首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An open flow-through gas system was used to determine the effect of C2H2 and elevated O2 on acetylene reduction activity (ARA) and respiration of the intact, potted root system of Alnus incana (L.) Moench in symbiosis with Frankia Avcll or with a local source of Frankia . Both symbiotic systems responded to C2H2 by an immediate plateau range in ARA. The Plateau in ARA was in some cases followed by a decline of less extent than reported for many legumes. A concurrent decline in net respiration of the root system was on average 8% of the CO2 efflux prior to C2H2 introduction.
Respiration of the root systems in both symbioses responded to elevated oxygen levels in the 10 kPa C2H2 atmosphere by an increase of up to 17% of the net respiration prior to C2H2 introduction in 21 kPa O2. In contrast, the elevated oxygen levels resulted in an immediate drop in ARA followed by a minor increase to a stable level lower than that at the preceding, lower oxygen tension. The symbiosis with the local Frankia had lost all ARA when the partial pressure of O2 exceeded 50 kPa, whereas the symbiosis with Avcll still had some activity at 80 kPa O2. This difference in tolerance of elevated O2 clearly shows that the oxygen exclusion mechanisms may be controlled by the microsymbiont in Alnus-Frankia symbioses. The symbiotic systems recovered ARA to a similar extent when returned from elevated O2 levels to 21 kPa O2.  相似文献   

2.
BACKGROUND AND AIMS: The present work aimed to study early stages of nodulation in a chronological sequence and to study phosphorus and nitrogen effects on early stages of nodulation in Alnus incana infected by Frankia. A method was developed to quantify early nodulation stages in intact root systems in the root hair-infected actinorhizal plant A. incana. Plant tissue responses were followed every 2 d until 14 d after inoculation. Cortical cell divisions were already seen 2 d after inoculation with Frankia. Cortical cell division areas, prenodules, nodule primordia and emerging nodules were quantified as host responses to infection. METHODS: Seedlings were grown in pouches and received different levels of phosphorus and nitrogen. Four levels of phosphorus (from 0.03 to 1 mM P) and two levels of nitrogen (0.71 and 6.45 mM N) were used to study P and N effects on these early stages of nodule development. KEY RESULTS: P at a medium concentration (0.1 mM) stimulated cell divisions in the cortex and a number of prenodules, nodule primordia and emerging nodules as compared with higher or lower P levels. A high N level inhibited early cell divisions in the cortex, and this was particularly evident when the length of cell division areas and presence of the nodulation stages were related to root length. CONCLUSIONS: Extended cortical cell division areas were found that have not been previously shown in A. incana. The results show that effects of P and N are already expressed at the stage when the first cortical cell divisions are induced by Frankia.  相似文献   

3.
Nitrogen-fixing root nodules are formed by Frankia spp. (Actinomycetales) on dicotyledonous hosts such as alders ( Alnus spp.). Flavonoid-containing preparations from seed washes of red alder ( Alnus rubra Bong.), and individual compounds isolated from such preparations, influenced nodulation of A. rubra by Frankia. Nodulation was enhanced by one flavonoid-like compound, and apparently inhibited by two other such compounds. Four flavonoid-like compounds had no significant effect on nodulation. The seven individual compounds purified from the seed washes were characterized spectrally as possible flavanones and isoflavones. Both the enhancer and the inhibitors appeared to be possible flavanones.  相似文献   

4.
Actinomycetes from the genus Frankia are able to form symbiotic associations with more than 200 different species of woody angiosperms, so called actinorhizal plants. Many actinorhizal plants are infected via deformed root hairs. Factor(s) eliciting root hair deformation in actinorhizal symbioses have been found to be released into the culture medium, but the factor(s) has (have) not yet been characterized. In the present work, we describe the constitutive production of factor(s) by Frankia strain ArI3 causing root hair deformation on Alnus glutinosa . Deformation was detected after 4–5 h of incubation with both Frankia cultures and their cell-free culture filtrates. When culture filtrate was used, deformation was concentration dependent. A contact time of 2 min between culture filtrate and host roots was sufficient to induce subsequent root hair deformation. No root hair deformation on A. glutinosa could be detected with purified Nod factors from Rhizobium meliloti or R. leguminosarum biovar viciae . No correlation was found between Frankia strains belonging to different host specificity groups and their ability to deform root hairs on A. glutinosa. However, strains not able to deform root hairs on A. glutinosa were also unable to nodulate.  相似文献   

