首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nobody can do everything discussed in this article. Choose several ideas and try them. Increase your profile by letting more people in the hospital know who you are, what you do, when you do it, and how you do it. Get noticed and develop a reputation as the "go to" department. It will be worth the effort and increase your stature within the hospital. It may also help you get more staff and assume additional duties. Most of all, it will increase the respect of your department, and promote a more smoothly operating asset management system.  相似文献   

2.
Few medical faculty members are adequately prepared for their instructional responsibilities. Our educational traditions were established before we had research-based understandings of the teaching-learning process and before brain research began informing our understandings of how humans achieve lasting learning. Yet, there are several advantages you may have. If your expertise is at one of the frontiers of human biology, your teaching can be inherently fascinating to aspiring health professionals. If your work has implications for human health, you have another potential basis for engaging future clinicians. And, thanks to Claude Bernard's influence, you likely are "process oriented," a necessary mindset for being an effective teacher. There are also challenges you may face. Your medical students will mostly become clinicians. Unless you can help them see connections between your offerings and their future work, you may not capture and sustain their interest. To be effective, teachers, like clinicians, need to be interactive, make on-the-spot decisions, and be "emotional literate." If you aren't comfortable with these demands, you may have work to do toward becoming a truly helpful teacher. Program changes may be needed. Might your program need to change 1) from being adversarial and controlling to being supportive and trust based or 2) from mainly dispensing information to mainly asking and inviting questions? In conclusion, making changes toward becoming a truly helpful teacher can bring benefits to your students while increasing your sense of satisfaction and fulfillment as a teacher. If you choose to change, be gentle with yourself, as you should be when expecting your students to make important changes.  相似文献   

3.
The best protection is preparation. Assess any equipment/device that requires repair or maintenance for potential contamination or source of injury, such as sharp edges. Know where your protective apparel is located and use it. Review decontamination procedures and keep disinfectants available. Know your employee report of injury program and seek medical care whenever you have concerns regarding potential injury or exposure. Know your policies and procedures and where to find them if you need further information. Your infection control staff should be available 24 hours a day. The standard personal protective equipment that your employer is required to make available to you should include gloves, masks, eye protection, and gowns. In addition, if you are expected to enter a negative pressure room while a patient is in Airborne Precautions, you must be properly fit tested with an N95 respirator prior to entering the room. This respirator is very similar to a normal mask, but is able to filter out particles such as the TB bacterium. Infection control boils down to 2 commandments: 1. Wash your hands! 2. Use your head/common sense: If it looks soiled--clean it. If you have concerns--ask for clarification. If you think you have been exposed--seek medical assistance.  相似文献   

4.
Loving science and nature and being a scientist can be very different, yet the two are so intertwined in a scientist''s life that you will certainly experience both aspects. This essay presents my perspective on how, as one who loves science and nature, I came to fall in love with centrosome behavior in stem cells and how I came to run a lab as a scientist. When I started, there was a big gap between my love for science and my experience as a scientist. I filled this gap by learning a “laid-back confidence.”Before the beauty of cell biology (or whatever you love), who you are (i.e., your age, gender, or race) is immaterial. Yet history shows that the ease with which you can pursue science is influenced by who you are. This has certainly been my experience. The key is to find a way to fill in the gap between who you are and what you are (i.e., a scientist), a goal in which we must all support each other. It is my hope that this essay will convey something helpful to those who are at early stages of their career and might be encountering obstacles because of who they are.  相似文献   

5.
We are all voice experts. First and foremost, we can produce and understand speech, and this makes us a unique species. But in addition to speech perception, we routinely extract from voices a wealth of socially-relevant information in what constitutes a more primitive, and probably more universal, non-linguistic mode of communication. Consider the following example: you are sitting in a plane, and you can hear a conversation in a foreign language in the row behind you. You do not see the speakers' faces, and you cannot understand the speech content because you do not know the language. Yet, an amazing amount of information is available to you. You can evaluate the physical characteristics of the different protagonists, including their gender, approximate age and size, and associate an identity to the different voices. You can form a good idea of the different speaker's mood and affective state, as well as more subtle cues as the perceived attractiveness or dominance of the protagonists. In brief, you can form a fairly detailed picture of the type of social interaction unfolding, which a brief glance backwards can on the occasion help refine - sometimes surprisingly so. What are the acoustical cues that carry these different types of vocal information? How does our brain process and analyse this information? Here we briefly review an emerging field and the main tools used in voice perception research.  相似文献   

