首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  As the vector of vascular fungi of the genus Ophiostoma the oak bark beetle, Scolytus intricatus , is one of the significant links in the chain of agents of oak forest decline in Serbia. It is known that the adults of this bark beetle, which develop under the bark of the trees infected by fungi of the genus Ophiostoma , transport the spores of these fungi. During the maturation feeding, the spores are transmitted to healthy tree crowns, where they germinate and cause infection. In period 1992–96 at 27 localities in Serbia, the significance of parasitoids in the reduction of this bark beetle was examined, as the intensity of spore transmission depends upon the number of oak bark beetle adults in nature. In the research of parasitoids of S. intricatus 20 species were identified in five families of Hymenoptera: Braconidae (six species), Eurytomidae (one), Pteromalidae (10), Eupelmidae (one) and Eulophidae (two). Among these parasitoids the greatest influence on the abundance of oak bark beetle was the species Ecphylus silesiacus . It was identified in 90.91% of study samples, its domination was 39.15% and the percentage of oak bark beetle parasitism was 5.66%. In addition, the species Entendon ergias , Dendrosoter protuberans and Cheiropachus quadrum were significant in reduction of S. intricatus . The average percentage of parasitism of oak bark beetle by E. ergias was 2.74%, by D. protuberans it was 2.63% and by Ch. quadrum 1.63%. The significance of other parasitoids in the reduction of oak bark beetles was low. In the study period the total parasitism of oak bark beetle varied between a minimum of 8.64% in 1992 and a maximum of 19.64% in 1996. The average for the whole study period was 14.49%.  相似文献   

2.
Indoor wood-decay fungi cause considerable economical damage. Most of the structural damage to the indoors of buildings in Europe and North America is caused by brown-rot fungi that degrade conifer wood; white-rot fungi, which preferentially attack hardwoods, are less common. This review covers the approximately 80 basidiomycetes that commonly occur in buildings. Emphasis was placed on Serpula lacrymans, which is the most common indoor basidiomycete in central Europe. Meruliporia incrassata, the North American pendant to S. lacrymans, has also received considerable attention. In terms of indoor wood decay, moisture and temperature are the most important influences. Wood samples with a low moisture content can be degraded. High temperatures as an alternative control measure do not kill mycelia, with some species surviving in wood samples in the form of heat-resistant arthrospores at temperatures as high 95°C. For refurbishment and scientific purposes, the identity of the causal species should be known. More recently, several molecular techniques have been used to identify fungi; these results are often conflicting with those obtained by other, earlier applied methods. Sequencing of the internal transcribed spacers (ITS) of the rDNA is currently the best molecular tool. Among the other methods available, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) has also been shown to be able to distinguish closely related sister taxa. For further characterization of indoor basidiomycetes, the complete sequences of the 18S, 28S rDNA and the intergenic spacers with the included 5S rDNA have been acquired for some species. If current projects involving whole funal genome sequencing are not taken into account, Antrodia vaillantii is the first basidiomycete for which the complete rDNA sequence has been deposited. The review closes with fundamentals on the prevention and control of indoor wood decay. An erratum to this article can be found at  相似文献   

3.
The aim of this study was to investigate differences in the mechanical and fungicidal properties of three different wood species (English oak (Quercus sp.), common beech (Fagus sylvatica) and Norway spruce (Picea abies)) that had been in indoor use for several decades, compared to control specimens of freshly cut timber. The collected material was cut into smaller samples prior to further analysis. Extractive content, mechanical, fungicidal and sorption properties were determined according to standard procedures. The obtained results showed that the mechanical properties of oak wood do not deteriorate over the investigated time frame. On the other hand, the resistance of oak wood against fungi decreases over time. The reason for this is yet to be confirmed; it may be due to degradation of secondary metabolites. Similar results have been reported for spruce wood. There were no statistically significant differences in the mechanical properties of old and new spruce wood. In contrast to oak wood, there were also no significant differences in fungicidal properties, bearing in mind that spruce wood has lower durability than oak wood. Aging of beech wood resulted in a considerable decrease in the tested mechanical properties but showed no significant differences in fungicidal properties. Old beech wood specimens were moderately deteriorated by insects and fungi, which was the reason for the loss of bending and compressive strength. Our results confirm that most of the relevant properties do not deteriorate with time and that wood can be reused for a variety of other applications even after decades in service.  相似文献   

