首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design, synthesis and evaluation of four novel pyrrolo[2,1-c][1,4]benzodiazepine (PBD) prodrugs (1a,b and 2a,b; ) for potential use in carboxypeptidase G2 (CPG2)-based antibody-directed enzyme prodrug therapy (ADEPT) is reported. Although all four prodrugs were shown to be less cytotoxic than the released parent PBDs 3 and 4, the urea prodrugs 1b and 2b were found to be too unstable for use in ADEPT, whereas carbamates 1a and 2a are both stable in an aqueous environment and are good substrates for CPG2.  相似文献   

2.
The activity of adsorbed β-glucosidase onto spherical polyelectrolyte brushes (SPBs) is investigated by UV-Vis spectroscopy and isothermal titration calorimetry (ITC). By comparing the results of these two methods, we demonstrate that ITC is a precise method for the study of the activity of immobilized enzymes. The carrier particles used for immobilization here consist of a polystyrene core onto which poly(acrylic acid) chains are grafted. High amounts of enzyme can be immobilized in the brush layer at low ionic strength by the polyelectrolyte-mediated protein adsorption (PMPA). Analysis of the activity of β-glucosidase was done in terms of Michaelis-Menten kinetics. Moreover, the enzymatic activity of immobilized enzyme is studied by ITC using cellobiose as substrate. All data show that ITC is a general method for the study of the activity of immobilized enzymes.  相似文献   

3.
A series of nitrobenzyl- and nitroimidazolylmethyl carbamate prodrugs of doxorubicin were prepared and evaluated for their potential use in nitroreductase (NTR) mediated gene-directed enzyme prodrug therapy (GDEPT). The carbamate prodrugs and doxorubicin were tested in a cell line panel comprising parental and NTR transfected human (SKOV3/SKOV3-NTR(neo), WiDr/WiDr-NTR(neo)), Chinese hamster (V79/V79-NTR(puro)) and murine (EMT6/EMT6-NTR(puro)) cell line pairs, and were compared with the established NTR substrates CB 1954 (an aziridinyl dinitrobenzamide) and the analogous dibromomustard SN 29427. The low solubility of the prodrugs (from 3 to 39 microM) precluded the determination of IC(50) values against the parent cell lines in some instances. All of the prodrugs were unstable in culture medium with 5% added fetal calf serum over a 24h period, although release of doxorubicin was not observed. The prodrugs were 20- to >336-fold less toxic than doxorubicin in the human cells lines SKOV3 and WiDr, with overall less deactivation seen in the V79 cell line (11- to >286-fold) and EMT6 cell line (1.8- to >178-fold). Prodrugs with the nitrobenzyl unit directly conjugated to doxorubicin showed modest selectivity for NTR across the cell line panel (1- to 5.9-fold) but this was increased to between >10- and >370-fold with the interpolation of an 4-aminobenzyl spacer unit between the bioreductive unit and doxorubicin. A 2-nitroimidazolylmethyl carbamate provided deactivation of doxorubicin (8- to 124-fold) but showed only modest selectivity for NTR (2- to 14-fold) across the panel. The interpolation of a 4-aminobenzyl spacer gave slightly lower deactivation (3- to 64-fold) and similar selectivity for NTR (>1.2- to >12-fold) for 2- and 5-nitroimidazolylmethyl prodrugs. The activity of two nitrobenzyl prodrugs containing an aminobenzyl spacer, providing excellent selectivity for NTR+ve cells in culture, was evaluated against EMT6 tumours comprising ca. 10% NTR+ve cells, but neither showed statistically significant levels of killing even of NTR+ve cells. This lack of activity in tumours, despite potent and selective activity in culture, indicates that pharmacokinetic optimization is needed to achieve in vivo efficacy against solid tumours with this new class of NTR prodrugs.  相似文献   

