首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
With the use of the microdialysis method, exercise-induced lipolysis was investigated in subcutaneous adipose tissue (SCAT) in obese subjects and compared with lean ones, and the effect of blockade of alpha(2)-adrenergic receptors (ARs) on lipolysis during exercise was explored. Changes in extracellular glycerol concentrations and blood flow were measured in SCAT in a control microdialysis probe at rest and during 60-min exercise bouts (50% of heart rate reserve) and in a probe supplemented with the alpha(2)-AR antagonist phentolamine. At rest and during exercise, plasma norepinephrine and epinephrine concentrations were not different in obese compared with lean men. In the basal state, plasma and extracellular glycerol concentrations were higher, whereas blood flow was lower in SCAT of obese subjects. During exercise, the increase of plasma glycerol was higher in obese subjects (115 +/- 35 vs. 65 +/- 21 micromol/l). Oppositely, the exercise-induced increase in extracellular glycerol concentrations in SCAT was five- to sixfold lower in obese than in lean subjects (50 +/- 14 vs. 318 +/- 53 micromol/l). The exercise-induced increase in extracellular glycerol concentration was not significantly modified by phentolamine infusion in lean subjects but was strongly enhanced in the obese subjects and reached the concentrations found in lean sujects (297 +/- 46 micromol/l). These findings demonstrate that the physiological stimulation of SCAT adipocyte alpha(2)-ARs during exercice-induced sympathetic nervous system activation contributes to the blunted lipolysis noted in obese men.  相似文献   

2.
The acute in vitro and in vivo effects of long-chain fatty acids (LCFAs) on the regulation of adrenergic lipolysis were investigated in human adipose tissue. The effect of a 2 h incubation, without or with LCFA (200 mumol/l), on basal and hormonally induced lipolysis was tested in vitro on isolated fat cells. The lipolytic response to epinephrine was enhanced by suppression of the antilipolytic alpha(2)-adrenergic effect. Then, healthy lean and obese male subjects performed a 45 min exercise bout at 50% of their heart rate reserve either after an overnight fast or 3 h after a high-fat meal (HFM: 95% fat, 5% carbohydrates). Subcutaneous adipose tissue lipolysis was measured by microdialysis in the presence or absence of an alpha-antagonist (phentolamine). In vivo, a HFM increased plasma levels of nonesterified fatty acids in lean and obese subjects. In both groups, the HFM did not alter hormonal responses to exercise. Under fasting conditions, the alpha(2)-adrenergic antilipolytic effect was more pronounced in obese than in lean subjects. The HFM totally suppressed the alpha(2)-adrenergic antilipolytic effect in lean and obese subjects during exercise. LCFAs per se, in vitro as well as in vivo, suppress alpha(2)-adrenergic-mediated antilipolysis in adipose tissue. LCFA-mediated suppression of antilipolytic pathways represents another mechanism whereby a high fat content in the diet might increase adipose tissue lipolysis.  相似文献   

3.
The aim of this study was to investigate whether hyperinsulinemia modifies adrenergic control of lipolysis, with particular attention paid to the involvement of antilipolytic alpha2-adrenergic receptors (AR). Eight healthy male subjects (age: 23.9 +/- 0.9 yr; body mass index: 23.8 +/- 1.9) were investigated during a 6-h euglycemichyperinsulinemic clamp and in control conditions. Before and during the clamp, the effect of graded perfusions of isoproterenol (0.1 and 1 microM) or epinephrine (1 and 10 microM) on the extracellular glycerol concentration in subcutaneous abdominal adipose tissue was evaluated by using the microdialysis method. Both isoproterenol and epinephrine induced a dose-dependent increase in extracellular glycerol concentration when infused for 60 min through the microdialysis probes before and during hours 3 and 6 of the clamp. The catecholamine-induced increase was significantly lower during the clamp than before it, with the inhibition being more pronounced in hour 6 of the clamp. Isoproterenol (1 microM)-induced lipolysis was reduced by 28 and 44% during hours 3 and 6 of the clamp, respectively, whereas the reduction of epinephrine (100 microM)-induced lipolysis was significantly greater (by 63 and 70%, P < 0.01 and P < 0.04, respectively) during the same time intervals. When epinephrine was infused in combination with 100 microM phentolamine (a nonselective alpha-AR antagonist), the inhibition of epinephrine (10 microM)-induced lipolysis was only of 19 and 40% during hours 3 and 6 of the clamp, respectively. The results demonstrate that, in situ, insulin counteracts the epinephrine-induced lipolysis in adipose tissue. The effect involves 1) reduction of lipolysis stimulation mediated by the beta-adrenergic pathway and 2) the antilipolytic component of epinephrine action mediated by alpha2-ARs.  相似文献   

