首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Available cultures of Thiobacillus ferrooxidans were found to be contaminated with bacteria very similar to Thiobacillus acidophilus. The experiments described were performed with a homogeneous culture of Thiobacillus ferrooxidans.Pyrite (FeS2) was oxidized by Thiobacillus ferrooxidans grown on iron (Fe2+), elemental sulphur (So) or FeS2.Evidence for the direct utilization of the sulphur moiety of pyrite by Thiobacillus ferrooxidans was derived from the following observations: a. Known inhibitors of Fe2+ and So oxidation, NaN3 and NEM, respectively, partially abolished FeS2 oxidation. b. A b-type cytochrome was detectable in FeS2-and So-grown cells but not in Fe2+-grown cells. c. FeS2 and So reduced b-type cytochromes in whole cells grown on So. d. CO2 fixation at pH 4.0 per mole of oxygen consumed was the highest with So, lowest with Fe2+ and medium with FeS2 as substrate. e. Bacterial Fe2+ oxidation was found to be negligible at pH 5.0 whereas both FeS2 and So oxidation was still appreciable above this pH. f. Separation of pyrite and bacteria by means of a dialysis bag caused a pronounced drop of the oxidation rate which was similar to the reduction of pyrite oxidation by NEM; indirect oxidation of the sulphur moiety by Fe3+ was not affected by separation of pyrite and bacteria.Bacterial oxidation and utilization of the sulphur moiety of pyrite were relatively more important with increasing pH.  相似文献   

2.
Iron has a central role in bioleaching and biooxidation processes. Fe2+ produced in the dissolution of sulfidic minerals is re-oxidized to Fe3+ mostly by biological action in acid bioleaching processes. To control the concentration of iron in solution, it is important to precipitate the excess as part of the process circuit. In this study, a bioprocess was developed based on a fluidized-bed reactor (FBR) for Fe2+ oxidation coupled with a gravity settler for precipitative removal of ferric iron. Biological iron oxidation and partial removal of iron by precipitation from a barren heap leaching solution was optimized in relation to the performance and retention time (τFBR) of the FBR. The biofilm in the FBR was dominated by Leptospirillum ferriphilum and “Ferromicrobium acidiphilum.” The FBR was operated at pH 2.0 ± 0.2 and at 37 °C. The feed was a barren leach solution following metal recovery, with all iron in the ferrous form. 98–99% of the Fe2+ in the barren heap leaching solution was oxidized in the FBR at loading rates below 10 g Fe2+/L h (τFBR of 1 h). The optimal performance with the oxidation rate of 8.2 g Fe2+/L h was achieved at τFBR of 1 h. Below the τFBR of 1 h the oxygen mass transfer from air to liquid limited the iron oxidation rate. The precipitation of ferric iron ranged from 5% to 40%. The concurrent Fe2+ oxidation and partial precipitative iron removal was maximized at τFBR of 1.5 h, with Fe2+ oxidation rate of 5.1 g Fe2+/L h and Fe3+ precipitation rate of 25 mg Fe3+/L h, which corresponded to 37% iron removal. The precipitates had good settling properties as indicated by the sludge volume indices of 3–15 mL/g but this step needs additional characterization of the properties of the solids and optimization to maximize the precipitation and to manage sludge disposal.  相似文献   