4.
Comparison of the in vivo and in vitro effects of S-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)thiuronium bromide (1), 2-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosylthio-1,3,4-thiadiazolin-5-thione (2), and 2-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosylthio)-1,3-benzoxazole (3), as well as the antidiabetics Daonil and insulin on glycosidase enzymes has been investigated. Compound 1 inhibited both alpha- and beta-glucosidases, but the inhibition was more potent with the beta-enzyme. Compound 2 was found to be a weaker inhibitor of these enzymes, while compound 3 showed a slight apparent activation.  相似文献   

5.
This study describes the synthesis of arylboronate-based ROS-responsive prodrugs of doxorubicin and their biological evaluation as anticancer agents. The determination of the most sensitive cancer type toward arylboronate prodrugs is crucial for further consideration of these molecules in clinical phase. To address this goal, an arylboronate-based profluorescent probe was used to compare the capacity of various cancer cell lines to efficiently convert the precursor into the free fluorophore. On the selected MiaPaCa-2 pancreatic cancer cells, a benzeneboronate prodrug exhibited 67% of the cytotoxicity obtained with the free doxorubicin. The prodrug was also able to induce tumor regression on MiaPaCa-2 pancreatic tumor model in ovo. Using this model, the amount of free doxorubicin liberated from this prodrug into the tumor was equivalent to the quantity measured after direct intratumoral injection of the same concentration of doxorubicin.  相似文献   

6.
The synthesis, solvolytic behaviour and cytotoxicity of novel 4-nitrobenzyl carbamates and carbonates derived from 3-amino-4-hydroxymethylacridine 1 are described. Compounds 2 and 6 are both substrates for Escherichia coli nitroreductase and the highly active lead structure 1 is liberated upon incubation of the two compounds in the presence of NTR and its cofactor NADH. Additionally, the cytostatic activity of 2 and 6 against human HT29 colon carcinoma cell lines is decreased 80-fold and 360-fold, respectively, indicating their suitability and potency as prodrugs for either gene-directed enzyme prodrug therapy or antibody-directed enzyme prodrug therapy.  相似文献   

7.
The synthesis and evaluation of the 4-nitrobenzylcarbamate enediyne 6 and related compounds as prodrugs activated by a nitroreductase enzyme (NTR) from E. coli B is described. Expression of NTR in three different cell lines gives increases in cytotoxicity of 21- to 135-fold for 6 (IC50 values 13–24 nM in the NTR-expressing lines), indicating its potential as a prodrug for NTR-mediated Gene-Directed Enzyme Prodrug Therapy. The cytotoxicity of 6 and related enediynes is shown to be oxygen-dependent, especially in nucleotide excision repair-proficient cells, which might limit activity in hypoxic regions of tumours.  相似文献   

8.
CC49 is a clinically validated antibody with specificity for TAG-72, a carbohydrate epitope that is overexpressed and exposed on the cell surface in a large fraction of solid malignancies. We constructed a single-chain fragment (scFv) based on CC49 and fused it to beta-lactamase (BLA). Following optimization of the scFv domain by combinatorial consensus mutagenesis (CCM) for increased expression and stability, we characterized the protein variant for binding, in vivo pharmacokinetics (PK), and antitumor efficacy. The fusion protein TAB2.5 possessed a similar binding specificity relative to the parent antibody CC49. TAB2.5 also showed prolonged retention (T(1/2) = 36.9 h) in tumor-bearing mice with tumor/plasma ratios of up to 1000. Preliminary evaluation of TAB2.5, in combination with a novel prodrug, GC-Mel, resulted in significant efficacy in a colorectal xenograft tumor model and supports the utility of the protein as an agent for tumor-selective prodrug activation.  相似文献   

9.
Adamantoyl glycosides were obtained in good yields by coupling adamantanecarboxylic acid with monosaccharides. They form very stable inclusion complexes with beta-cyclodextrin, as shown by (1)H NMR measurements.  相似文献   

