlesi malaria and one was attributable to P. knowlesi-associated enterobacter sepsis. Patients with directly attributable P. knowlesi deaths (N = 5) were older than those with P. falciparum (median age 51 [IQR 50-65] vs 22 [IQR 9-55] years, p = 0.06). Complications in fatal P. knowlesi included respiratory distress (N = 5, 100%), hypotension (N = 4, 80%), and renal failure (N = 4, 80%). All patients with P. knowlesi were reported as P. malariae by microscopy. Only two of five patients with severe knowlesi malaria on presentation received immediate parenteral anti-malarial treatment. The patient with P. vivaxassociated severe illness did not receive parenteral treatment. In contrast six of seven patients with severe falciparum malaria received immediate parenteral treatment. CONCLUSION: Plasmodium knowlesi was responsible, either directly or through gram-negative bacteraemia, for almost half of malaria deaths in Sabah. Patients with severe non-falciparum malaria were less likely to receive immediate parenteral therapy. This highlights the need in Sabah for microscopically diagnosed P. malariae to be reported as P. knowlesi to improve recognition and management of this potentially fatal species. Clinicians need to be better informed of the potential for severe and fatal malaria from non-falciparum species, and the need to treat all severe malaria with immediate intravenous artesunate.  相似文献   

12.
We report an exceptional finding from a blood slide collected in a remote area in the western half of New Guinea Island (Irian Jaya Province, Indonesia). One adolescent patient was found patently coinfected with all 4 known human malaria species, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. Diagnostic erythrocytic stages of all 4 species were clearly seen in the peripheral blood. A nested polymerase chain reaction, using species-specific primer pairs to detect DNA, helped substantiate this finding. Previous reports from Africa, Thailand, and New Guinea have detected all 4 species in a population but not simultaneously in an individual with a patent, microscopically detectable infection. We believe this quadruple infection represents the first reported natural case of all 4 human malaria parasites observed concurrently in the peripheral blood from a single Giemsa-stained slide.  相似文献   

13.
ABSTRACT: BACKGROUND: Asymptomatic carriage of Plasmodium falciparum and Plasmodium vivax is common in both low-and high-transmission settings and represents an important reservoir of infection that needs to be targeted if malaria elimination is to succeed. METHODS: Mass blood examinations (475 individuals) were conducted in two villages in Mae Hong Son, an area of endemic but low-transmission malaria in the north-west of Thailand. The microscopist at the local malaria clinic did not detect any infections. Pools of four samples were screened by real-time PCR; individual members of all of the positive pools were then re-examined by expert microscopy and by a second species-specific PCR reaction. RESULTS: Eight subjects were found to be positive by both PCR and expert microscopy and one was found to be positive by PCR alone. The slides contained asexual stage parasites of P. vivax, P. falciparum and Plasmodium malariae, but no gametocytes. The local clinic was notified within two to eight days of the survey. CONCLUSION: A combination of pooling, real-time PCR and expert microscopy provides a feasible approach to identifying and treating asymptomatic malaria infections in a timely manner.  相似文献   

14.
Bertonati C  Tramontano A 《Proteins》2007,69(2):215-222
Malaria is caused by protozoan parasites of the genus Plasmodium. Four species of Plasmodium can infect humans: P. falciparum, P. malariae, P. vivax, and P. ovale. P. falciparum is the only able to cytoadhere to the surface of postcapillary endothelial cells. A key role in cytoadherence is played by the interaction between the PfEMP1 P. falciparum protein and the human intracellular adhesion molecule (ICAM-1) although very little is known about the molecular details of this complex. Here we propose a model for this interaction on the basis of a homology model of the functional domain of PfEMP1 and of the ICAM-1 three dimensional structures. Our model is consistent with the results of many experimental observations, provides a rational explanation for the different binding abilities of different strains of P. falciparum and explains the reduced binding affinity of the A4 strain of P. falciparum for the ICAM-1(Kilifi) polymorphism. On the basis of our model, we can also explain why the murine ICAM-1, although sharing 70% sequence similarity with its human homologue, does not bind PfEMP1, and why the binding of fibrinogen and PfEMP1 to ICAM-1 is mutually exclusive. The model of the complex proposed here can serve as a useful tool for the design and interpretation of biochemical and immunological experimental results.  相似文献   

15.
Following an investigation suggesting a protective role for Ascaris against cerebral malaria, possibly through immunomodulation, we examined whether Ascaris had any impact on mixed Plasmodium falciparum and Plasmodium vivax infections. We studied a cross section of 928 patient files between 1991 and 1999. Forty patients had contemporaneous mixed infections and 40 patients had P. falciparum infections, followed by P. vivax infections. There was a significant association between Ascaris infection and risk of having both contemporaneous or successive mixed P. falciparum and P. vivax infections (adjusted odds ratios respectively 6 [2-18] P = 0.001 and 3.6 [1.2-11.1] P = 0.02). There was a positive linear trend between the burden of Ascaris and the risk of mixed infections P < 0.0001. These results suggested the possibility that pre-existing Ascaris infection may increase tolerance of the host to different Plasmodium spp., thus facilitating their coexistence.  相似文献   