4.
Involvement of sympathetic nervous system and natriuretic peptides in the control of exercise-induced lipid mobilization was compared in overweight and lean men. Lipid mobilization was determined using local microdialysis during exercise. Subjects performed 35-min exercise bouts at 60% of their maximal oxygen consumption under placebo or after oral tertatolol [a beta-adrenergic receptor (AR) antagonist]. Under placebo, exercise increased dialysate glycerol concentration (DGC) in both groups. Phentolamine (alpha-AR antagonist) potentiated exercise-induced lipolysis in overweight but not in lean subjects; the alpha(2)-antilipolytic effect was only functional in overweight men. After tertatolol administration, the DGC increased similarly during exercise no matter which was used probe in both groups. Compared with the control probe under placebo, lipolysis was reduced in lean but not in overweight men treated with the beta-AR blocker. Tertatolol reduced plasma nonesterified fatty acids and insulin concentration in both groups at rest. Under placebo or tertatolol, the exercise-induced changes in plasma nonesterified fatty acids, glycerol, and insulin concentrations were similar in both groups. Exercise promoted a higher increase in catecholamine and ANP plasma levels after tertatolol administration. In conclusion, the major finding of our study is that in overweight men, in addition to an increased alpha(2)-antilipolytic effect, the lipid mobilization in subcutaneous adipose tissue that persists during exercise under beta-blockade is not dependent on catecholamine action. On the basis of correlation findings, it seems to be related to a concomitant exercise-induced rise in plasma ANP when exercise is performed under tertatolol intake and a decrease in plasma insulin.  相似文献   

5.
Atrial natriuretic peptide (ANP) controls lipolysis in human adipocytes. Lipid mobilization is increased during repeated bouts of exercise, but the underlying mechanisms involved in this process have not yet been delineated. The relative involvement of catecholamine- and ANP-dependent pathways in the control of lipid mobilization during repeated bouts of exercise was thus investigated in subcutaneous adipose tissue (SCAT) by microdialysis. The study was performed in healthy males. Subjects performed two 45-min exercise bouts (E1 and E2) at 50% of their maximal oxygen uptake separated by a 60-min rest period. Extracellular glycerol concentration (EGC), reflecting SCAT lipolysis, was measured in a control probe perfused with Ringer solution and in two other probes perfused with either Ringer plus phentolamine (alpha(1/2)-AR antagonist) or Ringer plus both phentolamine and propranolol (beta-AR antagonist). Plasma epinephrine, plasma glycerol, and EGC were 1.7-, 1.6-, and 1.2-fold higher in E2 than in E1, respectively. Phentolamine potentiated exercise-induced EGC increase during E2 only. Propranolol reduced the lipolytic rate during both E1 and E2 compared with the probe with phentolamine. Plasma ANP concentration increased more during E2 than during E1 and was correlated with the increase in EGC in the probe containing phentolamine plus propranolol. The results suggest that ANP is involved in the control of lipolysis during exercise and that it contributes to stimulation of lipolysis during repeated bouts of exercise.  相似文献   

6.
The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate leaving the adipose tissue. Seven male subjects performed two repeated bouts of 60-min exercise at 50% of their maximal aerobic power, separated by a 60-min recovery period. The exercise-induced increases in extracellular glycerol concentrations in adipose tissue and in plasma glycerol concentrations were significantly higher during the second exercise bout compared with the first (P < 0.05). The responses of plasma nonesterified fatty acids and plasma epinephrine were higher during the second exercise bout, whereas the response of norepinephrine was unchanged and that of growth hormone lower. Plasma insulin levels were lower during the second exercise bout. The results suggest that adipose tissue lipolysis during aerobic exercise of moderate intensity is enhanced when an exercise bout is preceded by exercise of the same intensity and duration performed 1 h before. This response pattern is associated with an increase in the exercise-induced rise of epinephrine and with lower plasma insulin values during the repeated exercise bout.  相似文献   