6.
E Kaegi 《CMAJ》1998,158(9):1161-1165
Unconventional therapies (UTs) are therapies not usually provided by Canadian physicians or other conventionally trained health care providers. Examples of common UTs available in Canada are herbal preparations, reflexology, acupuncture and traditional Chinese medicine. UTs may be used along with conventional therapies (complementary) or instead of conventional therapies (alternative). Surveys have shown that many Canadians use UTs, usually as complementary therapies, for a wide range of diseases and conditions. Reliable information about UTs is often difficult to find. Your doctor may be unable to give you specific advice or recommendations, since UTs are often not in a physician''s area of expertise. However, he or she will usually be able to provide some general advice and help supervise your progress. For your own health and safety, it is important to keep your doctor informed of the choices you make. This document is intended to (a) provide you with questions to consider when making your treatment choices, (b) help you find information about UTs, (c) help you decide whether a specific UT is right for you, and (d) provide tips to help you evaluate the information you find.  相似文献   

7.
《CMAJ》1983,129(7):705-710
The following guidelines are useful if you want to "do it with a simple table" (Table IV): First, identify the sensitivity and specificity of the sign, symptom or diagnostic test you plan to use. Many are already in the literature, and subspecialists should either know them for their field or be able to track them down for you. Depending on whether you are considering a sign, a symptom or a diagnostic laboratory test, you will want to track down a clinical subspecialist, a radiologist, a pathologist and so on. Start your table with a total of 1000 patients, as shown in location (a + b + c + d) of panel A. Using the information you have about the patient before you apply the diagnostic test, estimate the patient''s pretest likelihood (prevalence or prior probability) of the target disorder -- let''s say 10%. Take this proportion of the total (100) and place it in location (a + c); the remaining 900 patients go in location (b + d) (panel B). Multiply (a + c) (100) by the sensitivity of the diagnostic test (let''s say 83%) and place the result (83) in cell a and the difference (17) in cell c; similarly, multiply (b + d) (900) by the specificity of the diagnostic test (let''s say 91%) and place the result (819) in cell d and the difference (81) in cell b (panel C). If (a + b) and (c + d) do not add up to 1000, you will know you have made a mistake. You can now calculate the positive predictive value, a/(a + b), and the negative predictive value, d/(c + d), as shown in panel D. You have now reached a level of understanding a fair bit beyond the rule-in/rule-out strategy discussed in part 1 of our series. Furthermore, you can already do more than most clinicians, so you may want to stop here, at least for a while. On the other hand, you may want to go further and learn how to handle slightly more complex tables with multiple cut-off points. In the next article you will find more powerful ways to take advantage of the degree of positivity and negativity of diagnostic test results.  相似文献   

8.
《Autophagy》2013,9(3)
To tell the truth, I find it difficult to work when flying, or even when sitting in an airport for an extended period of time. So, typically I take along a book to read. And when I truly cannot concentrate, for example when a flight is considerably delayed, I have even been known to resort to word puzzles. Depending on the type, they do not require much attention (that is, you can pick up right where you left off after you glance at the flight status screen for the twentieth or so time, even though you know nothing has changed), or effort (although you need to use a pen or pencil, not a keyboard), but nonetheless they can keep your mind somewhat occupied. I even rationalize doing them based on the assumption that they are sharpening my observational/pattern-finding skills. One type of word puzzle that is particularly mindless, but for that very reason I still enjoy in the above circumstances, is a word search; you are given a grid with letters and/or numbers, and a list of “hidden” terms, and you circle them within the grid, crossing them off the list as you go along. I do admit that the categories of terms used in the typical word searches can become rather mundane (breeds of dog, types of food, words that are followed by “stone,” words associated with a famous movie star, words from a particular television show, etc.). Therefore, on one of my last seminar trips I decided to generate my own word search, using the category of autophagy.  相似文献   