4.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

5.
Pectic Enzymes and Phenolic Substances in Apples Rotted by Fungi   总被引:1,自引:0,他引:1  
COLE  M.; WOOD  R. K. S. 《Annals of botany》1961,25(4):435-452
The activities of pectic enzymes in extracts from sound applesand from apples rotted by different fungi are described. Sclerotiniafructigenaand Botrytis cinerea rots had little or no polygalacturonaseor macerating enzyme activity, but Penicillium expansum rotswere very active in these respects. Extracts from each of therots had very high pectinesterase activity, and contained galacturonicacid. None of the rots had any cellulase activity. Each of thefungi produced polygalacturonase, macerating enzymes, and pectinesterasein liquid media. The effects of adding extracts of apples tothese media are described. Filtrates from cultures of S. fructigenaand P. expansum liberated galacturonic acid from apple fruitfibre which had been thoroughly extracted with cold water. The phenolic jsubstances present in healthy and rotted tisueswere estimated. B. cinerea and S. fructigena rots containedvery little, but P. expansum rots contained as much as healthytissue which had been allowed to brown. An extract of healthyapple tissue reduced the activity of the polygalacturonase ina culture filtrate of S. fructigena. The substances responsiblefor this were tentatively identified as leuco-anthocyanins whichhad been changed to other compunds following the action of polyphenoloxidase.Thej significance of these results is discussed.  相似文献   

6.
Abstract. We measured tree damage and mortality following a catastrophic windthrow in permanent plots in an oak forest and a pine forest in central Minnesota. We monitored changes in forest structure and composition over the next 14 years. Prior to the storm, the oak forest was dominated by Quercus ellipsoidalis, and the pine forest by Pinus strobus. The immediate impacts of the storm were to differentially damage and kill large, early‐successional hardwoods and pines. Subsequent recovery was characterized by the growth of late‐successional hardwoods. In both forests the disturbance acted to accelerate succession. Ordination of tree species composition confirmed the trend of accelerated succession, and suggested a convergence of composition between the two forests.  相似文献   

7.
A B Orth  D J Royse    M Tien 《Applied microbiology》1993,59(12):4017-4023
Phanerochaete chrysosporium is rapidly becoming a model system for the study of lignin biodegradation. Numerous studies on the physiology, biochemistry, chemistry, and genetics of this system have been performed. However, P. chrysosporium is not the only fungus to have a lignin-degrading enzyme system. Many other ligninolytic species of fungi, as well as other distantly related organisms which are known to produce lignin peroxidases, are described in this paper. In this study, we demonstrated the presence of the peroxidative enzymes in nine species not previously investigated. The fungi studied produced significant manganese peroxidase activity when they were grown on an oak sawdust substrate supplemented with wheat bran, millet, and sucrose. Many of the fungi also exhibited laccase and/or glyoxal oxidase activity. Inhibitors present in the medium prevented measurement of lignin peroxidase activity. However, Western blots (immunoblots) revealed that several of the fungi produced lignin peroxidase proteins. We concluded from this work that lignin-degrading peroxidases are present in nearly all ligninolytic fungi, but may be expressed differentially in different species. Substantial variability exists in the levels and types of ligninolytic enzymes produced by different white not fungi.  相似文献   

8.
Aim To project the distribution of three major forest types in the northeastern USA in response to expected climate change. Location The New England region of the United States. Methods We modelled the potential distribution of boreal conifer, northern deciduous hardwood and mixed oak–hickory forests using the process‐based BIOME4 vegetation model parameterized for regional forests under historic and projected future climate conditions. Projections of future climate were derived from three general circulation models forced by three global warming scenarios that span the range of likely anthropogenic greenhouse gas emissions. Results Annual temperature in New England is projected to increase by 2.2–3.3 °C by 2041–70 and by 3.0–5.2 °C by 2071–99 with corresponding increases in precipitation of 4.7–9.5% and 6.4–11.4%, respectively. We project that regional warming will result in the loss of 71–100% of boreal conifer forest in New England by the late 21st century. The range of mixed oak–hickory forests will shift northward by 1.0–2.1 latitudinal degrees (c. 100–200 km) and will increase in area by 149–431% by the end of the 21st century. Northern deciduous hardwoods are expected to decrease in area by 26% and move upslope by 76 m on average. The upslope movement of the northern deciduous hardwoods and the increase in oak–hickory forests coincide with an approximate 556 m upslope retreat of the boreal conifer forest by 2071–99. In our simulations, rising atmospheric CO2 concentrations reduce the losses of boreal conifer forest in New England from expected losses based on climatic change alone. Main conclusion Projected climate warming in the 21st century is likely to cause the extensive loss of boreal conifer forests, reduce the extent of northern hardwood deciduous forests, and result in large increases of mixed oak–hickory forest in New England.  相似文献   

