首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Myeloperoxidase plays the key role in antimicrobial of phagocytes. This enzyme uses hydrogen peroxide and chloride to catalyze hypochlorous acid formation. HOCl is the most probable agent in the oxygen-dependent bactericidal activity in the phagocyte phagosome. Chlorination markers indicate HOCl generation in the quantities lethal for bacteria. Enzymatic assay for myeloperoxidase indicates proceeding of other reactions involved in bactericidal activity. Superoxide integrates many activities of this kind and is important for physiological function of myeloperoxidase. Elucidation of phagosomes biochemistry can help us to understand why certain pathogens survive in such unfavorable environment.  相似文献   

2.
We investigated the effect of D-penicillamine on the ability of myeloperoxidase, purified from human leukocytes, to catalyse the oxidation of chloride ions to hypochlorite (HOCl) in the presence of H2O2. It is shown that, due to the interaction of D-penicillamine with both myeloperoxidase itself and HOCl, the chlorinating activity of myeloperoxidase in the presence of H2O2 and chloride ions is prevented. A concentration of 100 microM D-penicillamine inhibits the chlorinating activity of myeloperoxidase completely, which Is due to the stabilization of Compound II, an inactive form of the enzyme. In addition, HOCl reacts directly with D-penicillamine. Analysis of the reaction products of D-penicillamine and HOCl showed that D-penicillamine was oxidized to penicillamine disulphide and penicillamine sulphinic acid, and eventually deaminated (indicated by the release of ammonia). Lower concentrations of D-penicillamine (10 microM) inhibited myeloperoxidase less, but still acted as effective scavengers of HOCl. In very low concentrations (1 microM), D-penicillamine did not scavenge HOCl effectively, but rather stimulated the chlorinating activity of myeloperoxidase. However, when instead of D-penicillamine a comparable amount of ascorbate was added, a similar but even larger stimulation was observed. Since the concentration of free D-penicillamine in serum from rheumatoid patients treated with this drug is about 20 microM (Saetre, R. and Rabenstein, D.L. (1978) Anal. Chem. 50, 276-280), the therapeutic effect of D-penicillamine may be due to the protection of tissues against the reactive HOCl released by activated granulocytes at inflammation sites.  相似文献   

3.
The leukocyte enzyme myeloperoxidase (MPO) is capable of catalyzing the oxidation of chloride and bromide ions, at physiological concentrations of these substrates, by hydrogen peroxide, generating hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. Our previous results showed that the hypohalous acids formed react with double bonds in phosphatidylcholines (PCs) to produce chloro- and bromohydrins. Lysophosphatidylcholine (lyso-PC) is additionally formed in PCs with two or more double bonds. This study was conducted to determine the effect physiological chloride concentration (140 mM) has on the formation of bromohydrins and lyso-PC from unsaturated PC upon treatment with the myeloperoxidase/hydrogen peroxide/bromide (MPO/H2O2/Br-) system using physiological bromide concentrations (20-100 microM). The composition of reaction products was analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). With monounsaturated PC, we demonstrated that the rate and extent of mono-bromohydrin formation were higher in the samples with 140 mM chloride compared to those with no added chloride. Moreover, mono-bromohydrin came to be the major product and no mono-chlorohydrin was observed already at 60 microM bromide. We attributed these effects to the involvement of HOBr arising from the reaction of MPO-derived HOCl with bromide rather than to the exchange of bromide with chlorine atoms of chlorohydrins or direct formation of HOBr by MPO. The presence of chloride shifted the pH optimum for mono-bromohydrin formation (pH 5.0) toward neutral values, and a significant yield of mono-bromohydrin was detected at physiological pH values (7.0-7.4). For polyunsaturated PC, chloride enhanced also lyso-PC production, the effect being pronounced at bromide concentrations below 40 microM. The results indicate that at physiological levels of chloride and bromide, chloride promotes MPO-mediated formation of bromohydrins and lyso-PC in unsaturated phospholipids.  相似文献   