9.
The land! don't you feel it? Doesn't it make you want to go out and lift dead Indians tenderly from their graves, to steal from them—as if it must be clinging even to their corpses—some authenticity.  相似文献   

10.
If you were asked to speculate about the form extra-terrestrial life on Mars might take, which geomicrobial phenomenon might you select as a model system, assuming that life on Mars would be ‘primitive’? Give your reasons.  相似文献   

11.
胡耀武 《人类学学报》2021,40(3):526-534
上世纪70年代末以降,考古遗址中出土生物材料的稳定同位素分析,在考古学和生物考古研究领域越来越发挥重要作用,成为现代考古学研究的重要组成部分。国内外学界常将其定位为分析技术,从未从学科层面予以考虑和重视。鉴于同位素分析的重要性以及学科发展的迫切性,将其由分析技术层面上升至学科层面实属大势所趋。本文将之前的"稳定同位素分析"首次命名为"稳定同位素生物考古学"(简称为同位素生物考古学),将其列为广义概念下生物考古学的重要学科分支之一。本文详细介绍了稳定同位素生物考古学的概念、研究简史、分析原理和研究目标;在分析原理上,除已有的"我即我食"和"我非我食"之外,还首次提出了"我即我是"和"我即我居";并对今后如何深入开展研究进行了展望。  相似文献   

12.
To tell the truth, I find it difficult to work when flying, or even when sitting in an airport for an extended period of time. So, typically I take along a book to read. And when I truly cannot concentrate, for example when a flight is considerably delayed, I have even been known to resort to word puzzles. Depending on the type, they do not require much attention (that is, you can pick up right where you left off after you glance at the flight status screen for the twentieth or so time, even though you know nothing has changed), or effort (although you need to use a pen or pencil, not a keyboard), but nonetheless they can keep your mind somewhat occupied. I even rationalize doing them based on the assumption that they are sharpening my observational/pattern-finding skills. One type of word puzzle that is particularly mindless, but for that very reason I still enjoy in the above circumstances, is a word search; you are given a grid with letters and/or numbers, and a list of “hidden” terms, and you circle them within the grid, crossing them off the list as you go along. I do admit that the categories of terms used in the typical word searches can become rather mundane (breeds of dog, types of food, words that are followed by “stone,” words associated with a famous movie star, words from a particular television show, etc.). Therefore, on one of my last seminar trips I decided to generate my own word search, using the category of autophagy.  相似文献   

13.
Stone J 《Bioethics》1994,8(3):223-246
This Paper argues that Living wills are typically nebulous and confused documents that do not effectively enable you to determine your future treatment. Worse, signing a living will can end your life in ways you never intended, long before you are either incompetent or terminally ill. This danger is compounded by the fact that those who implement living wills are often themselves dangerously confused, so that, for example, they cannot be relied upon to distinguish living wills from DNR orders. In addition, the Paper argues that advance directives concerning resuscitation are often so confused that they end the lives of healthy, alert people who have not suffered cardiac or pulmonary arrest. Finally, the paper argues that advance directives establishing durable power of attorney for health care often preserve the chief dangers of living wills. Suggestions are offered as to how you can most effectively direct your future treatment without endangering your life.  相似文献   

14.
《CMAJ》1983,129(8):832
A more complex table is especially useful when a diagnostic test produces a wide range of results and your patient''s levels are near one of the extremes. The following guidelines will be useful: Identify the several cut-off points that could be used. Fill in a complex table along the lines of Table I, showing the numbers of patients at each level who have and do not have the target disorder. Generate a simple table for each cut-off point, as in Table II, and determine the sensitivity (TP rate) and specificity (TN rate) at each of them. Select the cut-off point that makes the most sense for your patient''s test result and proceed as in parts 2 and 3 of our series. Alternatively, construct an ROC curve by plotting the TP and FP rates that attend each cut-off point. If you keep your tables and ROC curves close at hand, you will gradually accumulate a set of very useful guides. However, if you looked very hard at what was happening, you will probably have noticed that they are not very useful for patients whose test results fall in the middle zones, or for those with just one positive result of two tests; the post-test likelihood of disease in these patients lurches back and forth past 50%, depending on where the cut-off point is. We will show you how to tackle this problem in part 5 of our series. It involves some maths, but you will find that its very powerful clinical application can be achieved with a simple nomogram or with some simple calculations.  相似文献   