7.
Muscle triglyceride utilization during exercise: effect of training   总被引:10,自引:0,他引:10  
The respiratory exchange ratio (RER) is lower during exercise of the same intensity in the trained compared with the untrained state, even though plasma free fatty acids (FFA) and glycerol levels are lower, suggesting reduced availability of plasma FFA. In this context, we evaluated the possibility that lipolysis of muscle triglycerides might be higher in the trained state. Nine adult male subjects performed a prolonged bout of exercise of the same absolute intensity before and after adapting to a strenuous 12-wk program of endurance exercise. The exercise test required 64% of maximum O2 uptake before training. Plasma FFA and glycerol concentrations and RER during the exercise test were lower in the trained than in the untrained state. The proportion of the caloric expenditure derived from fat, calculated from the RER, during the exercise test increased from 35% before training to 57% after training. Muscle glycogen utilization was 41% lower, whereas the decrease in quadriceps muscle triglyceride concentration was roughly twice as great (12.7 +/- 5.5 vs. 26.1 +/- 9.3 mmol/kg dry wt, P less than 0.001) in the trained state. These results suggest that the greater utilization of FFA in the trained state is fueled by increased lipolysis of muscle triglyceride.  相似文献   

8.
Phenylephrine, a strong alpha 1-adrenergic agonist, exerted a concentration dependent antilipolytic effect against isoproterenol-activated lipolysis in rat adipocytes with the effect decreasing as the isoproterenol concentration increased. The alpha-adrenergic antagonists phentolamine and phenoxybenzamine did not reverse phenylephrine's antilipolytic effect. Phenylephrine alone activated lipolysis at concentrations above 10(-5) M and at 5 X 10(-4) M the rate of lipolysis was increased 3.4-fold. Propranolol abolished this effect. In the presence of sub-maximum concentrations of dibutyryl cyclic-AMP (less than 10(-4) M), 10(-4) M phenylephrine increased the rate of lipolysis above that activated by dibutyryl cyclic-AMP alone. At maximum dibutyryl cyclic-AMP concentrations, or in the presence of propranolol, phenylephrine had no effect on dibutyryl cyclic-AMP-dependent lipolysis. There is no evidence to support an alpha 1-adrenergic mechanism for regulation of lipolysis in the rat adipocyte. All effects of the alpha-adrenergic agonist phenylephrine appear to be due to its weak beta-adrenergic activity.  相似文献   

9.
Objective: To explore sex differences in the regulation of lipolysis during exercise, the lipid‐mobilizing mechanisms in the subcutaneous adipose tissue (SCAT) of overweight men and women were studied using microdialysis. Research Methods and Procedures: Subjects matched for age, BMI, and physical fitness performed two 30‐minute exercise bouts in a randomized fashion: the first test at 30% and 50% of their individual maximal oxygen uptake (Vo 2max) and the second test at 30% and 70% of their Vo 2max. Results: In both groups, an exercise‐dependent increment in extracellular glycerol concentration (EGC) was observed. Whatever the intensity, phentolamine [α‐adrenergic receptor (AR) antagonist] added to a dialysis probe potentiated exercise‐induced lipolysis only in men. In a probe containing phentolamine plus propranolol (β‐AR antagonist), no changes in EGC occurred when compared with the control probe when exercise was performed at 30% and 50% Vo 2max. A significant reduction of EGC (when compared with the control probe) was observed in women at 70% Vo 2max. At each exercise power, the plasma non‐esterified fatty acid and glycerol concentrations were higher in women. Exercise‐induced increase in plasma catecholamine levels was lower in women compared with men. Plasma insulin decreased and atrial natriuretic peptide increased similarly in both groups. Discussion: Overweight women mobilize more lipids (assessed by glycerol) than men during exercise. α2‐Anti‐lipolytic effect was functional in SCAT of men only. The major finding is that during low‐to‐moderate exercise periods (30% and 50% Vo 2max), lipid mobilization in SCAT relies less on catecholamine‐dependent stimulation of β‐ARs than on an increase in plasma atrial natriuretic peptide concentrations and the decrease in plasma insulin.  相似文献   