4.
When neutrophils ingest bacteria, they discharge superoxide and myeloperoxidase into phagosomes. Both are essential for killing of the phagocytosed micro-organisms. It is generally accepted that superoxide is a precursor of hydrogen peroxide which myeloperoxidase uses to oxidize chloride to hypochlorous acid. Previously, we demonstrated that superoxide modulates the chlorination activity of myeloperoxidase by reacting with its ferric and compound II redox states. In this investigation we used pulse radiolysis to determine kinetic parameters of superoxide reacting with redox forms of myeloperoxidase and used these data in a steady-state kinetic analysis. We provide evidence that superoxide reacts with compound I and compound III. Our estimates of the rate constants for the reaction of superoxide with compound I, compound II, and compound III are 5 x 10(6) M-1 s-1, 5.5 +/- 0.4 x 10(6) M-1 s-1, and 1.3 +/- 0.2 x 10(5) M-1 s-1, respectively. These reactions define new activities for myeloperoxidase. It will act as a superoxide dismutase when superoxide reacts consecutively with ferric myeloperoxidase and compound III. It will also act as a superoxidase by using hydrogen peroxide to oxidize superoxide via compound I and compound II. The favorable kinetics of these reactions indicate that, within the confines of a phagosome, superoxide will react with myeloperoxidase and affect the reactions it will catalyze. These interactions of superoxide and myeloperoxidase will have a major influence on the way neutrophils use oxygen to kill bacteria. Consequently, superoxide should be viewed as a cosubstrate that myeloperoxidase uses to elicit bacterial killing.  相似文献   

5.
The inhibitory effect of the anti-arthritic drug D-penicillamine on the formation of hypochlorite (HOCl) by myeloperoxidase from H2O2 and Cl- was investigated. When D-penicillamine was added to myeloperoxidase under turnover conditions, Compound III was formed, the superoxide derivative of the enzyme. Compound III was not formed when D-penicillamine was added in the presence of EDTA or in the absence of oxygen. However, when H2O2 was added to myeloperoxidase, D-penicillamine and EDTA, Compound III was formed. Therefore it is concluded that formation of Compound III is initiated by metal-catalysed oxidation of the thiol group of this anti-arthritic drug, resulting in formation of superoxide anions. Once Compound III is formed, a chain reaction is started via which the thiol groups of other D-penicillamine molecules are oxidized to disulphides. Concomitantly, Compound I of myeloperoxidase would be reduced to Compound II and superoxide anions would be generated from oxygen. This conclusion is supported by experiments which showed that formation of Compound III of myeloperoxidase by D-penicillamine depended on the chloride concentration. Thus, an enzyme intermediate which is active in chlorination (i.e. Compound I) participated in the generation of superoxide anions from the anti-arthritic drug. From the results described in this paper it is proposed that D-penicillamine may exert its therapeutic effect in the treatment of rheumatoid arthritis by scavenging HOCl and by converting myeloperoxidase to Compound III, which is inactive in the formation of HOCl.  相似文献   

6.
Peroxynitrite (ONOO-) is a reactive nitrogen species which in vivo is often assessed by the measurement of free or protein bound 3-nitrotyrosine. Indeed, 3-nitrotyrosine has been detected in many human diseases. However, at sites of inflammation there is also production of the powerful oxidant hypochlorous acid (HOCl) formed by the enzyme myeloperoxidase. Low concentrations of HOCl (<30 microM) caused significant and rapid loss (<10 minutes) of free and protein bound 3-nitrotyrosine. In contrast, no loss of 3-nitrotyrosine was observed with hydrogen peroxide, hydroxyl radical, or superoxide generating systems. Therefore, under conditions where there is concomitant peroxynitrite and hypochlorous acid formation, such as at sites of chronic inflammation, it is possible that HOCl removes 3-nitrotyrosine. This may have implications when assessing the role of reactive nitrogen species in disease conditions and could account for some of the discrepancies reported between 3-nitrotyrosine levels in tissues.  相似文献   

