首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the proteinase inhibitors derived from Streptomyces spp., chymostatin is the most effective inhibitor of non-lysosomal proteolysis. As part of a systematic study of the structural features of the chymostatin molecule that are responsible for this inhibitory activity, a series of fifteen di- and tripeptide analogues of chymostatin were tested for their ability to suppress protein degradation in isolated primary hepatocytes. Protein degradation was assessed in two ways: by the release of radiolabel from proteins prelabelled in vivo (to which both lysosomal and non-lysosomal processes contribute) and by the rate of inactivation of tyrosine aminotransferase, a process that is exclusively non-lysosomal. All inhibitors were relatively non-toxic and did not affect the intracellular ATP levels, although some suppression of gluconeogenesis was observed in the presence of leupeptin, chymostatin or the analogues. Tripeptide phenylalanine aldehydes or semicarbazones were at least as effective as chymostatin in reducing protein degradation, whereas peptide alcohols were relatively ineffective. Replacement of the basic capreomycidine moiety in chymostatin with an arginine residue improved the inhibitory activity but equally, substitution of the arginine residue with an uncharged norleucine residue was without significant effect. The structural features that are optimal for inhibition of chymotrypsin or other serine proteinases (previously defined) are not as critical for inhibition of protein degradation in vivo.  相似文献   

2.
The ability of elastatinal and chymostatin, protease inhibitors of microbial origin, to inhibit human leucocyte proteases (EC 3.4.-) was studied. Elastatinal and chymostatin are capable of inhibiting the pancreatic enzymes elastase and chymotrypsin, respectively. It was found in these studies, with synthetic substrates, that elastatinal is a much weaker inhibitor of human leucocyte elastase than it is of porcine pancreatic elastase. Elastatinal caused no inhibition of the activity of human leucocyte chymotrypsin-like protease. Chymostatin was found to be a powerful inhibitor of human leucocyte chymotrypsin-like protease. Its affinity to the leucocyte protease was higher than its affinity to bovine pancreatic alpha-chymotrypsin. Chymsotatin had a weak inhibitory effect on the activity of human leucocyte elastase. Studies were also carried out on the ability of chymostatin to inhibit the release of 35SO2-4 from rabbit articular cartilage by human leucocyte chymotrypsin-like protease. Preincubation of the chymostatin with the protease before the latter was added to the 35SO2-4 -labeled cartilage caused inhibition of proteolysis as measured by 35SO2-4 release. Preincubation of chymostatin with 35SO2-4 -labeled cartilage prior to addition of the human chymotrypsin-like protease to the tissue also inhibited 35SO2-4 release. However, in the case of preincubation of cartilage with alpha1 -antitrypsin there was no such inhibition. It therefore appeared that chymostatin, unlike alpha1 -antitrypsin, was capable of penetrating the cartilage matrix and exerting its inhibitory effect upon the human leucocyte chymotrypsin-like protease that was subsequently added to the tissue.  相似文献   

3.
1. When rabbit muscle aldolase labelled with tritium and inactivated by N-ethylmaleimide (NEM) was loaded into erythrocyte ghosts, significant proteolysis of the loaded protein occurred. The major product of this proteolysis, separated by electrophoresis under dissociating conditions, was found to be approx. 2 kDa smaller than the parent protein. 2. Proteolysis was detectable during erythrocyte ghost loading at 0 degrees C, reaching a plateau after approx. 12 min. Subsequent incubation at 37 degrees C to allow resealing of the ghosts resulted in additional proteolysis, and up to 20% of the loaded protein was converted to the smaller 38 kDa derivative. 3. EDTA, EGTA, leupeptin and chymostatin, each inhibitors of calcium-activated neutral proteinases (calpains), were the most effective inhibitors of the proteolysis of NEM-inactivated aldolase in ghosts. Other proteinase inhibitors were ineffective, while phenylmethanesulphonyl fluoride was only partially effective. 4. Inhibition of the proteolysis by EGTA was prevented by CaCl2, supporting the involvement of erythrocyte calpain. 5. Pretreatment of ghosts with EGTA prior to loading of NEM-modified aldolase followed by microinjection of the protein into HeLa cells did not result in a different rate of its overall breakdown to acid-soluble products. EGTA is suggested as a useful agent for the erythrocyte ghost-mediated microinjection of calpain-sensitive proteins.  相似文献   