15.
There is an industry-driven public obsession with antioxidants, which are equated to safe, health-giving molecules to be swallowed as mega-dose supplements or in fortified foods. Sometimes they are good for you, but sometimes they may not be, and pro-oxidants can be better for you in some circumstances. This article re-examines and challenges some basic assumptions in the nutritional antioxidant field.  相似文献   

16.
Honing your phone skills can help you land the job you want.  相似文献   

17.
When you are at the bottom of the career ladder in the life sciences it's often hard to see how high you can go or where it might lead you. In Europe, the academic ladder is missing at least one essential rung, and young researchers need better training to step out in new directions.  相似文献   

18.
Having done the hard work in winning your new job, you might find fitting into a new environment to be just as demanding. Don't make the common mistake of focusing solely on work and getting results. You need to pay equal attention to nurturing good relationships with your new colleagues. Here are a few more hints to help ensure that you get off to the best possible start.  相似文献   

19.
A PhD thesis is a project with an established goal and a deadline. As such, the tools, strategies and insight of professional project management can be used effectively to improve both research success and personal well-being.A project is a “temporary endeavour undertaken to create a unique product, service or result” [1]. Although this is a generic definition, it pretty much describes any PhD research project. There are many ways to manage a project effectively and efficiently. Unfortunately, most of us are so busy with our science that we forget about the importance of planning and management to our own success, sanity and health. Instead, we approach our first three years of genuine scientific endeavour wide-eyed and unprepared to juggle the hundreds of tiny balls that make up a PhD. Several techniques from the realm of ‘project management'' might therefore be helpful for PhD students who need to plan and manage the many competing demands that doctoral research can place on them.A PhD comprises both the research itself and the acquisition of skills and knowledge that will facilitate your future career. As such, it is of paramount importance to establish your own objectives early on. For example, alongside dividing your project into work packages—smaller projects that might be discrete or might build on each other—it is also essential to define which so-called transferable skills—additional knowledge and experience that might improve your job prospects—you feel will be of greatest use to you, depending on what you want to do after your PhD. The importance of these skills is becoming more widely recognized and taken far more seriously, and you should find that your supervisor is willing to give you the time to pursue them—your institute or university usually requires that he or she does so. More importantly, you should give yourself the time to invest in these skills, as they are going to be vital to everything you do once your PhD project is over.Doctoral research requires a multitude of skills, most of which you will inevitably lack when you commence your PhD programme. The first step is to identify the gaps in your knowledge to plan what skills on which to focus. This will allow you to acquire them in good time, either through professional activities—shadowing a postdoc, teaching undergraduates, joining journal clubs and blogging—or through both internal and external courses and workshops to improve communication, presentation, writing, networking and other skills. In addition to your planned skills acquisitions, you will also have situations arise, in which you need to acquire new skills quickly. The more you plan training activities and skills acquisition in advance, however, the smoother this aspect will be of your PhD. By way of example, part of my own PhD project relates to statistical analysis of data. An early analysis highlighted several areas in which I had to improve my skills, including hierarchical cluster analysis, principal component analysis and χ2 testing against standard distributions. Having identified these gaps in knowledge early on in my doctoral programme, I could plan ahead accordingly when and how to acquire these skills.The full scope of your PhD project is usually unknown at the outset, and even the direction of your research might well change before you are finished. ‘Rolling wave planning'' is a technique that allows you to take these facts into account and plan the short-term future in detail, with a high-level provision for medium- to long-term activities. For those new to developing project schedules, I advocate a simple five-step approach. First, make an ordered list of high-level activities needed to achieve your goal. Second, expand this list by adding lower-level activities for which you have a detailed understanding of the scope, for example work to be performed in the next six months. You now have a work breakdown structure. Third, turn this work breakdown structure into a dependency-driven list by adding associations between the activities, for example by adding links to precursor activities that need to be completed before another activity can be started. Fourth, estimate the duration of each activity and extrapolate the start and end dates beginning with the first scheduled activity. Finally, as you progress through your research, and the scope of future activities becomes clearer, update the project schedule with these low-level activities as they become known. This approach of generating a hybrid-level project schedule, and updating with detailed activities as the scope becomes clearer, is known as ‘rolling wave planning''.