5.
Occurrence and activity of the hydrogen uptake enzyme were studied in root nodule homogenates made from plants of Alnus incana (L.) Moench collected from field sites in the northern part of Sweden. Nitrogenase (EC 1.7.99.2) activity (estimated by acetylene reduction) and hydrogen evolution were studied in excised nodules. All Frankia sources showed acetylene reduction activity, and possessed a hydrogen uptake system. Hydrogen uptake in nodule homogenates from the Frankia sources measured at 23.8 μM H2 ranged from 0.04 to 5.0 μmol H2 (g fresh weight nodule)−1 h−1. The H2 uptake capacity of nodule homogenates from one of the Frankia sources was almost 8 times higher than the hydrogen evolution from nitrogenase, both expressed on a nodule fresh weight basis. Frankia sources from field sites 6 and 11 showed Km for H2 of 13.0 and 23.6 μM H2, respectively. This indicates similarities in the hydrogen uptake enzymes in the two Frankia sources. It is concluded that hydrogen uptake is a common characteristic in Frankia.  相似文献   

6.
Host compatibility of different spore-positive (Sp+)and spore-negative (Sp?) strain types of Frankia from alder stands in Finland was studied in Modulation tests with hydrocultures of Alnus glutinosa (L.) Gaertner, A. incana (L.) Moench and A. nitida Endl. Root nodules and soil samples from stands of A. incana (Lammi forest and Hämeenlinna forest) were dominated by Sp + types of Frankia (coded AiSp+ and AiSp+ H. respectively), which caused effective root nodules in test plants of A. incana, but failed to induce nodules in A. nitida. In A. glutinosa Frankia strain types AiSp + and AiSp + H caused small, ineffective root nodules with sporangia (coded Ineff ?), which were recognized by the absence or near absence of vesicles in the nodule tissue. Ineffective nodules without sporangia (coded Ineff ?) were induced on A. glutinosa with soil samples collected at Lammi swamp. The spore-negative strain type of Frankia was common in root nodules of A. glutinosa in Finland (Lammi swamp) and caused effective Sp? type root nodules (coded AgSp ?) in hydrocultures of A. incana, A. glutinosa and A. nitida. A different Sp + strain type of Frankia. coded AgSp+ Finland, was occasionally found in stands of A. glutinosa. It was clearly distinguished from strain type AiSp + by the ability to produce effective nodules on both A. glutinosa and A. incana. The nodulation capacities of soil and nodule samples were calculated from the nodulation response in hydrocutlure and served as a measure for the population density of infective Frankia particles. Sp + nodules from both strain types had equal and high nodulation capacities with compatible host species. The nodulation capacities of Sp type root nodules from A. glutinosa were consistently low. High frequencies of Frankia AiSp+ and AiSp+ H were found in the soil environment of dominant AiSp + nodule populations on A. incana. The numbers of infective particles of this strain type were insignificant in the soil environment of nearby Sp ? nodule populations on A. glutinosa and in the former field at Hämeen-linna near the Sp+ nodule area in Hämeenlinna forest. Strain type AgSp? had low undulation capacity in the soil environment of both A. incana and A. glutinosa stands, Explanations for the strong associations between Frankia strain types AiSp+ and AiSp ? H and A. incana and between strain type AgSp? and A. glutinosa are discussed in the light of host specificity and of some characteristics of population dynamics of both strain types. The possible need to adapt the concept of Frankia strain types Sp + and Sp ? to strains with some variation in spore development was stressed by the low potentials of strain type AiSp + H to develop spores in symbioses with hydrocultures of A. incnna.  相似文献   

7.
8.
A clone of Alnus incana (L.) Moench was grown in symbiosis with a local source of Frankia or with Frankia Ar14. Seven to 9-week-old plants were given 20 m M NH4Cl (20 m M KCl = control) for 3 days. Nitrogenase activity of intact plants decreased gradually within the 3 days of treatment to about 10% of the initial rates. Hydrogen evolution in air and total nitrogenase activity responded similarly to the treatment. Relative efficiency of nitrogenase thus remained the same throughout the study period. Control plants were not affected. Measurements of nitrogenase activity in root nodule homogenates (in vitro measurements) indicated loss of active nitrogenase rather than shortage of energy for nitrogenase activity in Frankia from ammonium-treated plants. Shoots were exposed to 14CO2 and translocation of 14C to Frankia vesicle clusters prepared from root nodules was studied. Frankia vesicle clusters from ammonium-treated plants contained about half as much 14C as those of control plants during all 3 days studied. One explanation for the observed effects is that a reduced supply of carbon to Frankia vesicles in the root nodules caused a reduced metabolic rate, including reduced protein synthesis and synthesis of nitrogenase.  相似文献   