10.
The aim of this study was to define the role of the alpha-adrenergic receptor in the regulation of lipolysis by human adipocytes. Glycerol production by isolated human adipocytes was stimulated by the pure beta-adrenergic agonist isoproterenol in a dose-dependent fashion. This stimulation of lipolysis was inhibited by the alpha-adrenergic agonists methoxamine, phenylephrine, and clonidine. Epinephrine-stimulated lipolysis was potentiated by the alpha-adrenergic antagonists, dihydroergocryptine, phentolamine, phenoxybenzamine, and yohimbine. Whereas the attenuation of beta-adrenergic agonist-stimulated lipolysis by alpha-adrenergic agonists was reversed completely by the alpha 2-adrenergic antagonist yohimbine, the alpha 1-antagonist prazosin did not reverse such attenuation. It is concluded that alpha-adrenergic agonists act as antilipolytic agents in human adipocytes and that this action may result from the interaction of these compounds with a population of alpha 2-adrenergic receptors.  相似文献   

11.
We recently demonstrated that natriuretic peptides and especially the atrial natriuretic peptide (ANP) are powerful lipolytic agents on isolated human fat cells. To search for a possible influence of obesity on ANP responsiveness, we compared the lipolytic effects of human ANP (h-ANP) on isolated subcutaneous abdominal adipose tissue (SCAAT) fat cells from young healthy lean and obese men. The lipid-mobilizing effects of an intravenous infusion of h-ANP was studied, as well as various metabolic and cardiovascular parameters that were compared in the same subjects. h-ANP (50 ng/min/kg) was infused iv for 60 min. Microdialysis probes were inserted in SCAAT to measure modifications of the extracellular glycerol concentrations during h-ANP infusion. Spectral analysis of blood pressure and heart rate oscillations that were recorded using digital photoplethysmography were used to assess changes in autonomic nervous system activity. h-ANP induced a marked and similar increase in glycerol and nonesterified fatty acids, and a weak increase in insulin plasma levels in lean and obese men. Plasma norepinephrine concentrations rose similarly during h-ANP infusion in lean and obese men. The effects of h-ANP infusion on the autonomic nervous system were similar in both groups, with an increase in the spectral energy of the low-frequency band of systolic blood pressure variability and a decrease in the spectral energy of the high-frequency band of heart rate. In SCAAT, h-ANP infusion increased extracellular glycerol concentration and decreased blood flow similarly in both groups. The increase in extracellular glycerol observed during h-ANP infusion was not modified when 0.1 mM propranolol was added to the microdialysis probe perfusate to prevent beta-adrenoceptor activation. These data show that ANP is a potent lipolytic hormone independent of the activation of the sympathetic nervous system, and that obesity did not modify the lipid-mobilizing effect of ANP in young obese subjects.  相似文献   

12.
Thyroid dysfunction is associated with several abnormalities in intermediary metabolism, including impairment of lipolytic response to catecholamines in subcutaneous abdominal adipose tissue (SCAAT). Atrial natriuretic peptide (ANP) is a powerful lipolytic peptide; however, the role of ANP-mediated lipolysis in thyroid disease has not been elucidated. The aim of this study was to investigate the role of thyroid hormones in the regulation of ANP-induced lipolysis as well as in the gene expression of hormone-sensitive lipase, phosphodiesterase 3B (PDE3B), uncoupling protein-2 (UCP2), natriuretic peptide receptor type A, and beta(2)-adrenergic receptor in SCAAT of hyperthyroid and hypothyroid patients. Gene expression in SCAAT was studied in 13 hypothyroid and 11 hyperthyroid age-matched women before and 2-4 mo after the normalization of their thyroid status. A microdialysis study was performed on a subset of nine hyperthyroid and 10 hypothyroid subjects. ANP- and isoprenaline-induced lipolyses were higher in hyperthyroid subjects, with no differences between the groups following treatment. Hormone-sensitive lipase gene expression was higher in hyperthyroid compared with hypothyroid subjects before treatment, whereas no difference was observed following treatment. No differences in gene expression of other genes were observed between the two groups. Following treatment, the gene expression of UCP2 decreased in hyperthyroid, whereas the expression of PDE3B decreased in hypothyroid subjects. We conclude that thyroid hormones regulate ANP- and isoprenaline-mediated lipolysis in human SCAAT in vivo. Increased lipolytic subcutaneous adipose tissue response in hyperthyroid patients may involve postreceptor signaling mechanisms.  相似文献   