7.
Human neutrophils represent the predominant leucocyte in circulation and the first responder to infection. Concurrent with ingestion of microorganisms, neutrophils activate and assemble the NADPH oxidase at the phagosome, thereby generating superoxide anion and hydrogen peroxide. Concomitantly, granules release their contents into the phagosome, where the antimicrobial proteins and enzymes synergize with oxidants to create an environment toxic to the captured microbe. The most rapid and complete antimicrobial action by human neutrophils against many organisms relies on the combined efforts of the azurophilic granule protein myeloperoxidase and hydrogen peroxide from the NADPH oxidase to oxidize chloride, thereby generating hypochlorous acid and a host of downstream reaction products. Although individual components of the neutrophil antimicrobial response exhibit specific activities in isolation, the situation in the environment of the phagosome is far more complicated, a consequence of multiple and complex interactions among oxidants, proteins and their by‐products. In most cases, the cooperative interactions among the phagosomal contents, both from the host and the microbe, culminate in loss of viability of the ingested organism.  相似文献   

8.
Carr AC  Frei B 《Biological chemistry》2002,383(3-4):627-636
Oxidatively modified low-density lipoprotein (LDL) has been strongly implicated in the pathogenesis of atherosclerosis. Peripheral blood leukocytes, such as neutrophils, can oxidize LDL by processes requiring superoxide and redox-active transition metal ions; however, it is uncertain whether such catalytic metal ions are available in the artery wall. Stimulated leukocytes also produce the reactive oxidant hypochlorous acid (HOCl) via the heme enzyme myeloperoxidase. Since myeloperoxidase-derived HOCl may be a physiologically relevant oxidant in atherogenesis, we investigated the mechanisms of neutrophil-mediated LDL modification and its possible prevention by the antioxidant ascorbate (vitamin C). As a sensitive marker of LDL oxidation, we measured LDL thiol groups. Stimulated human neutrophils (5x10(6) cells/ml) incubated with human LDL (0.25 mg protein/ml) time-dependently oxidized LDL thiols (33% and 79% oxidized after 10 and 30 min, respectively). Supernatants from stimulated neutrophils also oxidized LDL thiols (33% oxidized after 30 min), implicating long-lived oxidants such as N-chloramines. Experiments using specific enzyme inhibitors and oxidant scavengers showed that HOCl, but not hydrogen peroxide nor superoxide, plays a critical role in LDL thiol oxidation by neutrophils. Ascorbate (200 microM) protected against neutrophil-mediated LDL thiol oxidation for up to 15 min of incubation, after which LDL thiols became rapidly oxidized. Although stimulated neutrophils accumulated ascorbate during oxidation of LDL, pre-loading of neutrophils with ascorbate did not attenuate oxidant production by the cells. Thus, activated neutrophils oxidize LDL thiols by HOCl- and N-chloramine-dependent mechanisms and physiological concentrations of vitamin C delay this process, most likely due to scavenging of extracellular oxidants, rather than by attenuating neutrophil oxidant production.  相似文献   

9.
Human neutrophilic myeloperoxidase (MPO) is involved in the defence mechanism of the body against micro-organisms. The enzyme catalyses the generation of the strong oxidant hypochlorous acid (HOCl) from hydrogen peroxide and chloride ions. In normal neutrophils MPO is present in the dimeric form (140 kDa). The disulphide-linked protomers each consist of a heavy subunit and a light one. Reductive alkylation converts the dimeric enzyme into two promoters, 'hemi-myeloperoxidase'. We studied the initial activities of human dimeric MPO and hemi-MPO at the physiological pH of 7.2 and found no significant differences in chlorinating activity. These results indicate that, at least at neutral pH, the protomers of MPO function independently. The absorption spectra of MPO compounds II and III, both inactive forms concerning HOCl generation, and the rate constants of their formation were the same for dimeric MPO and hemi-MPO, but hemi-MPO required a slightly larger excess of H2O2 for complete conversion. Hemi-MPO was less stable at a high temperature (80 degrees C) as compared to the dimeric enzyme. Furthermore, the resistance of the chlorinating activity of hemi-MPO against its oxidative product hypochlorous acid was somewhat lower (IC50 = 32 microM HOCl) compared to dimeric MPO (IC50 = 50 microM HOCl). The higher stability of dimeric MPO in the presence of its oxidative product compared to that of monomeric MPO might be the reason for the occurrence of MPO as a dimer.  相似文献   