10.
A low-cost of cellulase achieved through improving fermentation technology remains a key requirement for commercialization of cellulosic biofuels and biochemicals. pH plays a very important role in the process of cellulase synthesis by Trichoderma reesei. In this work, effects of pH on the production and production rates of three cellulase components (endoglucanase, exoglucanase, β-glucosidase) and mycelial morphology were studied. Production rates of the cellulase components were kept highest and the mycelial morphology was maintained at the optimal status by developing a phased pH control strategy in order to improve cellulase production. Cellulase production in terms of filter paper activity and β-glucosidase production in batch fermentation increased 17.6% and 22%. Saccharification efficiency of the enzyme obtained by pH control was evaluated by hydrolyzing pretreated corn cob. Saccharification yield increased significantly (up to 26.2%) compared with that without pH control. These results add new knowledge on approach for improving cellulase production.  相似文献   

11.
Naphthalene is metabolized in the lung and liver to reactive intermediates by cytochrome P450 enzymes. These reactive species deplete glutathione, covalently bind to proteins, and cause necrosis in Clara cells of the lung. The importance of glutathione loss in naphthalene toxicity was investigated by using the glutathione prodrugs (glutathione monoethylester or cysteine-glutathione mixed disulfide) to maintain glutathione pools during naphthalene exposure. Mice given a single intraperitoneal injection of naphthalene (1.5 mmol/kg) were treated with either prodrug (2.5 mmol/kg) 30 min later. Both compounds effectively maintained glutathione levels and decreased naphthalene-protein adducts in the lung and liver. However, cysteine-glutathione mixed disulfide was more effective at preventing Clara cell injury. To study the prodrugs in Clara cells without the influence of hepatic naphthalene metabolism and circulating glutathione, dose-response and time-course studies were conducted with intrapulmonary airway explant cultures. Only the ester of glutathione raised GSH in vitro; however, both compounds limited protein adducts and cell necrosis. In vitro protection was not associated with decreased naphthalene metabolism. We conclude that (1) glutathione prodrugs can prevent naphthalene toxicity in Clara cells, (2) the prodrugs effectively prevent glutathione loss in vivo, and (3) cysteine-glutathione mixed disulfide prevents naphthalene injury in vitro without raising glutathione levels.  相似文献   

12.
The maize β-glucosidase Zm-p60.1 is important for the regulation of plant development through its role in the targeted release of free cytokinins from cytokinin-O-glucosides, their inactive storage forms. Enzyme kinetics studies using these scarce substrates close to physiological concentrations are difficult due to two reasons: (a) Available methods are mainly suited for end-point kinetics. (b) These methods are not sufficiently sensitive when using scarce glucoside substrates.We developed a glucose assay using a system comprising three enzymes β-glucosidase, glucose oxidase and horseradish peroxidase, with the new substrate N-acetyl-3,7-dihydroxyphenoxazine-Amplex Ultra Red reagent (Molecular Probes). A calibration curve was constructed for resorufin and validation was carried out by comparing our method with the standard spectrophotometric method using p-nitrophenyl-β-d-glucopyranoside. In comparison with the other methods, this method is more sensitive, precise and accurate. The assay is rapid and hence suited for continuous kinetics, it is readily adapted to suit automated procedures, and potential applications include its use in studying the physiological role(s) of enzymes that cleave scarce glucoside substrates.  相似文献   

13.
Enzyme immobilization is a routine biotechnology of many industries such as pharmaceutical, chemical and food. Among the different techniques of enzyme immobilization, cross-linking methods are often used. Geniposide is a natural product extracted from gardenia and its hydrolysate genipin is one of green cross-linking agent for enzyme immobilization, but the environmental pollution and cost of the genipin extraction process have become the main obstacle to its wide application. Enzyme β-glucosidase was immobilized on chitosan by self-catalysis and further used to hydrolyze geniposide. The laccase was immobilized on Nano-SiO2 through the hydrolysate of geniposide directly acts as cross-linking agent. The simplification of the extraction steps overcomes the obstacles to the widespread use of genipin. Compared with the free laccase, the Nano-SiO2@laccase exhibited better pH stability and thermal stability. The Nano-SiO2@laccase was used to degrade Bisphenol A (BPA) and the biodegradation efficiency of the Nano-SiO2@laccase was 84.3 % after 10 cycles of reusing.  相似文献   