4.
Protease activities of rumen protozoa.   总被引:3,自引:1,他引:2       下载免费PDF全文
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

5.
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

6.
Ammonia, which like other lysosomotropic amines inhibits protein degradation in isolated rat hepatocytes by 70–80%, was utilized as a diagnostic tool to distinguish between the relative effects of various proteinase inhibitors on the lysosomal and non-lysosomal pathways of intracellular protein degradation.Leupeptin was found to inhibit lysosomal protein degradation by 80–85%, and non-lysosomal degradation by about 15%. Antipain had a similar, but somewhat weaker effect. Pepstain, bestatin and aprotinin (Traysylol) produced minor inhibitory effects (possibly on both degradation, pathways), whereas bacitracin and soybean trypsin inhibitor wre ineffective.Chymostatin inhibited lysosomal protein degradation by about 45%, whereas the non-lysosomal pathway was inhibited by more than 50%. Chymostatin was unique among the inhibitors tested in causing such a pronounced effect on non-lysosomal protein degradation, and appeared to selectively inhibit the energy-dependent portion of this pathway.The effects of the various inhibitors were additive to the extent expected on the basis of their kwown actions on lysosomal and non-lysosomal protein degradation. Thus, a combination of methylamine, leupeptine and chymostatin inhibited overall protein degradation by about 90%, resulting in a substantial improvement of the cellular nitrogen balance.The degradation inhibitors caused a partial inhibition of protein synthesis, apparently mainly by shutting down the supply of amino acids from the lysosome. The inhibitory effects of leupeptin and antipain were completely reversed by amino acid addition, whereas some inhibition remained in the case of chymostatin and the lysosomotropic amines, possibly reflecting a certain nonspecific toxicity.  相似文献   

7.
Analogues of the microbial proteinase inhibitor chymostatin have been synthesized. The two most promising analogues were tested on protein turnover in isolated rat hepatocytes. Their effect is much similar to the effect of chymostatin, but the analogues are even more powerful inhibitors, probably due to an increased effect on lysosomal thiol proteinases. The analogues blocked most of the lysosomal (i.e. methylamine-sensitive) degradation of endogenous protein and caused a 50% inhibition of the non-lysosomal degradation; the effect occurred rapidly and was reversed upon washing the cells. One of the analogues, Z-Arg-Leu-Phe(H), is the most potent inhibitor of hepatic protein degradation so far found.  相似文献   

8.
In the studies reported here, we investigated whether the degradation of the acetylcholine receptor (AChR) in cultured muscle cells involves similar mechanisms as and is controlled in a manner similar to, the catabolism of the bulk of cell protein. We compared these processes after labeling cell protein with radioactive leucine or phenylalanine for 24 hours, or labeling the acetylcholine receptor with (125I)-bungarotoxin. The apparent average half-life of cell protein was 38 ± 2 hours and that of the receptor-toxin complex was 25 ± 1 hours. Incubation in media lacking serum and embryo extract accelerated the degradation of both average protein and the receptor-toxin complex. Insulin reduced the rate of catabolism of both average protein and the receptor-toxin complex toward levels seen in the presence of serum. However, although these two degradative processes seem to be controlled similarly, they probably involve different mechanisms. The protease inhibitors leupeptin and chymostatin, which slowed overall proteolysis in nongrowing muscles and hepatocytes, reduced the degradation of the ACh receptor by 2–11-fold, but had no, or only slight, effects on the catabolism of average protein, even when overall proteolysis was accelerated by omitting serum and embryo extract. Chloroquine, an inhibitor of lysosomal function, also reduced the degradation of AChR, by about 10-fold, but decreased overall protein breakdown by only 20–30%. Incubation of myotubes at lower temperatures reduced both degradative processes, but affected the breakdown of the receptor to a greater extent. Thus the rate-limiting steps in these processes have different activation energies. Incubation with 2-deoxyglucose, an inhibitor of glycolysis, decreased the breakdown of average protein but not that of the receptor-toxin complex. However, the two degradative processes were sensitive to azide, an inhibitor of oxidative phosphorylation. Although the lysosome is the primary site for AChR degradation and perhaps for degradation of other surface proteins, the breakdown of most proteins in myotubes seems to involve a distinct proteolytic system requiring metabolic energy.  相似文献   