10.
Kettle AJ  Winterbourn CC 《Biochemistry》2001,40(34):10204-10212
The predominant physiological activity of myeloperoxidase is to convert hydrogen peroxide and chloride to hypochlorous acid. However, this neutrophil enzyme also degrades hydrogen peroxide to oxygen and water. We have undertaken a kinetic analysis of this reaction to clarify its mechanism. When myeloperoxidase was added to hydrogen peroxide in the absence of reducing substrates, there was an initial burst phase of hydrogen peroxide consumption followed by a slow steady state loss. The kinetics of hydrogen peroxide loss were precisely mirrored by the kinetics of oxygen production. Two mols of hydrogen peroxide gave rise to 1 mol of oxygen. With 100 microM hydrogen peroxide and 6 mM chloride, half of the hydrogen peroxide was converted to hypochlorous acid and the remainder to oxygen. Superoxide and tyrosine enhanced the steady-state loss of hydrogen peroxide in the absence of chloride. We propose that hydrogen peroxide reacts with the ferric enzyme to form compound I, which in turn reacts with another molecule of hydrogen peroxide to regenerate the native enzyme and liberate oxygen. The rate constant for the two-electron reduction of compound I by hydrogen peroxide was determined to be 2 x 10(6) M(-1) s(-1). The burst phase occurs because hydrogen peroxide and endogenous donors are able to slowly reduce compound I to compound II, which accumulates and retards the loss of hydrogen peroxide. Superoxide and tyrosine drive the catalase activity because they reduce compound II back to the native enzyme. The two-electron oxidation of hydrogen peroxide by compound I should be considered when interpreting mechanistic studies of myeloperoxidase and may influence the physiological activity of the enzyme.  相似文献   

11.
Activated phagocytes generate both superoxide radicals via a respiratory burst, and HOCl via the concurrent release of the haem enzyme myeloperoxidase. Amine and amide functions on proteins and carbohydrates are major targets for HOCl, generating chloramines (RNHCl) and chloramides (RC(O)NClR'), which can accumulate to high concentrations (>100 microM). Here we show that superoxide radicals catalyse the decomposition of chloramines and chloramides to reactive nitrogen-centred radicals, and increase the extent of protein fragmentation compared to that observed with either superoxide radicals or HOCl, alone. This synergistic action may be of significance at sites of inflammation, where both superoxide radicals and chloramines/chloramides are formed simultaneously.  相似文献   

12.
Stimulated neutrophils produce hypochlorous acid (HOCl) via the myeloperoxidase-catalyzed reaction of hydrogen peroxide with chloride. The reactions of HOCl with oleic, linoleic, and arachidonic acids both as free fatty acids or bound in phosphatidylcholine have been studied. The products were identified by gas chromatography-mass spectrometry of the methylated and trimethylsilylated derivatives. Oleic acid was converted to the two 9,10-chlorohydrin isomers in near stoichiometric yield. Linoleic acid, at low HOCl:fatty acid ratios, yielded predominantly a mixture of the four possible monochlorohydrin isomers. Bischlorohydrins were also formed, in increasing amounts at higher HOCl concentrations. Arachidonic acid gave a complex mixture of mono- and bischlorohydrins, the relative proportions depending on the amount of HOCl added. Linoleic acid appears to be slightly more reactive than oleic acid with HOCl. Reactions of oleic and linoleic acids with myeloperoxidase, hydrogen peroxide, and chloride gave chlorohydrin products identical to those with HOCl. Lipid chlorohydrins have received little attention as products of reactions of neutrophil oxidants. They are more polar than the parent fatty acids, and if formed in cell membranes could cause disruption to membrane structure. Since cellular targets for HOCl appear to be membrane constituents, chlorohydrin formation from unsaturated lipids could be significant in neutrophil-mediated cytotoxicity.  相似文献   

