首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The repair of single-stranded gaps in duplex DNA by homologous recombination requires the proteins of the RecF pathway. The assembly of RecA protein onto gapped DNA (gDNA) that is complexed with the single-stranded DNA-binding protein is accelerated by the RecF, RecO, and RecR (RecFOR) proteins. Here, we show the RecFOR proteins specifically target RecA protein to gDNA even in the presence of a thousand-fold excess of single-stranded DNA (ssDNA). The binding constant of RecF protein, in the presence of the RecOR proteins, to the junction of ssDNA and dsDNA within a gap is 1–2 nm, suggesting that a few RecF molecules in the cell are sufficient to recognize gDNA. We also found that the nucleation of a RecA filament on gDNA in the presence of the RecFOR proteins occurs at a faster rate than filament elongation, resulting in a RecA nucleoprotein filament on ssDNA for 1000–2000 nucleotides downstream (5′ → 3′) of the junction with duplex DNA. Thus, RecA loading by RecFOR is localized to a region close to a junction. RecFOR proteins also recognize RNA at the 5′-end of an RNA-DNA junction within an ssDNA gap, which is compatible with their role in the repair of lagging strand gaps at stalled replication forks.  相似文献   

2.
The RecR protein forms complexes with RecF or RecO that direct the specific loading of RecA onto gapped DNA. However, the binding sites of RecF and RecO on RecR have yet to be identified. In this study, a Thermus thermophilus RecR dimer model was constructed by NMR analysis and homology modeling. NMR titration analysis suggested that the hairpin region of the helix-hairpin-helix motif in the cavity of the RecR dimer is a binding site for double-stranded DNA (dsDNA) and that the acidic cluster region of the Toprim domain is a RecO binding site. Mutations of Glu-84, Asp-88, and Glu-144 residues comprising that acidic cluster were generated. The E144A and E84A mutations decreased the binding affinity for RecO, but the D88A did not. Interestingly, the binding ability to RecF was abolished by E144A, suggesting that the region surrounding the RecR Glu-144 residue could be a binding site not only for RecO but also for RecF. Furthermore, RecR and RecF formed a 4:2 heterohexamer in solution that was unaffected by adding RecO, indicating a preference by RecR for RecF over RecO. The RecFR complex is considered to be involved in the recognition of the dsDNA-ssDNA junction, whereas RecO binds single-stranded DNA (ssDNA) and ssDNA-binding protein. Thus, the RecR Toprim domain may contribute to the RecO interaction with RecFR complexes at the dsDNA-ssDNA junction site during recombinational DNA repair mediated by the RecFOR.  相似文献   

3.
The molecular role of the RecF protein in loading RecA protein onto single-stranded DNA (ssDNA)-binding protein-coated ssDNA has been obscured by the facility with which the RecO and RecR proteins alone perform this function. We now show that RecFOR and RecOR define distinct RecA loading functions that operate optimally in different contexts. RecFOR, but not RecOR, is most effective when RecF(R) is bound near an ssDNA/double-stranded (dsDNA) junction. However, RecF(R) has no enhanced binding affinity for such a junction. RecO and RecR proteins are both required under all conditions in which the RecFOR pathway operates. The RecOR pathway is uniquely distinguished by a required interaction between RecO protein and the ssDNA binding protein C terminus. The RecOR pathway is more efficient for RecA loading onto ssDNA when no proximal dsDNA is available. A merger of new and published results leads to a new model for RecFOR function.  相似文献   