9.
To learn more about the enzymes involved in protein catabolism in skeletal and cardiac muscle and to identify selective inhibitors of this process, we studied the effects of proteinase inhibitors on protein turnover in isolated muscles and on proteolytic activities in muscle homogenates. Chymostatin (20μm) decreased protein breakdown by 20–40% in leg muscles from normal rodents and also in denervated and dystrophic muscles. These results are similar to our previous findings with leupeptin. The related inhibitors pepstatin, bestatin, and elastatinal did not decrease protein breakdown; antipain slowed this process in rat hind-limb muscles but not in diaphragm. Chymostatin did not decrease protein synthesis and thus probably retards proteolysis by a specific effect on cell proteinase(s). In homogenates of rat muscle, chymostatin, in common with leupeptin and antipain, inhibits the lysosomal proteinase cathepsin B, and the soluble Ca2+-activated proteinase. In addition, chymostatin, but not leupeptin, inhibits the chymotrypsin-like proteinase apparent in muscle homogenates. In muscles depleted of most of this activity by treatment with the mast-cell-degranulating agent 48/80, chymostatin still decreased protein breakdown. Therefore inhibition of this alkaline activity probably does not account for the decrease in protein breakdown. These results are consistent with a lysosomal site of action for chymostatin. Because of its lack of toxicity, chymostatin may be useful in maintaining tissues in vitro and perhaps in decreasing muscle atrophy in vivo.  相似文献   

10.
The proteinase (proteinase F) responsible for the initial proteolysis of the mung bean (Vigna radiata) trypsin inhibitor (MBTI) during germination has been purified 1400-fold from dry beans. The enzyme acts as an endopeptidase, cleaving the native inhibitor, MBTI-F, to produce the first modified inhibitor form, MBTI-E. The cleavage of the Asp76-Lys77 peptide bond of MBTI-F occurs at a pH optimum of 4.5, with the tetrapeptide Lys-Asp-Asp-Asp being released. Proteinase F exhibited no activity against the modified inhibitor forms MBTI-E and MBTI-C. Vicilin, the major storage protein of the mung bean, does not serve as a substrate for proteinase F between pH 4 and 7. Proteinase F is inhibited by phenylmethylsulfonyl fluoride, chymostatin, p-hydroxymercuribenzoate, and p-chlorophenylsulfonate, but not by iodoacetate and CuCl2. It is not activated by dithiothreitol, and is stable for extended periods of time (10 months, 4°C, pH 4.0) in the absence of reducing agents. An apparent molecular weight of 65,000 was found for proteinase F by gel filtration. Subcellular fractionation in glycerol suggests that greater than 85% of the proteinase F activity is found in the protein bodies of the ungerminated mung bean. The same studies indicate that at least 56% of the MBTI of the seed is also localized in the protein bodies.  相似文献   