13.
Myeloperoxidase catalyses the conversion of H2O2 and Cl- to hypochlorous acid (HOCl). It also reacts with O2- to form the oxy adduct (compound III). To determine how O2- affects the formation of HOCl, chlorination of monochlorodimedon by myeloperoxidase was investigated using xanthine oxidase and hypoxanthine as a source of O2- and H2O2. Myeloperoxidase was mostly converted to compound III, and H2O2 was essential for chlorination. At pH 5.4, superoxide dismutase (SOD) enhanced chlorination and prevented formation of compound III. However, at pH 7.8, SOD inhibited chlorination and promoted formation of the ferrous peroxide adduct (compound II) instead of compound III. We present spectral evidence for a direct reaction between compound III and H2O2 to form compound II, and for the reduction of compound II by O2- to regenerate native myeloperoxidase. These reactions enable compound III and compound II to participate in the chlorination reaction. Myeloperoxidase catalytically inhibited O2- -dependent reduction of Nitro Blue Tetrazolium. This inhibition is explained by myeloperoxidase undergoing a cycle of reactions with O2-, H2O2 and O2-, with compounds III and II as intermediates, i.e., by myeloperoxidase acting as a combined SOD/catalase enzyme. By preventing the accumulation of inactive compound II, O2- enhances the activity of myeloperoxidase. We propose that, under physiological conditions, this optimizes the production of HOCl and may potentiate oxidant damage by stimulated neutrophils.  相似文献   

14.
Stimulation of the oxygen (O2) metabolism of isolated human neutrophilic leukocytes resulted in oxidation of hemoglobin of autologous erythrocytes without erythrocyte lysis. Hb oxidation could be accounted for by reduction of O2 to superoxide (O-2) by the neutrophils, dismutation of O-2 to yield hydrogen peroxide (H2O2), myeloperoxidase-catalyzed oxidation of chloride (Cl-) by H2O2 to yield hypochlorous acid (HOCl), the reaction of HOCl with endogenous ammonia (NH+4) to yield monochloramine ( NH2Cl ), and the oxidative attack of NH2Cl on erythrocytes. NH2Cl was detected when HOCl reacted with the NH+4 and other substances released into the medium by neutrophils. The amount of NH+4 released was sufficient to form the amount of NH2Cl required for the observed Hb oxidation. Oxidation was increased by adding myeloperoxidase or NH+4 to increase NH2Cl formation. Due to the volatility of NH2Cl , Hb was oxidized when neutrophils and erythrocytes were incubated separately in a closed container. Oxidation was decreased by adding catalase to eliminate H2O2, dithiothreitol to reduce HOCl and NH2Cl , or taurine to react with HOCl or NH2Cl to yield taurine monochloramine . NH2Cl was up to 50 times more effective than H2O2, HOCl, or taurine monochloramine as an oxidant for erythrocyte Hb, whereas HOCl was up to 10 times more effective than NH2Cl as a lytic agent. NH2Cl contributes to oxidation of erythrocyte components by stimulated neutrophils and may contribute to other forms of neutrophil oxidative cytotoxicity.  相似文献   

15.
Chloride anions and hydrogen peroxide serve as substrates for myeloperoxidase (MPO) in order to produce hypochlorous acid (HOCl) as one of the major killing agents of phagocytic leukocytes. Apart from this role of being a substrate for the MPO-reaction the chloride anion has been considered as unreactive and has not been implicated in radical reactions which contribute to the killing process. From the inherent reactivities of the pertinent radicals (as determined by pulse radiolysis experiments), the great abundance of chloride, and the most probable distribution of reactants within the phagosome, we deduce estimates for the average life-time and free diffusion path-length in this milieu and arrive at a model according to which chloride ions enter into radical chains and influence the killing of ingested bacteria to an extraordinarily high extent. We propose that hydroxyl radicals—despite some controversial arguments in the literature—may still be considered as important contributors to cell killing especially since we show that their reactions are made more effective by producing chlorine radicals in a cyclic process. We furthermore present arguments how the phagocyte may protect itself from harmful actions of HOCl and H2O2 after the superoxide-generating activity of NADPH oxidase is turned off.  相似文献   