13.
The aim of this study was to investigate whether endurance training improves lipid mobilization and oxidation in overweight subjects. Eleven young men (25.6 +/- 1.4 yr and body mass index 27.7 +/- 0.2) performed a 4-mo training program consisting of practicing aerobic exercise 5 days/wk. Before and after the training period, lipid oxidation was explored during a 60-min exercise at 50% of peak O2 consumption by use of indirect calorimetry. Lipid mobilization and antilipolytic alpha2-adrenoceptor effect were also studied using the microdialysis method in abdominal subcutaneous adipose tissue (SCAT). After training, plasma nonesterified fatty acid (NEFA) levels, at rest and during exercise, were significantly lower than before (P < 0.001). Lipolysis in SCAT was significantly higher after than before training. An antilipolytic alpha2-adrenoceptor effect in SCAT was underlined during exercise before training and disappeared after. The respiratory exchange ratio was lower after training, i.e., the percentage of lipid oxidation was higher only at rest. The amount of lipid oxidized was higher after training, at rest, and during exercise. Although exercise power was higher after training, the relative intensity was equivalent, as suggested by a similar increase in plasma catecholamine concentrations before and after training. In conclusion, 4-mo training in overweight men improved lipid mobilization through a decrease of antilipolytic alpha2-adrenoceptor effect in SCAT and lipid oxidation during moderate exercise. Training induced a decrease of blood NEFA, predicting better prevention of obesity.  相似文献   

14.
Adipose tissue lipolytic activity is increased in endurance-trained subjects, but little is known about the mechanisms of this increase. To understand more fully the mechanisms involved and to discover whether sex-related differences exist, biopsies of fat were performed in the periumbilical region of 20 sedentary subjects (10 women (W) and 10 men (M)) and 20 trained subjects (10 W, 10 M); the in vitro response to epinephrine of the collagenase-isolated fat cells was studied. Glycerol release, chosen as an adipocyte lipolysis indicator, was measured by bioluminescence. Dose-response curves with epinephrine (alpha 2 and beta agonist), with isoproterenol (beta agonist) and epinephrine + propranolol and adenosine deaminase, were studied. Epinephrine-induced lipolysis was enhanced in trained subjects and this was due to an increased efficiency of the beta-adrenergic pathway. However, differences were found between the two sexes. In trained men, the lipolysis increase resulted from the enhancement of the beta-adrenergic pathway efficiency without any significant decrease in the alpha 2-adrenergic pathway efficiency. In trained women, the lipolysis increase was not only due to the enhancement of the beta-adrenergic pathway efficiency (which was greater than in trained men), but also to a significant decrease in the alpha 2-adrenergic pathway efficiency. Despite the decrease, the alpha 2-adrenergic pathway remained more efficient in trained women than in trained men, as was the case in sedentary subjects. It is concluded that endurance training led to better lipid mobilization and that this effect seemed greater in women than in men.  相似文献   

15.
Human fat cell lipolysis was considered until recently to be an exclusive cAMP/protein-kinase A (PKA)-regulated metabolic pathway under the control of catecholamines and insulin. Moreover, exercise-induced lipid mobilization in humans was considered to mainly depend on catecholamine action and interplay between fat cell beta- and alpha2-adrenergic receptors controlling adenylyl cyclase activity and cAMP production. We have recently demonstrated that natriuretic peptides stimulate lipolysis and contribute to the regulation of lipid mobilization in humans. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) stimulate lipolysis in human isolated fat cells. Activation of the adipocyte plasma membrane type A guanylyl cyclase receptor (NPR-A), increase in intracellular guanosine 3',5'-cyclic monophosphate (cyclic GMP) levels and activation of hormone-sensitive lipase mediate the action of ANP. ANP does not modulate cAMP production and PKA activity. Increment of cGMP induces the phosphorylation of hormone-sensitive lipase and perilipin A via the activation of a cGMP dependent protein kinase-I (cGK-I). Plasma concentrations of glycerol and non-esterified fatty acids are increased by i.v. infusion of ANP in humans. Physiological relevance of the ANP-dependent pathway was demonstrated in young subjects performing physical exercise. ANP plays a role in conjunction with catecholamines in the control of exercise-induced lipid mobilization. This pathway becomes of major importance when subjects are submitted to chronic treatment with a beta-blocker. Oral beta-adrenoceptor blockade suppresses the beta-adrenergic component of catecholamine action in fat cells and potentiates exercise-induced ANP release by the heart. These findings may have several implications whenever natriuretic peptide secretion is altered such as in subjects with left ventricular dysfunction, congestive heart failure and obesity.  相似文献   