11.
Effects of 15 proteinase inhibitors and an inhibitor against aminopeptidases on fertilization of the solitary ascidian, Halocynthia roretzi were studied in search of lysins. Fertilization of intact eggs was blocked by three trypsin inhibitors, leupeptin, antipain, and soybean trypsin inhibitor, and by two chymotrypsin inhibitors, chymostatin and potato proteinase inhibitor I. On the other hand, the fertilization of naked eggs was not blocked at all by leupeptin and was only partially blocked by chymostatin at the concentrations sufficient for blocking that of intact eggs. This indicates that spermatozoa utilize trypsin-like and chymotrypsin-like proteinases probably as lysins for penetrating through the chorion. The chymotrypsin-like activity appears to be also required for some step besides sperm penetration through the egg investments.  相似文献   

12.
R L Stein  A M Strimpler 《Biochemistry》1987,26(9):2611-2615
The microbial, peptide-derived aldehyde chymostatin is a potent, competitive inhibitor of chymotrypsin and cathepsin G: Ki = 4 X 10(-10) and 1.5 X 10(-7) M, respectively. Et is "slow-binding inhibitor" of both proteases and, as such, allows determination of rate constants for its association with and dissociation from these proteases. Inhibition kinetics indicate second-order rate constants for the association of chymostatin with chymotrypsin and cathepsin G of 360,000 and 2000 M-1 S-1, respectively and a first-order rate constant for the dissociation of both protease-chymostatin complexes of approximately 0.0002 s-1. Thus, the extreme difference in potency of chymostatin as an inhibitor of chymotrypsin and cathepsin G originates entirely in Kon. Solvent deuterium isotope effects (SIE) were determined to probe the reaction step that rate limits Kon. For the reaction of chymotrypsin with chymostatin, the SIE for Kon is 1.6 +/- 0.1, while for the reaction of chymotrypsin with the peptide substrates Ala-Ala-Phe-pNA and Suc-Ala-Ala-Pro-Phe-pNA, the SIE's for Kc/Km are 2.8 +/- 0.2 and 1.9 +/- 0.1, respectively. These results suggest that Kon for the association of chymotrypsin with chymostatin is at least partially rate limited by a reaction step involving proton transfer. Combined with results for the inhibition of chymotrypsin by Bz-Phe-H [Kennedy, W.P., & Schultz, R. M. (1979) Biochemistry 18, 349-356], these data suggest a mechanism for inhibition by chymostatin involving the general-base-catalyzed formation of an enzyme-bound hemiacetal, followed by a conformational change of this intermediate that produces the final, stable complex of enzyme and inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Homogenates of the muscle layer of rat small intestine irreversibly inactivated endogenous ornithine aminotransferase at 37 degrees C. Addition to the homogenate of coenzymes and the various keto-acids which act as substrate inhibited conversion of the holoenzyme to the apoenzyme and its subsequent degradation. Addition of protease inhibitors including soybean trypsin inhibitor, chymostatin and phenylmethylsulfonyl fluoride almost completely prevented inactivation of he enzyme. Immunological activity decreased during inactivation of the enzyme, but its rate of decrease was much slower than that of loss of enzyme activity. Antigen-antibody precipitates from homogenates containing inactivated enzyme, were separated by electrophoresis on sodium dodecylsulfate-polyacrylamide gels. In this way breakdown products of the enzyme were found, indicating that the enzyme in homogenates was inactivated by limited proteolysis. These results obtained in vitro support our previous suggestion (1975) of a stepwise mechanism for degradation of pyridoxal enzymes.  相似文献   