3.
Biomining is the use of microorganisms to catalyze metal extraction from sulfide ores. However, the available water in some biomining environments has high chloride concentrations and therefore, chloride toxicity to ferrous oxidizing microorganisms has been investigated. Batch biooxidation of Fe2+ by a Leptospirillum ferriphilum‐dominated culture was completely inhibited by 12 g L?1 chloride. In addition, the effects of chloride on oxidation kinetics in a Fe2+ limited chemostat were studied. Results from the chemostat modeling suggest that the chloride toxicity was attributed to affects on the Fe2+ oxidation system, pH homeostasis, and lowering of the proton motive force. Modeling showed a decrease in the maximum specific growth rate (µmax) and an increase in the substrate constant (Ks) with increasing chloride concentrations, indicating an effect on the Fe2+ oxidation system. The model proposes a lowered maintenance activity when the media was fed with 2–3 g L?1 chloride with a concomitant drastic decrease in the true yield (Ytrue). This model helps to understand the influence of chloride on Fe2+ biooxidation kinetics. Biotechnol. Bioeng. 2010; 106: 422–431. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Effects of protease inhibitors on liver regeneration   总被引:2,自引:0,他引:2  
The oxidation of Fe2+ to Fe3+ by oxygen at pH 7.45 is a first order reaction with a 25 minute half life. In the presence of apotransferrin the oxidation rate is greatly enhanced and Fe3+-transferrin is formed. The apotransferrin mediated reaction reaches 50% completion in one minute; it does not follow simple first order kinetics. Iron-saturated transferrin does not exhibit the rate enhancement effect suggesting that the specific metal binding sites are the loci of the iron oxidation. Addition of H2O2, an agent which rapidly oxidizes Fe2+ to Fe3+, during the reaction of Fe2+ with apotransferrin greatly decreases the yield of Fe3+-transferrin. It is postulated that the basis of the rate enhancement effect is the binding of Fe2+ to the metal binding site of the transferrin molecule, followed by a rapid oxidation of the iron to the trivalent form.  相似文献   

5.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

6.
Summary Uranyl sulphate (0.2–0.9 mM) inhibited ferrous iron oxidation by growing cultures ofThiobacillus ferrooxidans. The addition of 5–100 mM uranium to the cultures caused immediate cessation of carbon dioxide fixation, rapid loss of viability and gradual depression of ferrous iron oxidation. Virtually no uranium was found in washed cells grown in the presence of subtoxic to toxic amounts of uranyl sulphate. Uranium-poisoned organisms appeared plasmolyzed in electron micrographs. Cultures tolerant to 5 mM UO2 2+ were develoepd by successive subculturing in increased uranium concentrations. The tolerance was maintained during subculturing in uranium-free medium. Frequency of mutants resistant to 1.0 and 1.5 mM UO2 2+ was 1 per 1.3×106 and 1 per 9.0×108, respectively. The frequency was increased in the presence of 15–150 mM nickel, zinc and manganese. In liquid cultures, bivalent cations and EDTA alleviated the toxicity of 2 mM uranyl sulphate.  相似文献   

7.
Modelling of Fe2 + oxidation by Thiobacillus ferrooxidans   总被引:1,自引:0,他引:1  
Summary The kinetics of oxidation of aqueous acidic ferrous sulphate by Thiobacillus ferrooxidans has been studied in a batch reactor. The contribution of cell wall envelopes to the oxidation rate has been shown to be negligible. A model which accounts for the oxidation of Fe2 +, death of bacteria due to Fe3 + poisoning, existence of an optimal pH and precipitation of Fe3 + has been proposed. The model is able to predict the concentration of Fe2 + and pH quite satisfactorily. The predictions of Fe3 + are not so accurate because of simplifying assumptions made about its precipitation. Offprint requests to: R. Kumar  相似文献   

8.

Bacteriogenic iron oxides (BIOS) are composite materials that consist of intact and partly degraded remains of bacterial cells intermixed with variable amounts of poorly ordered hydrous ferric oxide (HFO) minerals. They form in response to chemical or bacterial oxidation of Fe2+, which gives rise to Fe3+. Once formed, Fe3+ tends to undergo hydrolysis to precipitate in association with bacterial cells. In acidic systems where the chemical oxidation of Fe2+ is slow, bacteria are capable of accelerating the reaction by several orders of magnitude. At circumneutral pH, the chemical oxidation of Fe2+ is fast. This requires Fe2+ oxidizing bacteria to exploit steep redox gradients where low pO2 slows the abiotic reaction enough to allow the bacteria to compete kinetically. Because of their reactive surface properties, BIOS behave as potent sorbents of dissolved metal ions. Strong enrichments of Al, Cu, Cr, Mn, Sr, and Zn in the solid versus aqueous phase (log 10 Kd values range from 1.9 to 4.2) are common; however, the metal sorption properties of BIOS are not additive owing to surface chemical interactions between the constituent HFO and bacteria. These interactions have been investigated using acid-base tritrations, which show that the concentration of high pKa sites is reduced in BIOS compared to HFO. At the same time, hydroxylamine insoluble material (i.e., residual bacterial fraction) is enriched in low pKa sites relative to both BIOS and HFO. These differences indicate that low pKa or acidic sites associated with bacteria in BIOS interact specifically with high pKa or basic sites on intermixed HFO.  相似文献   