…we approach our first three years of genuine scientific endeavour wide-eyed and unprepared to juggle the hundreds of tiny balls that make up a PhDThere is a range of professional software to help develop project schedules, but there are also various freeware tools available. Alternatively, you can use one of the many word processing or spreadsheet applications to make a simple Gantt chart. Along with the technical scope of your doctoral research, it would also be useful to include milestones that your institution enforces; for example literature review submission, formal progress reports and thesis chapter outlines. Including these in your rolling wave planning will allow you to keep in mind the bigger picture and the formal aspects that must be completed for your PhD, in parallel with the progress you are making towards your specific research subject.It is of course a cliché, but it is true that ‘failing to plan is planning to fail''. Of course the fluid nature of research makes it difficult to estimate accurately the time that it will take to complete various experiments, especially as a novice researcher. I therefore believe that although experiments do overrun and PhD projects can change, developing a project schedule is not a futile activity. By having a plan, even if it is made up of ‘guesstimates'', you can forecast roughly how much time you have left for your research and roughly what you can realistically hope to achieve. After all, without a plan, how can you predict when you will complete your research, submit your thesis and ultimately gain your PhD?Doctoral research requires a multitude of skills, most of which you will inevitably lack when you commence your PhD programmeThe serious consideration of scope is necessary in any project, but even more when you are simultaneously project manager, research scientist and key stakeholder. This raises various crucial questions regarding scope management: what is my doctoral research all about (the goal), and what work do I need to do to meet this goal? Once this has been agreed between you and your supervisor(s), it is essential to manage the scope of your project—the breadth and number of experiments you will perform—and how this will achieve your goal(s). Furthermore, be specific—knowing exactly what you want to achieve will keep you motivated until you get there.Project managers often use the concept of the triple constraint to manage work: scope, time and cost are intricately linked in a project and the different level of focus that each is given affects the perceived quality (by others) of project deliverables (Fig 1). Project managers understand that any deviation in one of the triple constraints changes one or both of the others. This is where the project schedule really comes into its own by allowing you to forecast when you will complete the agreed goals of your PhD project. For example, is your doctoral programme for a fixed-term period? If so, then once a project schedule has been agreed that uses all of the time available, any project overruns will cause an overrun to the overall PhD. The two main possibilities for a PhD student to manage this situation and bring the projected completion back into acceptable timescales are either to work longer or to reduce the scope or goals of the project, either by conducting fewer experiments to answer the same question or by modifying the depth of the question being asked. This leads to the issue of whether there is a minimum set of goals that need to be achieved, or whether several agreed activities are ‘nice to haves'', but are not crucial for the overall PhD. I believe that your supervisor(s) are best suited to answer questions about the minimum goals and the scope needed to achieve them.Open in a separate windowFigure 1The project management triangle as applied to a PhD. Three competing constraints influence project management: time, scope and cost. The time constraint reinforces that projects are temporary endeavours, and that in most cases have defined timescales (absolute deadlines). The cost constraint refers to the budgeted amount allocated to the project that, from the perspective of doctoral research students, will predominantly be focused on the amount and duration of the stipend awarded, but might also incorporate various expenses such as bench fees, conference fees and consumables. For those changing career, the cost might also comprise an element of salary sacrifice. The scope constraint refers to what must be done, produced or developed to meet the objective of the project, which in the case of a PhD generally comprises the actual doctoral research to be performed, development (and submission) of the thesis, publication of one or more journal articles, presentation at conferences and potentially teaching. The triple constraint principle highlights that any change to one of the constraints will have an impact on one or both of the other constraints. For example, increased scope typically leads to increased time and cost; tight time constraints usually mean that an overrun in activities (such as