4.
The present report deals with the functional relationships among protein complexes which, when mutated, are responsible for four human syndromes displaying cancer proneness, and whose cells are deficient in DNA double-strand break (DSB) repair. In some of them, the cells are also unable to activate the proper checkpoint, while in the others an unduly override of the checkpoint-induced arrest occurs. As a consequence, all these patients display genome instability. In ataxia-telangiectasia, the mutated protein (ATM) is a kinase, which acts as a transducer of DNA damage signalling. The defective protein in the ataxia-telangiectasia-like disorder is a DNase (the Mre11 nuclease) that in vivo produces single-strand tails at both sides of DSBs. Mre11 is always present with the Rad50 ATPase in a protein machine: the nuclease complex. In mammals, this complex also contains nibrin, the protein mutated in the Nijmegen syndrome. Nibrin confers new abilities to the nuclease complex, and can also bind to BRCA1 (one of the two proteins mutated in familial breast cancer). BRCA1 has a central motif that binds with high affinity to cruciform DNA, a structure present in places where the DNA loops are anchored to the chromosomal axis or scaffold. The BRCA1 x cruciform DNA complex should be released to allow the nuclease complex to work in DNA recombinational repair of DSBs. BRCA1 also acts as a scaffold for the assembly of ATPases such as Rad51, responsible for the somatic homologous recombination. Loss of the BRCA1 gene prevents cell survival after exposure to cross-linkers. The BRCA1-RING domain is an E3-ubiquitin ligase. It can mono-ubiquitinate the FANCD2 protein, mutated in one of the Fanconi anemia complementation groups, to regulate it. Finally, during DNA replication, the nuclease complex and its activating ATM kinase are integrated in the BRCA1-associated surveillance complex (BASC) that contains, among others, enzymes required for mismatch excision repair. In short, the proteins missing in these syndromes have in common their BRCA1-mediated assembly into multimeric machines responsible for the surveillance of DNA replication, DSB recombinational repair, and the removal of DNA cross-links.  相似文献   

5.
To understand the mechanism of action of the two eukaryotic replication auxiliary proteins proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C), we constructed a plasmid for producing PCNA which could be 32P labelled in vitro. This allowed us to analyze the assembly of the auxiliary proteins directly on DNA and to examine this process in the absence of DNA synthesis. By using closed circular double-stranded DNA or gapped circular DNA for protein-DNA complex formation, the following results were obtained, (i) RF-C can load PCNA in an ATP-dependent manner directly on double-stranded DNA, and no 3'-OH ends are required for this reaction; (ii) the RF-C-PCNA complex assembled on closed circular DNA differs from those assembled on gapped or nicked circular DNA; (iii) the stable RF-C-PCNA complex can be assembled on circular but not on linear DNA; and (iv) only gapped DNA can partially retain the assembled RF-C-PCNA complex upon the linearization of the template. We propose that RF-C first binds unspecifically to double-stranded DNA in the presence of ATP and then loads PCNA onto DNA to yield a protein complex able to track along DNA. The RF-C-PCNA complex could slide along the template until it encounters a 3'-OH primer-template junction, where it is likely transformed into a competent clamp. The latter complex, finally, might still be able to slide along double-stranded DNA.  相似文献   

6.
The Rad51B, Rad51C, Rad51D and Xrcc2 proteins are Rad51 paralogs, and form a complex (BCDX2 complex) in mammalian cells. Mutant cells defective in any one of the Rad51-paralog genes exhibit spontaneous genomic instability and extreme sensitivity to DNA-damaging agents, due to inefficient recombinational repair. Therefore, the Rad51 paralogs play important roles in the maintenance of genomic integrity through recombinational repair. In the present study, we examined the DNA-binding preference of the human BCDX2 complex. Competitive DNA-binding assays using seven types of DNA substrates, single-stranded DNA (ssDNA), double-stranded DNA, 5′- and 3′-tailed duplexes, nicked duplex DNA, Y-shaped DNA and a synthetic Holliday junction, revealed that the BCDX2 complex preferentially bound to the two DNA substrates with branched structures (the Y-shaped DNA and the synthetic Holliday junction). Furthermore, the BCDX2 complex catalyzed the strand-annealing reaction between a long linear ssDNA (1.2 kb in length) and its complementary circular ssDNA. These properties of the BCDX2 complex may be important for its roles in the maintenance of chromosomal integrity.  相似文献   

7.
In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into focal assemblies. These foci are highly dynamic giga-dalton structures capable of simultaneously repairing multiple DNA lesions. Moreover, the composition of these repair centers depends on the nature of the DNA lesion and is tightly coordinated with progression of the cell cycle. Components of DNA repair centers are regulated by post-translational modifications such as phosphorylation, ubiquitination and sumoylation. Repair foci progress through four distinct stages: first, DNA damage recognition and binding of DNA ends by the Mre11 complex and Ku70/80; second, end-processing and binding of single-stranded DNA by replication protein A, which recruits checkpoint proteins; third, recombinational repair during S and G(2) phase; and fourth, disassembly of foci and resumption of the cell cycle.  相似文献   