9.
To study the effect of altered carbon supply on nitrogenase (EC 1.7.99.2), plants of Alnus incana (L.) Moench in symbiosis with the local source of Frankia were exposed to darkness for 2 days, and then returned to normal light/dark conditions. During the dark period nitrogenase activity in vivo (intact plants) and in vitro ( Frankia cells supplied with ATP and reductant), measured as acetylene reduction activity, was almost completely lost. Western blots for both the Fe-protein (dinitrogenase reductase) and the MoFe-protein (dinitrogenase) showed that, in particular, the amount of MoFe-protein was strongly reduced during darkness. Protein stained sodium dodecyl sulphate-polyacrylamide gels of Frankia protein showed that the nitrogenase proteins were the only abundant proteins that clearly decreased during darkness. During recovery, studied for 4 days, nitrogenase activity in vivo recovered to the level before dark treatment but was still only half of control activity, Nitrogenase activity in vitro and the amount of MoFe-protein, both expressed per Frankia protein, recovered and reached similar values in previously dark treated plants and in control plants. The rate of recovery was similar to the increase in activity of control plants, suggesting growth of Frankia in addition to synthesis of nitrogenase proteins during the recovery after carbon starvation.  相似文献   

10.
11.
12.
13.
14.
A. Sellstedt 《Planta》1986,167(3):382-386
Acetylene reduction, 15N2 reduction and H2 evolution were measured in root systems of intact plants of grey alder (Alnus incana (L.) Moench) in symbiosis with Frankia. The ratios of C2H2: 15N2 were compared with C2H2:N2 ratios calculated from C2H2 reduction and H2 evolution, and with C2H2:N2 ratios calculated from accumulated C2H4 production and nitrogen content. It was possible to calculate C2H2:N2 ratios from C2H2 reduction and H2 evolution because this source of Frankia did not show any hydrogenase activity. The ratios obtained using the different methods ranged from 2.72 to 4.42, but these values were not significantly different. It was also shown that enriched 15N could be detected in the shoot after a 1-h incubation of the root-system. It is concluded that the measurement of H2 evolution in combination with C2H2 reduction represents a nondestructive assay for nitrogen fixation in a Frankia symbiosis which shows no detectable hydrogenase activity.  相似文献   

15.
Frankia vesicle clusters were prepared from Alnus incana (L.) Moench root nodules by a homogenization-filtration procedure. The preparation was examined by transmission electron microscopy and computerized picture analysis to quantify contamination from the host plant. Special attention was paid to plant mitochondria. Mitochondria were only found in 30% of the 50 sections of clusters examined. In sections containing mitochondria the mean number of mitochondria per cluster section was 1.5. The relative volume of all objects found in the vesicle clusters was calculated. More than 98% of the volume of a preparation consisted of Frankia vesicles and hyphae, while only 0.4% of the volume was host plant mitochondria. The frequency of mitochondria in a preparation could be further decreased by osmotic shock. It is concluded that Frankia vesicle clusters, prepared from Alnus incana by the homogenization-filtration technique used here, are sufficiently pure to be used for studies of Frankia metabolism.  相似文献   

16.
17.
Abstract: In the present paper we discuss the potential importance of ectomycorrhizal fungi associated with Alnus species for forest development in wet environments. We discuss the current state of knowledge and open questions about the ecology and functional role of ectomycorrhizal symbionts of Alnus under wet conditions. Possible approaches to investigate the ectomycorrhizal fungi in wet forest ecosystems are presented. Particularly, we concentrate on wet alder carr forests in Europe serving as a model forest ecosystem.  相似文献   

18.
Since molecular phylogenetics recognized root nodule symbiosis (RNS) of all lineages as potentially homologous, scientists have tried to understand the “when” and the “how” of RNS evolution. Initial progress was made on understanding the timing of RNS evolution, facilitating our progress on understanding the underlying genomic changes leading to RNS. Here, we will first cover the different hypotheses on the timings of gains/losses of RNS and show how this has helped us understand how RNS has evolved. Finally, we will discuss how our improved understanding of the genetic changes that led to RNS is now helping us refine our understanding on when RNS has evolved.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号