9.
A200 ha forest of "Hatam-baig" is located in Ardebil Province on the Northwest of Iran. Oak trees (Quercus macranthera Fisch & Mey) in this forest have been faced with declining and extinction since 1991, that has destructed about one third of the forest trees until now. This disorder was expressed in various symptoms including wilting, defoliation and decline. In order to identify factors causing decline, a study was managed from 1998 to 2001. Samples were taken from roots, trunks, crowns and soil beneath the canopy and were cultured on different culture media subsequently. Armillaria mellea (Vahl) P. Kumm., Phytophthora cryptogea Pethybr. & Laff., Dematophora sp., Pythium aphanidermatum (Edson) Fitzp. and Fusarium spp. were the most common isolated fungi. A. mellea appeared to be the essential causal agent of the decline according to the studies made on oak tress decline around the world and based on brown rot observed beneath mycelial fans in the cross section prepared from the trunk and characteristics of the isolated fungi. The fungus activity had been favored by physiological weakness and stresses in oak rootstocks caused by brown- tail moth (Euproctis chrysorhoea L.) and drought stress in infected trees. The biological species of this fungus was identified as Armillaria mellea, using hybridization tests and application of haploid test strains. The fungi such as Phytophthora sp., Pythium sp., and Dematophora sp. can not be infective in this forest due to being hydrophylous. In the southern part of the forest with remarked steepness, the severity of the decline appears to be more than that in the smoothly northern part. The decline of Q. macranthera is reported as matrix nova. The report of the isolated fungi from this oak species is also universally new.  相似文献   

10.
Pines have been extensively used for land restoration in the Mediterranean basin and in other parts of the world, since the late 19th century. The theoretical basis supporting pine utilisation was its stress-tolerant and pioneer features, and their attributed role of facilitating the development of late-successional hardwoods in the long-term. In the present work, the use of pines and hardwoods in forest restoration is discussed in the frame of the current disturbance regime and social demands for Mediterranean forests. Large pine plantations have recently disappeared because of their sensitivity to fire (e.g., Pinus nigra) or because of the short fire-intervals (e.g., Pinus halepensis). Combined pine and oak plantations are proposed for degraded land restoration on the basis of the complementary features of both groups of species. Seeding and containerised seedling plantation, soil amendments and plantation techniques to reduce transplant shock are evaluated for reforestation under water-stressing conditions, on the basis of several experiments performed in eastern Spain. Both P. halepensis and Quercus ilex are tested.  相似文献   

11.
Ophiostoma spp. (Ophiostomatales, Ascomycota) are well-known fungi associated with bark and ambrosia beetles (Curculionidae: Scolytinae, Platypodinae). Fungi in the Ophiostomatales include serious tree pathogens as well as agents of timber blue-stain. Although these fungi have been extensively studied in the northern hemisphere, very little is known regarding their occurrence on hardwoods in Europe. The aims of the present study were to identify and characterize new Ophiostoma spp. associated with bark and ambrosia beetles infesting hardwoods in Norway and Poland, and to resolve phylogenetic relationships of Ophiostoma spp. related to the Norwegian and Polish isolates, using multigene phylogenetic analyses. Results obtained from five gene regions (ITS, LSU, β-tubulin, calmodulin, translation elongation factor 1-α) revealed four new Ophiostoma spp. These include Ophiostoma hylesinum sp. nov., O. signatum sp. nov., and O. villosum sp. nov. that phylogenetically are positioned within the Ophiostoma ulmi complex. The other new species, Ophiostoma pseudokarelicum sp. nov. reside along with Ophiostoma karelicum in a discrete, well-supported phylogenetic group in Ophiostoma s. stricto. The results of this study clearly show that the diversity and ecology of Ophiostoma spp. on hardwoods in Europe is poorly understood and that further studies are required to enrich our knowledge about these fungi.  相似文献   