14.
Aspergillus strains are being considered as potential hosts for recombinant heterologous protein production because of their excellent extracellular enzyme production characteristics. However, Aspergillus proteases are problematic in that they modify and degrade the heterologous proteins in the extracellular medium. In previous studies we observed that media adjustments and maintenance of a filamentous morphology greatly reduced protease activity and that a low concentration of the aspartic protease inhibitor pepstatin inhibited the latter protease activity to the extent of approximately 90%. In this paper we report that when the serine protease inhibitor chymostatin is used in combination with pepstatin 99–100% of total protease activity in Aspergillus cultures is inhibited. In protease assays a concentration of 30 μM chymostatin combined with 0.075 μM pepstatin was required for maximum inhibition. Inhibitor concentrations of chymostatin and pepstatin of 120 and 0.3 μM, respectively, when added to Aspergillus cultures, has no significant effect on biomass production, glucose utilization or culture pH pattern. The potential of using these protease inhibitors in cultures of recombinant Aspergillus strains producing heterologous proteins will now be investigated to determine if the previously observed recombinant protein denaturing effects of Aspergillus proteases can be negated.  相似文献   

15.
Limited proteolysis of catalytic and regulatory subunits of cyclic AMP-dependent protein kinase (A-pk), cyclic AMP phosphodiesterase, glycogen synthase, and histones by fungal protease (type XIX) was analyzed by the digested peptide bands in SDS polyacrylamide gel electrophoresis. The modulatory effects on proteolysis by nucleotides, polypeptides, and phospholipids may greatly depend on the intrinsic nature of substrates. The proteolysis of the regulatory subunit of A-pk and glycogen synthase was not regulated by nucleotides and nucleic acids. In comparison, phosphatidyl serine, cardiolipin, and pepstatin A stimulated the proteolysis of the catalytic subunit of A-pk. Whereas, DNA (Hind III digest), t-RNA, GTP, phosphatidyl serine, sphingosine inhibited the proteolysis of cyclic AMP phosphodiesterase. Moreover, MS2 RNA, DNA, t-RNA, dGTP, Phosphatidyl serine, phosphatidyl inositol, antipain, and chymostatin exerted inhibitory proteolytic effect on histone VIII-S. Some of these agents also had similar inhibitory effect on other types of histones (types III-S and VII-S). The inhibitory effect of phosphatidyl serine on proteolysis of histone may be due to their interaction which was monitored by the drastic increase of uv absorbance.  相似文献   

16.
Phosphoenolpyruvate PyrP carboxylase (PyrPC) and PyrPC kinase were copurified from dark-adapted leaves of the common ice plant Mesembryanthemum crystallinum L. with crassulacean-acid metabolism (CAM). Purification by (NH4)2SO4 fractionation, chromatography on Fractogel-DEAE and hydroxylapatite resulted in a PyrPC preparation with a specific activity of 23-25 U/mg protein and a protein kinase activity of 255 mumol Pi.mol-1 PyrPC.s-1. After in vitro phosphorylation, the most prominently phosphorylated polypeptide was identified as PyrPC by immunoblotting and sequencing. Phosphorylation of PyrPC in vitro by incubation with 400 microM MgATP decreased its sensitivity towards malate. When purified in the absence of the protease inhibitor chymostatin, PyrPC lost an N-terminal sequence of 128 amino acids. Although the carboxylation reaction was unaffected, the truncated PyrPC could neither be phosphorylated in vitro nor inhibited by malate. This result and data obtained by limited proteolysis concur with the hypothesis [Jiao, J.A. & Chollet, R. (1989) Arch. Biochem. Biophys. 283, 300-305] that Ser11 is the phosphorylation site of the CAM PyrPC of M. crystallinum. At pH 7.0, the Km for ATP of the protein kinase was 25 microM; phosphorylation of PyrPC was maximal after 30 min at pH 7.0. The kinase showed also activity with histone III-S but not with dephosphorylated casein. It was inhibited by malate. The results show, that reversible protein phosphorylation is an important factor in the regulation of PyrPC in the facultative CAM plant M. crystallinum, similar to C4 and constitutive CAM plants.  相似文献   