9.
Roots of Typha latifolia L. exposed to Fe2+ under reduced conditions in solution culture developed visible coatings (plaques) of an oxidized Fe compound that extended as much as 15-17 μm into the rhizosphere. Iron concentrations were significantly less and discoloration was not apparent on the surface of roots exposed to Fe-(BPDS)3, Fe3+, Fe-EDDHA, and Fe-EDTA. The extent of plaque formation increased with the concentration of Fe2+ in solution and with pH of the solution in the range of 3.0 to 4.6. Above pH 4.6, oxidation of Fe2+ in the culture solution may have reduced precipitation of Fe on the root surface. Plaque development was most extensive approximately 1.0 cm from the root tip, but all root surfaces showed some Fe staining. Scanning electron micrographs of plaqued roots, grown both in solution culture and in the field, provided support for a model of cast formation by oxidation and precipitation of Fe on external cell surfaces.  相似文献   

10.
Summary Hydroxyl radicals (OH') can be formed in aqueous solution by direct reaction of hydrogen peroxide (H2O2) with ferrous salt (Fenton reaction). OH' damage to deoxyribose, measured as formation of thiobarbituric acid-reactive material, was evaluated at different pHs to study the mechanism of action of classical OH' scavengers. OH' scavenger effect on Fe2+ oxidation was also evaluated in the same experimental conditions. In the absence of OH' scavengers, OH' damage to deoxyribose is higher at acidic compared to neutral and moderately basic pH. At acidic pH deoxiribose is per se able to inhibit Fe2+ oxidation by H202. Most of OH' scavengers tested inhibit deoxyribose damage and Fe2+ oxidation in a similar manner: both inhibitions are most relevant at acidic pH and decrease by increasing the pH. These results are not due to OH' scavenger inhibition of Fenton reaction. The influence of pH on the parameters studied appears to be due to the competition of deoxyribose and OH' scavengers for iron. These results suggest the prominent role of iron binding in the degradation of deoxyribose and in the OH' scavenging ability of different compounds. Results obtained with triethylenetetramine, a iron chelator with a low rate constant with OH', confirm that both deoxyribose and the OH' scavengers interact with iron bringing about a site specific Fenton reaction; that the OH' formed at these sites oxidize these molecules to their radical forms which in turn reduce the Fe3– produced by Fenton reaction. The results presented indicate that most of classical OH' scavengers exert their effect predominantly by preventing the site specific reaction between Fe2+ and H202 on the deoxyribose molecule.  相似文献   

11.
《Free radical research》2013,47(6):563-576
In an experimental system where both Fe2+ autoxidation and generation of reactive oxygen species is negligible, the effect of FeCl2 and FeCl3 on the peroxidation of phosphatidylcholine (PC) liposomes containing different amounts of lipid hydroperoxides (LOOH) was studied; Fe2+ oxidation, oxygen consumption and oxidation index of the liposomes were measured. No peroxidation was observed at variable FeCl2/FeCl3 ratio when PC liposomes deprived of LOOH by triphenyl-phosphine treatment were utilized. By contrast, LOOH containing liposomes were peroxidized by FeCl2. The FeCl2 concentration at which Fe2+ oxidation was maximal, defined as critical Fe2+ concentration [Fe2+]*, depended on the LOOH concentration and not on the amount of PC liposomes in the assay. The LOOH-dependent lipid peroxidation was stimulated by FeCl3, addition; the oxidized form of the metal increased the average length of radical chains, shifted to higher values the [Fe2+]* and shortened the latent period. The iron chelator KSCN exerted effects opposite to those exerted by FeCl3 addition. The experimental data obtained indicate that the kinetics of LOOH-dependent lipid peroxidation depends on the Fe2+/Fe3+ ratio at each moment during the time course of lipid peroxidation. The results confirm that exogenously added FeCl3 does not affect the LOOH-independent but the LOOH-deendent lipid peroxidation; and suggest that the Feg, endogenously generated exerts a major role in the control of the LOOH-dependent lipid peroxidation.  相似文献   