12.
Decomposition of leaf litter is a microbial mediated process that helps to transfer energy and nutrients from leaves to higher trophic levels in woodland streams. Generally, aquatic hyphomycetes are viewed as the major fungal group responsible for leaf litter decomposition. In this study, traditional microscopic examination (based on identification of released conidia) and phylogenetic analysis of 18S rRNA genes from cultivated fungi were used to compare fungal community composition on decomposing leaves of two species (sugar maple and white oak) from a NE Ohio stream. No significant differences were found in sporulation rates between maple and oak leaves and both had similar species diversity. From the 18S rRNA gene sequence data, identification was achieved for 12 isolates and taxonomic affiliation of 12 of the remaining 14 isolates could be obtained. A neighbor-joining tree (with bootstrap values) was constructed to examine the taxonomic distribution of the isolates relative to sequences of known operational taxonomic units (OTUs). Surprisingly, only 2 of the isolates obtained were aquatic hyphomycetes based on phylogenetic analysis. Overall, there were no differences between the two leaf types and a higher diversity was observed via culturing and subsequent 18S rRNA gene sequencing than by conidia staining. These differences resulted from the fact that traditional microscopy provides estimates of aquatic hyphomycete diversity while the other approach revealed the presence of both aquatic hyphomycete and non-aquatic hyphomycete taxa. The presence of this broad array of taxa suggests that the role of aquatic hyphomycetes relative to other fungi be re-evaluated. Even though the functional role of these non-aquatic hyphomycetes taxa is unknown, their presence and diversity demonstrates the need to delve further into fungal community structure on decomposing leaves.  相似文献   

13.
Knoepp  Jennifer D.  Swank  Wayne T. 《Plant and Soil》1998,204(2):235-241
We measured nitrogen (N) transformation rates for six years to examine temporal variation across the vegetation and elevation gradient that exists within the Coweeta Hydrologic Laboratory. Net N mineralization and nitrification rates were measured using 28-day in situ closed core incubations. Incubations were conducted at various intervals, ranging from monthly during the growing season, to seasonally based on vegetation phenology. Vegetation types included oak-pine, cove hardwoods, low elevation mixed oak, high elevation mixed oak, and northern hardwoods. Elevations ranged from 782 to 1347 m. Nitrogen transformation rates varied with vegetation type. Mineralization rates were lowest in the oak-pine and mixed oak sites averaging <1.2 mg N kg soil-1 28 day-1. Rates in the cove hardwood site were greater than all other low elevation sites with an annual average of 3.8 mg N kg soil-1 28 day-1. Nitrogen mineralization was greatest in the northern hardwood site averaging 13 mg N kg soil-1 28 day-1. Nitrification rates were typically low on four sites with rates <0.5 mg N kg soil-1 28 day-1. However, the annual average nitrification rate of the northern hardwood site was 6 mg N kg soil-1 28 days-1. Strong seasonal trends in N mineralization were observed. Highest rates occurred in spring and summer with negligible activity in winter. Seasonal trends in nitrification were statistically significant only in the northern hardwood site. Nitrogen mineralization was significantly different among sites on the vegetation and elevation gradient. While N mineralization rates were greatest at the high elevation site, vegetation type appears to be the controlling factor.  相似文献   

14.
Ambrosia fungi live associated with beetles (Scolytidae and Platypodidae) in host trees and act as a food source for the insects. The symbiotic relation is important to the colonizing strategies of host trees by beetles. Ambrosia fungi are dimorphic: they grow as ambrosial form and as mycelium. The fungi are highly specialized, adapted to a specific beetle and to the biotope where they both live. In addition other fungi have been found such as tree pathogenic fungi that may play a role in insects host colonization success. Saprophytic fungi are also present in insects galleries. These may decompose cellulose and/or be antagonistic to other less beneficial fungi. This paper summarizes the importance of ambrosia fungi and the interaction with insects and hosts. The possibility of the transport of pathogenic fungi by Platypus cylindrus to cork oak thus contributing for its decline is discussed.  相似文献   

15.
AIMS: Real-time PCR, based on TaqMan chemistry, was used to detect Biscogniauxia mediterranea, a fungal pathogen that after a long endophytic phase may cause charcoal disease in oak trees. METHODS AND RESULTS: Specific primers and probe were designed and tested on axenic cultures of B. mediterranea and other fungi commonly colonizing oaks. Twig samples were collected in Tuscany from apparently healthy oaks (Quercus cerris, Quercus ilex and Quercus pubescens) growing near trees infected with the fungus. Twigs were divided into two groups: one for isolation in agar plates, and one for real-time PCR after DNA extraction. The detection limit of the assay was 0.01 pg/DNA, whereas the amounts of fungal DNA detected in asymptomatic tissue were >0.5 pg microg(-1) total DNA extracted. In the apparently healthy twigs the frequency of isolation found on agar was 25.0%, much lower than that with real-time PCR (96.4%). CONCLUSIONS: Real-time PCR is a sensitive and fast technique able to specifically detect and quantify the DNA of B. mediterranea in oak tissue. SIGNIFICANCE AND IMPACT OF THE STUDY: This diagnostic method is a precise tool to localize fungi in symptomless plant tissues and promises to advance our understanding of fungal infection during their latent phase.  相似文献   