17.
Summary Gap junctions (GJ) isolated from rat hearts in presence of the protease inhibitor phenylmethylsulfonylfuoride (PMSF) contain a Mr 44,000 to 47.000 major polypeptide and have a urea-resistant layer of fuzz on their cytoplasmic surfaces, whereas junctions isolated without PMSF are proteolyzed to a Mr 29.500 polypeptide by a serine protease and have smooth cytoplasmic surfaces (C.K. Manjunath, G.E. Goings & E. PageAm. J. Physiol. 246:H865–H875, 1984). Rat liver GJ isolated with or without PMSF contain a Mr 28,000 polypeptide and have smooth cytoplasmic surfaces. Here we examine the origin, type and inhibitor sensitivity of the heart protease; why similar proteolysis is absent during isolation of rat liver gap junctions; and whether the Mr 44.000 to 47,000 cardiac GJ polypeptide is the precursor of the Mr 29,500 subunit. We show that the Mr 44,000 to 47,000 polypeptide corresponds to the unproteolyzed connexon subunit; that proteolysis of this polypeptide occurs predominantly during exposure to high ionic strength solution (0.6m KI) which releases serine protease from mast cell granules; that this protease is inhibitable with PMSF and (less completely) soybean trypsin inhibitor and chymostatin; and thatin vivo degranulation of mast cells by injecting rats with compound 48/80 fails to prevent breakdown of cardiac GJ during isolation. The results support the concept that GJ from rat heart and liver differ in protein composition.  相似文献   

18.
Calpain是钙依赖性中性蛋白酶 ,根据其对钙敏感性的不同 ,可分为m 和 μ calpain两型 .分别用不同浓度CaCl2 溶液孵育Wistar大鼠脑皮质匀浆液 ,并用蛋白质印迹和定量图像分析技术检测不同亚型calpain对tau蛋白的降解作用 .研究发现 :在 3 7℃用 1mmol/LCa2 孵育底物 15min ,可见tau蛋白明显降解 ,并在分子质量为 2 9ku处出现tau蛋白降解片段 ;当Ca2 浓度为 5mmol/L时 ,tau蛋白几乎全部被降解 ;这种tau蛋白降解可被calpain特异性抑制剂完全逆转 .进一步的研究发现 ,分别用 μ calpain抑制剂 (0 0 5μmol/Lcalpastatin) ,m calpain抑制剂 (10 0 μmol/LcalpaininhibitorⅣ )或总calpain抑制剂 (552 μmol/Lcalpeptin)与 1mmol/LCa2 共同孵育Wistar大鼠脑皮质匀浆液 ,Ca2 激活的tau蛋白降解分别被抑制8 6% ,92 5%和 97 8% .结果表明一定浓度的Ca2 可同时激活 μ calpain和m calpain ,这两种亚型calpain均参与降解tau蛋白 ,但m calpain的作用比 μ calpain更强  相似文献   

19.
Protein degradation in Reuber H35 hepatoma monolayers was measured as release of radioactive trichloroacetic acid-soluble material from intracellular protein labelled with [3H]leucine for 16 hr followed by 3-hr chase period. Proteolysis in this system was stimulated by physiological concentration of glucagon reaching a maximum at 10(-7) M with an increase of 30%. Dibutyryl cyclic AMP also had a stimulatory effect. When both glucagon and dibutyryl cyclic AMP were present at optimal concentrations, their effects were not additive suggesting that glucagon may act via the formation of cyclic AMP. In the presence of protein synthesis inhibitor, cycloheximide or puromycin, proteolysis remained responsive to glucagon. Glucagon counteracted the inhibitory effect of insulin on proteolysis.  相似文献   

20.
Tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of catecholamines, was reversibly inactivated by incubation with antipain, which is known as a microbial protease inhibitor. The inactivation was a time-dependent reaction and it was prominent when the enzyme was assayed at a neutral pH but not when assayed at an acidic pH. The inactivated enzyme was markedly activated by cyclic AMP-dependent protein kinase. Other microbial protease inhibitors such as leupeptin, chymostatin, and pepstatin did not induce such as inactivation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号