12.
 Diiron-oxo proteins currently represent one of the most rapidly developing areas of bioinorganic chemistry. All of these proteins contain a four-helix bundle protein fold surrounding a (μ-carboxylato)diiron core, and most, if not all, of the diiron(II) sites appear to react with O2 as part of their functional processes. Despite these common characteristics, an emerging functional diversity is one of the most striking aspects of this class of proteins. X-ray crystal structures of diiron(II) sites are now available for four of these proteins: hemerythrin (Hr), the hydroxylase protein of methane monooxygenase (MMOH), the R2 protein of Escherichia coli ribonucleotide reductase (RNR-R2), and a plant acyl-carrier protein Δ9-desaturase. The structure of the diiron(II) site in Hr, the sole O2 carrier in the group, is clearly distinct from the other three, whose function is oxygen activation. The Hr diiron site is more histidine rich, and the oxygen-activating diiron sites contain a pair of (D/E)X30–37EX2H ligand sequence motifs, which is clearly not found in Hr. The Hr diiron site apparently permits only terminal O2 coordination to a single iron, whereas the oxygen-activating diiron(II) centers present open or labile coordination sites on both irons of the center, and show a much greater coordinative flexibility upon oxidation to the diiron(III) state. Intermediates at the formal FeIIIFeIII and FeIVFeIV oxidation levels for MMOH and formal FeIIIFeIV oxidation level for RNR-R2 have been identified during reactions of the diiron(II) sites with O2. An [Fe2(μ-O)2]4+, 3+ "diamond core" structure has been proposed for the latter two oxidation levels. The intermediate at the FeIIIFeIV oxidation level in RNR-R2 is kinetically competent to generate a stable, functionally essential tyrosyl radical. The FeIVFeIV oxidation level is presumed to effect hydroxylation of hydrocarbons in MMOH, but the mechanism of this hydroxylation, particularly the involvement of discrete radicals, is currently controversial. The biological function of diiron sites in three members of this class, rubrerythrin, ferritin and bacterioferritin, remains enigmatic. Received: 31 July 1996 / Accepted: 4 October 1996  相似文献   

13.
Eight strains of Thiobacillus ferrooxidans (laboratory strains Tf-1 [= ATCC 13661] and Tf-2 [= ATCC 19859] and mine isolates SM-1, SM-2, SM-3, SM-4, SM-5, and SM-8) and three strains of Thiobacillus thiooxidans (laboratory strain Tt [= ATCC 8085] and mine isolates SM-6 and SM-7) were grown on ferrous iron (Fe2+), elemental sulfur (S0), or sulfide ore (Fe, Cu, and Zn). The cells were studied for their aerobic Fe2+ - and S0-oxidizing activities (O2 consumption) and anaerobic S0-oxidizing activity with ferric iron (Fe3+) (Fe2+ formation). Fe2+-grown T. ferrooxidans cells oxidized S0 aerobically at a rate of 2 to 4% of the Fe2+ oxidation rate. The rate of anaerobic S0 oxidation with Fe3+ was equal to the aerobic oxidation rate in SM-1, SM-3, SM-4, and SM-5, but was only one-half or less that in Tf-1, Tf-2, SM-2, and SM-8. Transition from growth on Fe2+ to that on S0 produced cells with relatively undiminished Fe2+ oxidation activities and increased S0 oxidation (both aerobic and anaerobic) activities in Tf-2, SM-4, and SM-5, whereas it produced cells with dramatically reduced Fe2+ oxidation and anaerobic S0 oxidation activities in Tf-1, SM-1, SM-2, SM-3, and SM-8. Growth on ore 1 of metal-leaching Fe2+-grown strains and on ore 2 of all Fe2+-grown strains resulted in very high yields of cells with high Fe2+ and S0 oxidation (both aerobic and anaerobic) activities with similar ratios of various activities. Sulfur-grown Tf-2, SM-1, SM-4, SM-6, SM-7, and SM-8 cultures leached metals from ore 3, and Tf-2 and SM-4 cells recovered showed activity ratios similar to those of other ore-grown cells. It is concluded that all the T. ferrooxidans strains studied have the ability to produce cells with Fe2+ and S0 oxidation and Fe3+ reduction activities, but their levels are influenced by growth substrates and strain differences.  相似文献   