14.
The suitability of 4-di(2-chloroethyl)aminoanilino-4-hydroxyphenethylaminomethanone 2 to act as a prodrug for melanocyte-directed enzyme prodrug therapy (MDEPT) is assessed. Thus its synthesis, ability to generate a cytotoxic agent upon exposure to tyrosinase, and stability within different sera are reported. A comparison is made to illustrate that the new urea prodrug 2 is a more suitable candidate for MDEPT than the corresponding carbamate prodrug 1.  相似文献   

15.
Evaluation of second generation prodrugs for MDEPT, by oximetry, has highlighted structural properties that are advantageous and disadvantageous for efficient oxidation using mushroom tyrosinase. In particular, a sterically undemanding prodrug bis-(2-chloroethyl)amino-4-hydroxyphenylaminomethanone 28 was synthesised and found to be oxidised by mushroom tyrosinase at a superior rate to tyrosine methyl ester, the carboxylic acid of which is the natural substrate for tyrosinase. The more sterically demanding phenyl mustard prodrugs 9 and 10 were oxidised by mushroom tyrosinase at a similar rate to tyrosine methyl ester. In contrast, tyramine chain elongation via heteroatom insertion was detrimental and the rate of mushroom tyrosinase oxidation of phenyl mustard prodrugs 21 and 22 decreased by 10 nanomol/min.  相似文献   

16.
Abstract β-Glucosidase activity was investigated in stream-bed sediments using 4-methylumbelliferyl-β- d -glucopyranoside (MUF-β-Glc) as a model substrate. In a perfused core technique, water containing MUF-β-Glc was perfused up through sediment cores. β-glucosidase activity quantified from the release of fluorescent MUF in water discharge from the cores. At low rates of perfusion, maximum β-glucosidase activity ( V max) in perfused sediments was similar to that in suspended (unperfused) sediments. Substrate affinity( K m)was higher in the suspended sediments. V maxand K m both increased when the perfusion rate was raised, although naturally-low substrate concentrations could mean that variability in perfusion rates has little effect on enzyme activity in the field. V max was uninfluenced by whether ground or stream water was perfused through the sediments, but K m was higher in cores perfused with groundwater. Increasing concentrations of glucose in the perfusion water resulted in a progressive inhibition of β-glucosidase activity. Although natural concentrations of glucose were low, the high turnover of enzymatically-released glucose probably means that β-glucosidase activity could be regulated by product concentration.  相似文献   

17.
This work studied the benefits of adding different enzyme cocktails (cellulase, xylanase, β-glucosidase) to pretreated switchgrass. Pretreatment methods included ammonia fiber expansion (AFEX), dilute-acid (DA), liquid hot water (LHW), lime, lime + ball-milling, soaking in aqueous ammonia (SAA), and sulfur dioxide (SO2). The compositions of the pretreated materials were analyzed and showed a strong correlation between initial xylan composition and the benefits of xylanase addition. Adding xylanase dramatically improved xylan yields for SAA (+8.4%) and AFEX (+6.3%), and showed negligible improvement (0-2%) for the pretreatments with low xylan content (dilute-acid, SO2). Xylanase addition also improved overall yields with lime + ball-milling and SO2 achieving the highest overall yields from pretreated biomass (98.3% and 93.2%, respectively). Lime + ball-milling obtained an enzymatic yield of 92.3 kg of sugar digested/kg of protein loaded.  相似文献   