16.
In order to reveal the source of contamination of opportunistic fungi, their natural habitat has to be understood. Black yeast-like fungi are abundant in man-made environments, particularly in those that are rich in toxic hydrocarbons such as railway ties. In this study, we investigated the presence of black fungi on creosote-treated oak railway ties and concrete sleepers stained with petroleum oil. Samples were collected at two central stations in Turkish cities, Mersin and Adana, and from Tarsus town station located between these two. The sample locations had subtropical climates. A total of 570 railway samples, including 320 from oak and 250 from concrete, were collected. Cotton swabs moistened with sterile physiological saline were applied to the ties and inoculated onto malt extract agar followed by incubation at 37 °C. Overall, we recovered 97 black yeast-like fungi (17.0 % positive). Sixty-three fungi (19.7 %) were collected from creosote-treated oak, whereas 34 isolates (13.6 %) were derived from concrete; the difference was significant (P = 0.05). Identification using rDNA internal transcribed spacer revealed Exophiala dermatitidis (57.7 %) and Exophiala phaeomuriformis (42.3 %). This study suggested that hydrocarbons enrich these opportunistic black yeasts. An eventual health risk is discussed.  相似文献   

17.
BREAKDOWN OF TIMBER BY ASCOMYCETES AND FUNGI IMPERFECTI   总被引:2,自引:0,他引:2  
Soft rot of wood is caused by certain species of Ascomycetes and Fungi Imperfecti The fungal hyphae typically run spirally in the central zone of the secondary xylem walls, where they give rise to cavities with pointed ends.
The fungi causing soft rot are cellulose-attacking species which initiate attack in the less heavily lignified parts of the walls of the wood elements. The rate of attack is increased when inorganic nutrient salts are added to the wood.
Under laboratory conditions Chaetomium globosum can cause severe decay of hardwoods.
Soft rot causes serious deterioration of timber in water-cooling towers and is therefore of considerable economic importance.  相似文献   

18.
Cross-brace units constructed of 10 different softwoods and nine different hardwoods were exposed on a test fence in Wisconsin for up to 22 years. Sapwood was included for all species and heartwood for some. The objective of this study was to determine the above-ground longevity of these woods against decay. The wood was classified into above-ground decay resistance groups. The longevity spans apply only to structural components similar in cross-sectional size to the test units used in this study. Millwork and fencing components may fit into this category. Woods estimated to last more than 20 years above ground, and thus classified as most resistant, included the heartwood of Douglas-fir, western white pine, redwood, Eucalyptus sp., red and white oak, lodgepole pine, ponderosa pine, western red cedar, and the sapwood of redwood, white oak, and red oak. No woods fell into the nonresistant class ( 7 years expected average life). The remaining woods were classified moderately resistant or resistant based upon service lives of 8 to 13 and 14 to 19 years, respectively.  相似文献   

19.
Dennis Wilson 《Oecologia》1995,103(2):255-260
Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.  相似文献   

20.
Five distinct nuclear stains and staining procedures which utilize basic fuchsin as the dye have been studied, compared and tested on a Feulgen-weak fungus, Blastomyces dermatitidis, and other fungi.

Aqueous basic fuchsin has been shown to be an excellent, though impermanent, stain with which to study the nuclei of this and other fungi. The conditions under which formaldehyde acts as a mordant for basic fuchsin and produces a permanent nuclear stain have been established.

Comparison of crystal violet and basic fuchsin suggests that the mordanting action of the aldehyde operates through the para-amino groups of the dye. Certain other basic dyes were not mordanted by formaldehyde.

Gentle acid hydrolysis of the tissues has been found to be essential both to the specificity of the dye as a nuclear stain and to the mordanting effect of the aldehyde.

The possible relationship of these observations to the Feulgen reaction is discussed. A protocol for the method developed is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号