8.
Lisby M  Barlow JH  Burgess RC  Rothstein R 《Cell》2004,118(6):699-713
DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication stress in Saccharomyces cerevisiae. The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs. Next, the Rfa1 single-strand DNA binding protein relocalizes to the break and recruits other key checkpoint proteins. Later and only in S and G2 phase, the homologous recombination machinery assembles at the site. Unlike the response to DSBs, Mre11 and recombination proteins are not recruited to hydroxyurea-stalled replication forks unless the forks collapse. The cellular response to DSBs and DNA replication stress is likely directed by the Mre11 complex detecting and processing DNA ends in conjunction with Sae2 and by RP-A recognizing single-stranded DNA and recruiting additional checkpoint and repair proteins.  相似文献   

9.
DNA double-strand break repair can be accomplished by homologous recombination when a sister chromatid or a homologous chromosome is available. However, the study of sister chromatid double-strand break repair in prokaryotes is complicated by the difficulty in targeting a break to only one copy of two essentially identical DNA sequences. We have developed a system using the Escherichia coli chromosome and the restriction enzyme EcoKI, in which double-strand breaks can be introduced into only one sister chromatid. We have shown that the components of the RecBCD and RecFOR 'pathways' are required for the recombinational repair of these breaks. Furthermore, we have shown a requirement for SbcCD, the prokaryotic homologue of Rad50/Mre11. This is the first demonstration that, like Rad50/Mre11, SbcCD is required for recombination in a wild-type cell. Our work suggests that the SbcCD-Rad50/Mre11 family of proteins, which have two globular domains separated by a long coiled-coil linker, is specifically required for the co-ordination of double-strand break repair reactions in which two DNA ends are required to recombine at one target site.  相似文献   

10.
Lee BI  Kim KH  Park SJ  Eom SH  Song HK  Suh SW 《The EMBO journal》2004,23(10):2029-2038
RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes. The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix-hairpin-helix (HhH) motif and the C-terminal domain with a Cys4 zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30-35 angstroms diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding.  相似文献   

11.
RecQ helicases, essential enzymes for maintaining genome integrity, possess the capability to participate in a wide variety of DNA metabolisms. They can initiate the homologous recombination repair pathway by unwinding damaged dsDNA and suppress hyper-recombination by promoting Holliday junction (HJ) migration. To learn how DrRecQ participates in the homologous recombination repair pathway, solution structures of Deinococcus radiodurans RecQ (DrRecQ) and its complexes with DNA substrates were investigated by small angle x-ray scattering. We found that the catalytic core and the most N-terminal HRDC (helicase and RNase D C-terminal) domain (HRDC1) undergo a conformational change to a compact state upon binding to a junction DNA. Furthermore, models of DrRecQ in complexes with two kinds of junction DNA (fork junction and HJ) were built based on the small angle x-ray scattering data, and together with the EMSA results, possible binding sites were proposed. It is demonstrated that two DrRecQ molecules bind to the opposite arms of HJ. This architecture is similar to the RuvAB complex and is hypothesized to be highly conserved in the other HJ migration proteins. This work provides us new clues to understand the roles DrRecQ plays in the RecFOR pathway.  相似文献   

12.
The human Rad51B protein is involved in the recombinational repair of damaged DNA. Chromosomal rearrangements of the Rad51B gene have been found in uterine leiomyoma patients, suggesting that the Rad51B gene suppresses tumorigenesis. In the present study, we found that the purified Rad51B protein bound to single-stranded DNA and double-stranded DNA in the presence of ATP and either Mg(2+) or Mn(2+) and hydrolyzed ATP in a DNA-dependent manner. When the synthetic Holliday junction was present along with the half-cruciform and double-stranded oligonucleotides, the Rad51B protein only bound to the synthetic Holliday junction, which mimics a key intermediate in homologous recombination. In contrast, the human Rad51 protein bound to all three DNA substrates with no obvious preference. Therefore, the Rad51B protein may have a specific function in Holliday junction processing in the homologous recombinational repair pathway in humans.  相似文献   