18.
Abstract

The efficacy of a simple laboratory method for cell disruption based on the glass bead stirring, sonication, osmotic shock, freezing and grinding, or use of solvents and detergents was assessed in this study, via measurements of the release of total protein and L-asparaginase activity. Three different microbial sources of L-asparaginase were used: Escherichia coli BL21 (DE3), Leucosporidium muscorum, and Aspergillus terreus (CCT 7693). This study adjusted and identified the best procedure for each kind of microorganism. Sonication and glass bead stirring led to obtaining filamentous fungus cell-free extracts containing high concentrations of soluble proteins and specific activity; however, sonication was the best since it obtained 4.61?±?0.12?IU?mg?1 after 3?min of operation time. Mechanical methods were also the most effective for yeast cell disruption, but sonication was the technique which yielded a higher efficiency releasing 7.3 IUtotal compared to glass bead stirring releasing 2.7 IUtotal at the same operation time. For bacterium, sonication proved to be the best procedure due to getting the highest specific activity (9.01?IU?mg?1) and total enzyme activity (61.7?IU). The data presented lead to conclude that the mechanical methods appeared to be the most effective for the disintegration of the all microbial cells studies. This is the first report related to the experimental comparison of L-ASNase extraction procedures from different microorganisms, which can also be used for extracting periplasm located enzymes from other organisms.  相似文献   

19.
Acridin-3,6-dialkyldithiourea hydrochlorides (AcrDTUs) have been evaluated as a new group of photosensitizers (PSs) for photodynamic antitumor therapy (PDT). Mouse leukemia cells L1210 were used for testing of AcrDTUs as the new PSs. The irradiation (UV-A light (365 nm), 1.05 J/cm2) increased cytotoxicity of all derivatives against L1210 cells more than ten times. The highest photocytotoxicity was found for propyl-AcrDTU with IC50 = 0.48 ± 0.03 μM after 48 h incubation. A generation of the superoxide radical anion upon UV-A irradiation of propyl-AcrDTU was confirmed by in situ photochemical EPR experiments. To explain a mechanism of photocytotoxic action of AcrDTUs, an intracellular distribution of propyl-AcrDTU has been studied. It was found that AcrDTU in non-irradiated cells was not present in their nucleus but in the lysosomes and partly in the mitochondria, and sequestration of propyl-AcrDTU was dependent on pH in lysosomes. After irradiation, the cell death was induced by oxidative damage of lysosomal and mitochondrial membranes. Concerning the cell cycle, flow cytometry after PDT with propyl-AcrDTU showed a significant increase of the cells in the subG0 phase. Observed signs of necrosis, apoptosis, and autophagy indicate that PDT/AcrDTU leads to multiple cell death types (caspase independent apoptosis, necrosis, and autophagy).  相似文献   

20.
Iridoid glycosides are plant defence compounds with potentially detrimental effects on non-adapted herbivores. Some plant species possess β-glucosidases that hydrolyse iridoid glycosides and thereby release protein-denaturing aglycones. To test the hypothesis that iridoid glycosides and plant β-glucosidases form a dual defence system, we used Plantago lanceolata and a polyphagous caterpillar species. To analyse the impact of leaf-age dependent differences in iridoid glycoside concentrations and β-glucosidase activities on insect performance, old or young leaves were freeze-dried and incorporated into artificial diets or were provided freshly to the larvae. We determined larval consumption rates and the amounts of assimilated nitrogen. Furthermore, we quantified β-glucosidase activities in artificial diets and fresh leaves and the amount of iridoid glycosides that larvae feeding on fresh leaves ingested and excreted. Compared to fresh leaves, caterpillars grew faster on artificial diets, on which larval weight gain correlated positively to the absorbed amount of nitrogen. When feeding fresh young leaves, larvae even lost weight and excreted only minute proportions of the ingested iridoid glycosides intact with the faeces, indicating that the hydrolysis of these compounds might have interfered with nitrogen assimilation and impaired larval growth. To disentangle physiological effects from deterrent effects of iridoid glycosides, we performed dual choice feeding assays. Young leaves, their methanolic extracts and pure catalpol reduced larval feeding in comparison to the respective controls, while aucubin had no effect on larval consumption. We conclude that the dual defence system of P. lanceolata consisting of iridoid glycosides and β-glucosidases interferes with the nutrient utilisation via the hydrolysis of iridoid glycosides and also mediates larval feeding behaviour in a concentration- and substance-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号