16.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

17.
The reaction of superoxide anions with myeloperoxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7), which results in the formation of Compound III of myeloperoxidase, was investigated. It is shown that myeloperoxidase has a high affinity for superoxide anions because formation of Compound III was only partially inhibited by high concentrations of superoxide dismutase. Furthermore, when superoxide anions were generated in a mixture of both cytochrome c and myeloperoxidase in the absence of Cl-, only Compound III was formed and reduction of cytochrome c was not observed. In the presence of Cl-, Compound III was also formed and reduction of cytochrome c was inhibited. From the results described in this paper we conclude that Compound III is able to react with superoxide anions, probably resulting in formation of an intermediate (Compound I) which is catalytically active in the oxidation of Cl- to yield hypochlorous acid (HOCl). Because Compound III of myeloperoxidase is formed in phagocytosing neutrophils (Winterbourn, C.C., Garcia, R.C. and Segal, A.W. (1985) Biochem. J. 228, 583-592) we propose that, in vivo, myeloperoxidase also acts as a superoxide dismutase, and via formation of Compound I uses superoxide anions in the formation of HOCl.  相似文献   

18.
The structural integrity of apolipoprotein A-I (apo A-I) is critical to the physiological function of high-density lipoprotein (HDL). Oxidized lipoproteins are thought to be of central importance in atherogenesis, and oxidation products characteristic of myeloperoxidase, a heme protein secreted by activated phagocytes, have been detected in human atherosclerotic tissue. At plasma concentrations of halide ion, hypochlorous acid is a major product of the myeloperoxidase-hydrogen peroxide-chloride system. We therefore investigated the effects of activated human neutrophils, a potent source of myeloperoxidase and hydrogen peroxide, on the protein and lipid components of HDL. Both free and HDL-associated apo A-I exposed to activated human neutrophils underwent extensive degradation as monitored by RP-HPLC and Western blotting with a polyclonal antibody to apo A-I. Replacement of the neutrophils with reagent HOCl resulted in comparable damage (at molar oxidant : HDL subclass 3 ratio = 100) as observed in the presence of activated phagocytes. Apo A-I degradation by activated neutrophils was partially inhibited by the HOCl scavenger methionine, by the heme inhibitor azide, by chloride-free conditions, by the peroxide scavenger catalase, and by a combination of superoxide dismutase (SOD)/catalase, implicating HOCl in the cell-mediated reaction. The addition of a protease inhibitor (3,4-dichloroisocoumarin) further reduced the extent of apo A-I damage. In contrast to the protein moiety, there was little evidence for oxidation of unsaturated fatty acids or cholesterol in HDL3 exposed to activated neutrophils, suggesting that HOCl was selectively damaging apo A-I. Our observations indicate that HOCl generated by myeloperoxidase represents one pathway for protein degradation in HDL3 exposed to activated phagocytes.  相似文献   

19.
The neutrophil enzyme myeloperoxidase generates hypochlorous acid (HOCl) at sites of inflammation. Glutathione peroxidase is very quickly inactivated by low concentration of HOCl. Inactivation of catalase is also rapid, but requires higher HOCl concentrations and the haem appears to be degraded. Inactivation of bovine CuZn superoxide dismutase is slower. Hence superoxide dismutase should not be easily inactivated by HOCl at sites of inflammation, which may contribute to its effectiveness as an anti-inflammatory agent and in minimizing reperfusion injury.  相似文献   

20.
Upon inflammation, activated neutrophils secrete myeloperoxidase, an enzyme able to generate hypochlorous acid (HOCl) from hydrogen peroxide and chloride ions. An analytical method, involving HPLC coupled to electrospray tandem mass spectrometry, has been set-up to detect low levels of HOCl-induced nucleic acids lesions, including both ribo and 2'-deoxyribonucleoside derivatives of 8-chloroguanine, 8-chloroadenine and 5-chlorocytosine. Validation of the developed method was achieved using isolated cells treated with HOCl. The method was found to be sensitive enough to allow the measurement of background levels of 5-chloro-2'-deoxycytidine in the DNA of human white blood cells isolated from 7 mL of blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号