16.
The aim of this study was to investigate the evolution of the adrenergic and insulin-mediated regulation of lipolysis during different phases of a 6-mo dietary intervention. Eight obese women underwent a 6-mo dietary intervention consisting of a 1-mo very low-calorie diet (VLCD) followed by a 2-mo low-calorie diet (LCD) and 3-mo weight maintenance (WM) diet. At each phase of the dietary intervention, microdialysis of subcutaneous adipose tissue (SCAT) was performed at rest and during a 3-h hyperinsulinemic euglycemic clamp. Responses of dialysate glycerol concentration (DGC) were determined at baseline and during local perfusions with adrenaline or adrenaline and phentolamine before and during the last 30 min of the clamp. Dietary intervention induced a body weight reduction and an improved insulin sensitivity. DGC progressively decreased during the clamp, and this decrease was similar during the different phases of the diet. The adrenaline-induced increase in DGC was higher at VLCD and LCD compared with baseline condition and returned to prediet levels at WM. In the probe with adrenaline and phentolamine, the increase in DGC was higher than that in the adrenaline probe at baseline and WM, but it was not different at VLCD and LCD. The results suggest that the responsiveness of SCAT to adrenaline-stimulated lipolysis increases during the calorie-restricted phases due to a reduction of the α(2)-adrenoceptor-mediated antilipolytic action of adrenaline. At WM, adrenaline-stimulated lipolysis returned to the prediet levels. Furthermore, no direct relationship between insulin sensitivity and the diet-induced changes in the regulation of lipolysis was found.  相似文献   

17.
The effect of relative body fat mass on exercise-induced stimulation of lipolysis and fatty acid oxidation was evaluated in 15 untrained men (5 lean, 5 overweight, and 5 obese with body mass indexes of 21 +/- 1, 27 +/- 1, and 34 +/- 1 kg/m2, respectively, and %body fat ranging from 12 to 32%). Palmitate and glycerol kinetics and substrate oxidation were assessed during 90 min of cycling at 50% peak aerobic capacity (VO2 peak) by use of stable isotope-labeled tracer infusion and indirect calorimetry. An inverse relationship was found between %body fat and exercise-induced increase in glycerol appearance rate relative to fat mass (r2 = 0.74; P < 0.01). The increase in total fatty acid uptake during exercise [(micromol/kg fat-free mass) x 90 min] was approximately 50% smaller in obese (181 +/- 70; P < 0.05) and approximately 35% smaller in overweight (230 +/- 71; P < 0.05) than in lean (354 +/- 34) men. The percentage of total fatty acid oxidation derived from systemic plasma fatty acids decreased with increasing body fat, from 49 +/- 3% in lean to 39 +/- 4% in obese men (P < 0.05); conversely, the percentage of nonsystemic fatty acids, presumably derived from intramuscular and possibly plasma triglycerides, increased with increasing body fat (P < 0.05). We conclude that the lipolytic response to exercise decreases with increasing adiposity. The blunted increase in lipolytic rate in overweight and obese men compared with lean men limits the availability of plasma fatty acids as a fuel during exercise. However, the rate of total fat oxidation was similar in all groups because of a compensatory increase in the oxidation of nonsystemic fatty acids.  相似文献   