16.
Plasmodium falciparum causes most of the one million annual deaths from malaria. Drug resistance is widespread and novel agents against new targets are needed to support combination-therapy approaches promoted by the World Health Organization. Plasmodium species are purine auxotrophs. Blocking purine nucleoside phosphorylase (PNP) kills cultured parasites by purine starvation. DADMe-Immucillin-G (BCX4945) is a transition state analogue of human and Plasmodium PNPs, binding with picomolar affinity. Here, we test BCX4945 in Aotus primates, an animal model for Plasmodium falciparum infections. Oral administration of BCX4945 for seven days results in parasite clearance and recrudescence in otherwise lethal infections of P. falciparum in Aotus monkeys. The molecular action of BCX4945 is demonstrated in crystal structures of human and P. falciparum PNPs. Metabolite analysis demonstrates that PNP blockade inhibits purine salvage and polyamine synthesis in the parasites. The efficacy, oral availability, chemical stability, unique mechanism of action and low toxicity of BCX4945 demonstrate potential for combination therapies with this novel antimalarial agent.  相似文献   

17.
BACKGROUND: Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection. METHODOLOGY AND SIGNIFICANT FINDINGS: We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites. CONCLUSIONS: The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi.  相似文献   

18.
Morphological changes in erythrocytes induced by malarial parasites   总被引:1,自引:0,他引:1  
Host cell alterations induced by Plasmodium falciparum, P. brasilianum, P. vivax and P. malariae were described by electron microscopy and post-embedding immunoelectron microscopy. P. falciparum infection induces knobs, electron-dense material and clefts in the erythrocyte. Clefts are involved in exporting P. falciparum antigen from the parasite to the erythrocyte membrane. P. falciparum antigen is present in knobs which adhere to endothelial cells causing the blockage of cerebral capillaries and ensuing pathological changes in cerebral tissues. P. brasilianum infection induces knobs, short and long clefts and electron-dense material. These structures appear to contain different P. brasilianum antigens. This indicates that each structure functions independently in trafficking P. brasilianum protein to the erythrocyte surface. P. vivax infection induces caveola-vesicle complexes and clefts in the erythrocyte. These structures are also involved in trafficking P. vivax protein from the parasite to the erythrocyte membrane. P. malariae induces caveolae, electron-dense material, vesicles, clefts and knobs in the erythrocyte. Although vesicles and caveolae are seen in the erythrocyte cytoplasm, they do not form caveola-vesicle complexes as seen in P. vivax-infected erythrocytes. They also appear to be involved in trafficking of malaria antigens. These studies, therefore, indicate that host cell changes occur in order to facilitate the transport of malarial antigens to the host cell membrane. The significance of these phenomena is still not clear.  相似文献   

19.
A new molecular diagnostic method "Malaria-IBRIDOGEN" (Amplimedical S.p.A.--Bioline Division, Turin, Italy) based on a plate-hybridization assay for the simultaneous detection and identification of human malaria parasites was evaluated in this study. A target DNA sequence of the plasmodial 18S ribosomal RNA gene was amplified by polymerase chain reaction (PCR) and hybridized in microtiter wells with five biotinylated probes each specific for Plasmodium falciparum, P. vivax, P. malariae, P. ovale and the beta-globine human gene, respectively. Compared to the nested-PCR actually used in our laboratory for the molecular diagnosis of malaria, "Malaria-IBRIDOGEN" revealed an overall sensitivity of 100% (51/51) for the four human Plasmodium species testing 100 whole blood samples from people with malaria-like symptoms and fever. Specificity was 92% (45/49) considering four discordant samples as "false positive" by "Malaria-IBRIDOGEN". The assay showed a threshold of parasite density (detection limit) of 0.07 P. falciparum parasites/microliter, 0.15-1.5 P. vivax parasites/microliter, 0.3 P. malariae parasites/microliter and 0.4 P. ovale parasites/microliter of whole blood, respectively. This assay could be successfully applied to the laboratory diagnosis of malaria as a useful aid to microscopy.  相似文献   

20.
Parasite lactate dehydrogenase (pLDH) is a potential drug target for new antimalarials owing to parasite dependence on glycolysis for ATP production. The pLDH from all four species of human malarial parasites were cloned, expressed, and analyzed for structural and kinetic properties that might be exploited for drug development. pLDH from Plasmodium vivax, malariae, and ovale exhibit 90-92% identity to pLDH from Plasmodium falciparum. Catalytic residues are identical. Resides I250 and T246, conserved in most LDH, are replaced by proline in all pLDH. The pLDH contain the same five-amino acid insert (DKEWN) in the substrate specificity loops. Within the cofactor site, pLDH from P. falciparum and P. malariae are identical, while pLDH from P. vivax and P. ovale have one substitution. Homology modeling of pLDH from P. vivax, ovale, and malariae with the crystal structure of pLDH from P. falciparum gave nearly identical structures. Nevertheless, the kinetic properties and sensitivities to inhibitors targeted to the cofactor binding site differ significantly. Michaelis constants for pyruvate and lactate differ 8-9-fold; Michaelis constants for NADH, NAD(+), and the NAD(+) analogue 3-acetylpyridine adenine dinucleotide differ up to 4-fold. Dissociation constants for the inhibitors differ up to 21-fold. Molecular docking studies of the binding of the inhibitors to the cofactor sites of all four pLDH predict similar orientations, with the docked ligands positioned at the nicotinamide end of the cofactor site. pH studies indicate that inhibitor binding is independent of pH in the pH 6-8 range, suggesting that differences in dissociation constants for a specific inhibitor are not due to altered active site pK values among the four pLDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号