experimentation) might have a knock-on effect of requiring the scope to be reduced to submit your thesis on time, or increasing the overall amount of time required to complete your PhD. Similarly, a tight budget could mean you cannot gain access to various resources, resulting in either increased time or a reduction in scope. Recently, a fourth component of the project management triangle has been introduced highlighting that along with the three constraints competing with each other, they also interact to form a fourth dimension of quality.If you need to complete your doctoral programme within a specified time frame, then you need to manage your goals and scope mercilessly—do not allow additional research questions or extra experiments to take away precious time. This does not mean that you cannot deviate, but any deviations need to be managed. Remember, whether you wish to remain in scientific research or not, the PhD is a stepping-stone to your future career and not the end goal in itself. Once you have achieved the goals agreed with your supervisor, it is more beneficial for you to write-up your doctoral thesis and move on [2].Good communication is essential in every area of work, but even more so for a PhD as you are simultaneously learning how to research along with doing the research. Often, access to your supervisor is limited by constraints on his/her or your time, which means that clear communication is vital. Do not assume that your supervisor knows every intricate detail of what you are doing; he or she might have a large group in which each member is looking at complementary aspects of a more general topic. It is, therefore, your responsibility to ensure that all your stakeholders—supervisors, postdoc leads and any others involved—know what you are doing and, more importantly, why you are doing it.This is another area in which the apt use of technology can maximize efficiency. Subject to institutional licensing, collaboration tools such as SkillsForge or Evernote can improve communication between stakeholders. For example, meeting minutes, action points to be followed and research results can be uploaded for sharing. Supervisors can then review the material at a convenient time to ensure that they stay up to date with the progress of each student within their research group.As PhD students usually aspire to become research scientists, it is of paramount importance that you learn the correct application of the scientific method and the context in which your work is being done. Before jumping into practical work—wet-lab experiments or computational modelling—it is important to understand the meaning and relevance of your project in relation to existing knowledge and the underlying science. For example, the hypothesis-driven research life cycle in systems biology [3,4]—my own field—advises that computational models should be developed on the basis of wet-lab data relating to the underlying biological system. Almeida-Souza and Baets state that a PhD in science is an opportunity to learn how to tackle problems scientifically and, as such, requires the development of skills in critical thinking, hypothesis formulation and experimental design [5]. I believe that the requirement for these skills is universal across the sciences, and that molecular biosciences and computational systems biology are no different.The serious consideration of scope is necessary in any project, but even more when you are simultaneously project manager, research scientist and key stakeholderTherefore, before the first wet-lab experiment is performed, or the first line of code is written, it is essential that we understand why the experiment is important and what results we might expect to support our initial hypotheses. Furthermore, regarding computational systems biology, I believe that it is also essential for wet-lab and computational researchers to collaborate to ensure both have a consistent understanding of the data and the purpose of the computational model. After all, for the most part, computational models are developed for their predictive capacities and to allow hypothesis generation for subsequent wet-lab experimentation. Baxter et al have extensively covered this area and advocate not only designing the project up-front, but also the need for quality control [6].You need to manage the scope and goals of your PhD mercilessly and, at the same time, be flexible enough to grasp new opportunities. Conversations at conferences, for instance, can open up opportunities for collaboration and take your research in a direction that you had not considered previously. In my case, I was invited to turn a conference paper relating to my masters degree into a full paper for a special issue of a well-known bioinformatics journal. Although it was not related to my doctoral research, the prospect was too good to turn down. I therefore discussed the idea with my PhD supervisor, and once we were in agreement, I updated the project schedule to incorporate this new activity, trying to mitigate as much as possible the resulting slippages to my doctoral research. In essence, I had performed an impromptu risk–reward analysis and decided that the reward that would be gained from publishing this work outweighed the risk of a slight overrun of my PhD thesis. It must be noted that I was lucky in this instance, as my PhD supervisor also supervised the research project during my master''s degree, so a full paper would be