13.
Role of RAD51C and XRCC3 in genetic recombination and DNA repair   总被引:1,自引:0,他引:1  
In germ line cells, recombination is required for gene reassortment and proper chromosome segregation at meiosis, whereas in somatic cells it provides an important mechanism for the repair of DNA double-strand breaks. Five proteins (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) that share homology with RAD51 recombinase and are known as the RAD51 paralogs are important for recombinational repair, as paralog-defective cell lines exhibit spontaneous chromosomal aberrations, defective DNA repair, and reduced gene targeting. The paralogs form two distinct protein complexes, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3, but their precise cellular roles remain unknown. Here, we show that, like MLH1, RAD51C localized to mouse meiotic chromosomes at pachytene/diplotene. Using immunoprecipitation and gel filtration analyses, we found that Holliday junction resolvase activity associated tightly and co-eluted with the 80-kDa RAD51C-XRCC3 complex. Taken together, these data indicate that the RAD51C-XRCC3-associated Holliday junction resolvase complex associates with crossovers and may play an essential role in the resolution of recombination intermediates prior to chromosome segregation.  相似文献   

14.
Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks.  相似文献   

15.
Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed.  相似文献   

16.
The efficient and accurate repair of DNA double strand breaks (DSBs) is critical to cell survival, and defects in this process can lead to genome instability and cancers. In eukaryotes, the Rad52 group of proteins dictates the repair of DSBs by the error-free process of homologous recombination (HR). A critical step in eukaryotic HR is the formation of the initial Rad51-single-stranded DNA presynaptic nucleoprotein filament. This presynaptic filament participates in a homology search process that leads to the formation of a DNA joint molecule and recombinational repair of the DSB. Recently, we showed that the Rad54 protein functions as a mediator of Rad51 binding to single-stranded DNA, and here, we find that this activity does not require ATP hydrolysis. We also identify a novel Rad54-dependent chromatin remodeling event that occurs in vivo during the DNA strand invasion step of HR. This ATP-dependent remodeling activity of Rad54 appears to control subsequent steps in the HR process.  相似文献   

17.
Replication protein A (RPA), the nuclear ssDNA-binding protein in eukaryotes, is essential to DNA replication, recombination, and repair. We have shown that a globular domain at the C terminus of subunit RPA32 contains a specific surface that interacts in a similar manner with the DNA repair enzyme UNG2 and repair factors XPA and RAD52, each of which functions in a different repair pathway. NMR structures of the RPA32 domain, free and in complex with the minimal interaction domain of UNG2, were determined, defining a common structural basis for linking RPA to the nucleotide excision, base excision, and recombinational pathways of repairing damaged DNA. Our findings support a hand-off model for the assembly and coordination of different components of the DNA repair machinery.  相似文献   

18.
In Escherichia coli, the ruvA, ruvB and ruvC gene products are required for genetic recombination and the recombinational repair of DNA damage. New studies suggest that these three proteins function late in recombination and process Holliday junctions made by RecA protein-mediated strand exchange. In vitro, RuvA protein binds a Holliday junction with high affinity and, together with RuvB (an ATPase), promotes ATP-dependent branch migration of the junction leading to the formation of heteroduplex DNA. The third protein, RuvC, which acts independently of RuvA and RuvB, resolves recombination intermediates by specific endonucleolytic cleavage of the Holliday junction.  相似文献   

19.
20.
In this work, we present evidence that indicates that RuvABC proteins resolve Holliday junctions in a way that prevents dimer formation in vivo. First, although arrested replication forks are rescued by recombinational repair in cells deficient for the Rep helicase, rep mutants do not require the XerCD proteins or the dif site for viability. This shows that the recombination events at arrested replication forks are generally not accompanied by the formation of chromosome dimers. Secondly, resolution of dimers into monomers is essential in the rep ruv strain because of an increased frequency of RecFOR recombination events in the chromosome of this mutant. This suggests that, in the absence of the Ruv proteins, chromosomal recombination leads to frequent dimerization. Thirdly, dif or xerC mutations increase the UV sensitivity of ruv-deficient cells 100-fold, whereas they do not confer UV sensitivity to ruv+ cells. This shows that recombinational repair of UV lesions is not accompanied by dimer formation provided that the RuvABC proteins are active. The requirement for dimer resolution in ruv strains is suppressed by the expression of the RusA Holliday junction resolvase; therefore, RusA also prevents dimer formation. We conclude that the inviability arising from a high frequency of dimer formation in rep or UV-irradiated cells is only observed in the absence of known enzymes that resolve Holliday junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号