18.
The aim of this study was to explain the unresponsiveness of rabbit perirenal adipose tissue to epinephrine. The in vitro lipolytic response to isoproterenol and to epinephrine alone or associated with alpha- or beta-adrenergic blocking agents, was studied in the adipocytes of rabbits of various ages. Epinephrine induces a large glycerol release in young rabbit adipocytes whereas an increase in the rate of lipolysis cannot be shown with adult rabbit fat cells. Moreover, an antilipolytic effect can be shown for low concentrations of epinephrine when the basal rate of lipolysis is high in older rabbit adipocytes. Isoproterenol (beta-adrenomimetic) always exerts a strong adipokinetic effect, thus revealing functional beta-receptor sites. The blockade of alpha-adreneoceptor sites by phentolamine, which has no effect on young rabbits, abolishes the antilipolytic effect and unmasks strong lipolytic effect of epinephrine on aged and normal rabbit adipocytes. The loss of beta-adrenergic responsiveness towards epinephrine in the aging rabbit is linked to the involvement of an increased alpha-adrenergic responsiveness. The stimulation of alpha receptor sites by epinephrine leads to a depressive effect on lipolysis (lack of adipokinetic effect or antilipolytic action).  相似文献   

19.
This study examined the postprandial lipemia of two groups of men displaying similar age, body weight, and regional fat distribution, but characterized by either low (n = 11) or high (n = 15) alpha(2)-adrenergic sensitivity of subcutaneous abdominal adipocytes. In addition to fat cell lipolysis, adipose tissue lipoprotein lipase (AT-LPL) as well as postheparin plasma LPL activities were measured in the fasting state. Fasting AT-LPL and PH-LPL activities were similar in both groups. Maximal adipose cell lipolysis induced by isoproterenol (beta-adrenergic agonist) as well as the beta-adrenergic sensitivity did not differ between both groups of men. The selective alpha(2)-adrenergic agonist UK-14304 promoted a similar antilipolytic response in subcutaneous abdominal adipocytes from both groups. However, the alpha(2)-adrenergic sensitivity, defined as the dose of UK-14304 that produced half-maximal inhibition of lipolysis (IC(50)), was significantly different between groups (P < 0.0001). Men with low versus high subcutaneous abdominal fat cell alpha(2)-adrenergic sensitivity showed higher fasting TG levels. In the whole group, a positive relationship was observed between log-transformed IC(50) UK-14304 values of subcutaneous adipocytes and fasting TG levels (r = 0.39, P < 0.05), suggesting that a low abdominal adipose cell alpha(2)-adrenergic sensitivity is associated with high TG levels. After the consumption of a high-fat meal, subjects with low subcutaneous abdominal adipose cell alpha(2)-adrenergic sensitivity showed higher TG levels in total, medium, and small triglyceride-rich lipoprotein (TRL) fractions at 0- to 6-h time points than men with high adipocyte alpha(2)-adrenergic sensitivity (P values ranging from 0.01 to 0.05). Stepwise regression analysis showed that the fasting TG concentration was the only variable retained as a significant predictor of the area under the curve of TG levels in total TRL fractions (73% of variance) among independent variables such as body weight, percent body fat, visceral and subcutaneous abdominal adipose tissue accumulation measured by CT, as well as subcutaneous abdominal fat cell alpha(2)-adrenoceptor sensitivity.Taken together, these results indicate that a reduced antilipolytic sensitivity of subcutaneous abdominal adipocytes to catecholamines may increase fasting TG levels, which in turn play a role in the etiology of an impaired postprandial TRL clearance in men.  相似文献   

20.
The metabolic response to two different forms of high-intensity intermittent cycle exercise was investigated in young women. Subjects (8 trained and 8 untrained) performed two bouts of high-intensity intermittent exercise: short sprint (SS) (8-s sprint, 12-s recovery) and long sprint (LS) (24-s sprint, 36-s recovery) for 20 min on two separate occasions. Both workload and oxygen uptake were greater in the trained subjects but were not significantly different for SS and LS. Plasma glycerol concentrations significantly increased during exercise. Lactate concentrations rose over the 20 min and were higher for the trained women. Catecholamine concentration was also higher postexercise compared with preexercise for both groups. Both SS and LS produced similar metabolic response although both lactate and catecholamines were higher after the 24-s sprint. In conclusion, these results show that high-intensity intermittent exercise resulted in significant elevations in catecholamines that appear to be related to increased venous glycerol concentrations. The trained compared with the untrained women tended to show an earlier increase in plasma glycerol concentrations during high-intensity exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号