14.
Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 μM Fe2+ per min per FeS2 percent pulp density for the spontaneous pyrite dissolution, 10 μM Fe2+ per min per mM Fe3+ for the indirect leaching with Fe3+, 90 μM O2 per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 μM O2 per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The Km values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a Ki value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe2+ production from Fe3+ plus pyrite.  相似文献   

15.
Although considerably more oxidation-resistant than other P-type ATPases, the yeast PMA1 H+-ATPase of Saccharomyces cerevisiae SY4 secretory vesicles was inactivated by H2O2, Fe2+, Fe- and Cu-Fenton reagents. Inactivation by Fe2+ required the presence of oxygen and hence involved auto-oxidation of Fe2+ to Fe3+. The highest Fe2- (100 μM) and H2O2 (100 mM) concentrations used produced about the same effect. Inactivation by the Fenton reagent depended more on Fe2+ content than on H2O2 concentration, occurred only when Fe2+ was added to the vesicles first and was only slightly reduced by scavengers (mannitol, Tris, NaN3, DMSO) and by chelators (EDTA, EGTA, DTPA, BPDs, bipyridine, 1, 10-phenanthroline). Inactivation by Fe- and Cu- Fenton reagent was the same; the identical inactivation pattern found for both reagents under anaerobic conditions showed that both reagents act via OH·. The lipid peroxidation blocker BHT prevented Fenton-induced rise in lipid peroxidation in both whole cells and in isolated membrane lipids but did not protect the H+-ATPase in secretory vesicles against inactivation. ATP partially protected the enzyme against peroxide and the Fenton reagent in a way resembling the protection it afforded against SH-specific agents. The results indicate that Fe2+ and the Fenton reagent act via metal-catalyzed oxidation at specific metal-binding sites, very probably SH-containing amino acid residues. Deferrioxamine, which prevents the redox cycling of Fe2+, blocked H+-ATPase inactivation by Fe2+ and the Fenton reagent but not that caused by H2O2, which therefore seems to involve a direct non-radical attack. Fe-Fenton reagent caused fragmentation of the H+-ATPase molecule, which, in Western blots, did not give rise to defined fragments bands but merely to smears.  相似文献   

16.
The uranyl cation (UO22+) can be suspected to interfere with the binding of essential metal cations to proteins, underlying some mechanisms of toxicity. A dedicated computational screen was used to identify UO22+ binding sites within a set of nonredundant protein structures. The list of potential targets was compared to data from a small molecules interaction database to pinpoint specific examples where UO22+ should be able to bind in the vicinity of an essential cation, and would be likely to affect the function of the corresponding protein. The C‐reactive protein appeared as an interesting hit since its structure involves critical calcium ions in the binding of phosphorylcholine. Biochemical experiments confirmed the predicted binding site for UO22+ and it was demonstrated by surface plasmon resonance assays that UO22+ binding to CRP prevents the calcium‐mediated binding of phosphorylcholine. Strikingly, the apparent affinity of UO22+ for native CRP was almost 100‐fold higher than that of Ca2+. This result exemplifies in the case of CRP the capability of our computational tool to predict effective binding sites for UO22+ in proteins and is a first evidence of calcium substitution by the uranyl cation in a native protein.  相似文献   