beneficial for both of us.A project risk is “an uncertain event or condition, that if it occurs, has an effect on at least one project objective” [1]. The positive side to risks is that the likelihood of their future occurrence can be mitigated by planning in the present. Once a risk is realized, however, and its effects begin to be felt, it has turned into a project issue. The first step in trying to manage risks is their identification. Risk identification in this context is the process of determining which events, if they occurred, would affect your research. In the context of a molecular biosciences PhD, I believe that general risks relate to access to resources, such as people—postdocs and collaborators, for example—reagents, cell lines and shared equipment. For example, if your work uses fluorescent proteins within single cell analysis, how would you be affected if the fluorescence microscope was booked out by another research lab? Similarly, in computational systems biology, if the design process for your computational model requires access to wet-lab data, what would the effect(s) be if this was not available?Once risks are identified, it is important to develop risk response plans. By using the above example of access to a microscope, what should your response be if you cannot gain access? The initial risk response would be to liaise with the other research lab to understand their requirements and ascertain whether you could gain access at a mutually convenient time. Alternatively, another approach might be to work outside normal office hours, either throughout the evenings or on the weekend, subject to health and safety procedures at your institution and your own health and well-being. I believe that a degree of creativity is often required when developing effective risk response plans.A PhD thesis is a hefty document that might run to many hundreds of pages. They are generally not written as a single large document from start to finish, but as chapters. In the molecular biosciences, a thesis consists of an initial literature review early in the doctoral programme, work-in-progress documents for materials and methods, experimental results throughout the middle section, which is followed by analysis and critical evaluation towards the end of your experimental work. Whether through software tools or through your own manual methods, such as keeping a configuration log and keeping a copy of each version of your working documents, it is essential that you maintain an up-to-date repository of all your notes. I have found through experience that it is beneficial to save not only the final versions, but also each of the working drafts of documents generated throughout your PhD. Ideas previously discounted, and thus removed from more recent versions of documents, might once again take centre stage at a later date.The positive side to risks is that the likelihood of their future occurrence can be mitigated by planning in the presentThis can be aided through the development and use of a project library with a logical folder structure to facilitate easy access to documentation. Noble [7] provides an in-depth discussion of organizing your computational biology project—in particular the value of version control—but the concepts are transferable across disciplines. Furthermore, do not forget to back-up your work, and without seeming too pessimistic, back-up your back-up!Finally, look after the most important resource: you. Exercise, diet, alcohol, caffeine and holidays all affect your well-being. Holidays and time away from the lab or office allow you to take a step back from the detail and reflect on your experiences and progress. Sometimes, time off allows you to process issues subconsciously and develop new approaches to overcome problems that you have been tackling for extended periods of time without success. Finally, holidays also help you recharge your batteries and enthusiasm to return to your project with fresh vigour. If you have sensibly and reasonably planned time off alongside your work, you will be able to enjoy it.Although a PhD requires consistent commitment, you simply cannot—and should not—work at full capacity all of the time. Issues arise periodically throughout any project, and if you have no reserves of energy—either mental or physical—you will be unable to tackle them head on with the step change of performance that is required. Furthermore, doctoral research is a marathon and not a sprint; we all experience the symptoms of burnout from time to time, and sometimes it is better to walk away for a short period to recharge than to carry on, become stale, and ultimately slow down.To conclude, I wish you good luck with your doctoral research, and I hope these techniques help you to manage your PhD project through to successful completion.? Open in a separate windowRichard Alun Williams  相似文献   

20.
Adherence to these principles will not guarantee success, but the testimony of many famous scientists supports the hypothesis that these guidelines can significantly (p less than .05, Wilcoxon unpaired X-test run at pH 5.6) increase your chances of achieving recognition, acquiring wealth, and ultimately being known as a successful scientist. At the very least, they should prevent you from falling too far outside the boundaries of "normal" science where you could easily be branded for life as a troublemaker or heretic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号