17.
The biological toxicity of uranyl ion (UO22+) lies in interacting with proteins and disrupting their native functions. The structural and functional consequences of UO22+ interacting with cytochrome b 5 (cyt b 5), a small membrane heme protein, and its heme axial ligand His39Ser variant, cyt b 5 H39S, were investigated both experimentally and theoretically. In experiments, although cyt b 5 was only slightly affected, UO22+ binding to cyt b 5 H39S with a K D of 2.5 μM resulted in obvious alteration of the heme active site, and led to a decrease in peroxidase activity. Theoretically, molecular simulation proposed a uranyl ion binding site for cyt b 5 at surface residues of Glu37 and Glu43, revealing both coordination and hydrogen bonding interactions. The information gained in this study provides insights into the mechanism of uranyl toxicity toward membrane protein at an atomic level.  相似文献   

18.
The free radical, nitric oxide (√NO), is responsible for a myriad of physiological functions. The ability to verify and study √NO in vivo is required to provide insight into the events taking place upon its generation and in particular the flux of √NO at relevant cellular sites. With this in mind, several iron-chelates (Fe2+(L)2) have been developed, which have provided a useful tool for the study and identification of √NO through spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. However, the effectiveness of √NO detection is dependent on the Fe2+(L)2 complex. The development of more efficient and stable Fe2+(L)2 chelates may help to better understand the role of √NO in vivo. In this paper, we present data comparing several proline derived iron–dithiocarbamate complexes with the more commonly used spin traps for √NO, Fe2+-di(N-methyl-D-glutamine-dithiocarbamate) (Fe2+(MGD)2) and Fe2+-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2). We evaluate the apparent rate constant (kapp) for the reaction of √NO with these Fe2+(L)2 complexes and the stability of the corresponding Fe2+(NO)(L)2 in presence of NOS I.  相似文献   

19.
Abstract : Alkaline phosphatase, one of the enzymes responsible for the conversion of phosphocholine into choline, was purified from bovine brain membrane, where the phosphatase is bound as glycosylphosphatidylinositollinked protein, and subjected to oxidative inactivation. The phosphatase activity, based on the hydrolysis of p-nitrophenyl phosphate and phosphocholine, decreased slightly after the exposure to H2O2. Inclusion of Cu2+ in the incubation with 1 mM H2O2 led to a rapid decrease of activity in a time- and concentration-dependent manner. In comparison, the H2O2/Cu2+ system was much more effective than the H2O2/Fe2+ system in inactivating brain phosphatase. In a further study, it was observed that the hydroxy radical scavengers mannitol, ethanol, or benzoate failed to prevent against H2O2/Cu2+-induced inactivation of the phosphatase, excluding the involvement of extraneous hydroxy radicals in metalcatalyzed oxidation. In addition, it was found that both substrates, p-nitrophenyl phosphate and phosphocholine, and an inhibitor, phosphate ion, at their saturating concentrations exhibited a remarkable, although incomplete, protection against the inactivating action of H2O2/Cu2+. A similar protection was also expressed by divalent metal ions such as Mg2+ or Mn2+. Separately, it was found that H2O2/Fe2+-induced inactivation was prevented by p-nitrophenyl phosphate or Mg2+ but not phosphate ions. Thus, it is implied that phosphocholine-hydrolyzing alkaline phosphatase in brain membrane might be one of enzymes susceptible to metal-catalyzed oxidation.  相似文献   

20.
The oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+) with dioxygen (O2) by various strains of Thiobacillus ferrooxidans was studied by measuring the rate of O2 consumption at various Fe2+ concentrations and cell concentrations. The apparent Km values for Fe2+ remained constant at different cell concentrations of laboratory strains ATCC 13661 and ATCC 19859 but increased with increasing cell concentrations of mine isolates SM-4 and SM-5. The latter results are explained by the competitive inhibition of the Fe2+-binding site of a cell by other cells in the reaction mixture. Possible mechanisms involving cell surface properties are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号