首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
The conditions for batch and continuous production of ethanol, using immobilized growing yeast cells of Kluyveromyces lactis, have been optimized. Yeast cells have been immobilized in hydrogel copolymer carriers composed of polyvinyl alcohol (PVA) with various hydrophilic monomers, using radiation copolymerization technique. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves. The ethanol production of immobilized growing yeast cells with these hydrogel carriers was related to the monomer composition of the copolymers and the optimum monomer composition was hydroxyethyl methacrylate (HEMA). In this case by using batch fermentation, the superior ethanol production was 32.9 g L(-1) which was about 4 times higher than that of cells in free system. The relation between the activity of immobilized yeast cells and the water content of the copolymer carriers was also discussed. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier, were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) g L(-1). For all lactose feed concentrations, an increase in dilution rates from 0.1 h(-1) to 0.3 h(-1) lowered ethanol concentration in fermented broth, but the volumetric ethanol productivity and volumetric lactose uptake rate were improved. The fermentation efficiency was lowered with the increase in dilution rate and also at higher lactose concentration in feed medium and a maximum of 70.2% was obtained at the lowest lactose concentration 50 g L(-1).  相似文献   

3.
An extractive fermentation system using immobilized yeast cells was developed to study the ethanol production at high sugar concentrations. Organic acids were used as extracting solvents of ethanol and their toxicity was tested in free and k-carrageenan entrapped cell preparations. Immobilization seems to protect cells against solvent toxicity, when long-chain organic acids, e.g., oleic acid, were used, probably due to steric and diffusional limitations, the free cells not being viable at high oleic acid concentrations. The entrapped cells also present a higher metabolic activity than their free counterparts at high glucose concentrations. A solution of 300 g/L of glucose was totally fermented by the immobilized yeast cells, which when free cannot normally convert more than 200 g/L. In situ recovery of ethanol by oleic acid in a batch immobilized cell system led to higher ethanol productivities and to the fermentation of 400 g/L, when an oleic acid/medium ratio of 5 was used.  相似文献   

4.
In the U.S., forest and crop residues contain enough glucose and xylose to supply 10 times the country's usage of ethanol and ethylene, but an efficient fermentation scheme is lacking,(1,2,3) To develop a strategy for process design, specific ethanol productivities and yields of Pachysolen tannophilus NRRL Y-2460 and Saccharomyces cerevisiae NRRL Y-2235 were compared. Batch cultures and continuous stirred reactors (CSTR) loaded with immobilized cells were fed glucose and xylose. As expected from previous reports, Y-2235 fermented glucose but not xylose. Y-2460 consumed both sugars but fermented glucose inefficiently relative to Y-2235, and it suffered a diauxic lag lasting 10-20 h when given a sugar mixture. Immobilized Y-2235 exhibited increasing productivity but constant yield with in creasing glucose concentration. In contrast, Y-2460 exhibited an optimum productivity at 30-40 g/L xylose and a declining yield with increasing xylose concentration. Immobilized Y-2235 tolerated more than 100 g/L ethanol while the productivity and yield of Y-2460 fell by 80 and 58%, respectively, as ethanol reached 50 g/L. A 38.8-g/L ethanol stream could be produced as 103 g/L xylose was continuously fed to Y-2460. If it was blended with a 274 g/L glucose stream to give a composite of 23.7 g/L ethanol and 107 g/L glucose, Y-2235 could en rich the ethanol to 75 g/L. Taken together these results suggest use of a two-stage continuous reactor for pro cessing xylose and glucose from lignocellulose. An immobilized Y-2460 CSTR (or cascade) would convert the hemicellulose hydrolyzate. Then downstream, an immobilized Y-2235 plug flow reactor would enrich the hemicellulose-derived ethanol to more than 70 g/L upon addition of cellulose hydrolyzate.  相似文献   

5.
Natural sorghum bagasse without any treatment was used to immobilize Saccharomyces cerevisiae at 0.6+/-0.2g dry cell weight (DCW)/g dry sorghum bagasse weight (DSW) through solid-state or semi-solid state incubation. The scanning electron microscopy (SEM) of the carriers revealed the friendship between yeast cells and sorghum bagasse are adsorption and embedding. The ethanol productivity of the immobilized cells was 2.24 times higher than the free cells. In repeated batch fermentation with an initial sugar concentration of 200g/L, nearly 100% total sugar was consumed after 16 h. The ethanol yield and productivity were 4.9 g/g consumed sugar on average and 5.72 g/(Lh), respectively. The immobilized cell reactor was operated over a period of 20 days without breakage of the carriers, while the free cell concentration in the effluent remained less than 5 g/L thoughout the fermentation. The maximum ethanol productivity of 16.68 g/(Lh) appeared at the dilution rate of 0.3h(-1).  相似文献   

6.
Zymomonas mobilis cells were entrapped in K. carrageenan. Growth was observed with the immobilized cell preparation. The kinetic and yield parameters for the conversion of fructose to ethanol were nearly identical to free cells. The same preparation of immobilized cells was used in six repeated batch runs and at the end sixthbatch fructose was converted to ethanol more rapidly and efficiently with ethanol productivity of 14 g/L h and 96% conversion of fructose. The effect of high fructose and ethanol levels on specific fructose uptake rate and ethanol productivity was studied and quantitatively analyzed.  相似文献   

7.
柠檬酸是利用微生物代谢生产的一种极为重要的有机酸.广泛应用于食品、饮料、化工、冶金、印染等各个领域。在国外,近10年来,利用固定化细胞生产柠檬酸已获得较广泛的研究〔1-6〕,国内也有学者指出,柠檬酸发酵的趋向是利用固定化细胞进行连续化生产⑺。而国内这方面的研究报道很少〔8,9〕。我们利用海藻酸钙凝胶包埋固定化黑曲霉细胞生产柠檬酸.探讨了碳源种类及其浓度对固定化细胞生产柠檬酸的影响。现将结果报道如下。  相似文献   

8.
Rapid fermentation of cane molasses into ethanol has been studied in batch, continuous (free-cell and cell-immobilized systems) by a strain of Saccharomyces cerevisiae at temperature 30 degrees C and pH 5.0. The maximum productivity of ethanol obtained in immobilized system was 28.6 g L(-1) h(-1). The cells were immobilized by natural mode on a carrier of natural origin and retention of 0.132 g cells/g carrier was achieved. The immobilized-cell column was operated continuously at steady state over a period of 35 days. Based on the parameter data monitored from the system, mathematical analysis has been made and rate equations proposed, and the values of specific productivity of ethanol and specific growth rate for immobilized cells computed. It has been established that immobilized cells exhibit higher specific rate of ethanol formation compared to free cells but the specific growth rate appears to be comparatively low. The yield of ethanol in the immobilized-cell system is also higher than in the free-cell system.  相似文献   

9.
Jung ES  Kim HJ  Oh DK 《Biotechnology progress》2005,21(4):1335-1340
Using immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant (Gali 152), we found that the galactose isomerization reaction was maximal at 70 degrees C and pH 7.0. Manganese ion enhanced galactose isomerization to tagatose. The immobilized cells were most stable at 60 degrees C and pH 7.0. The cell and substrate concentrations and dilution rate were optimal at 34 g/L, 300 g/L, and 0.05 h(-1), respectively. Under the optimum conditions, the immobilized cell reactor with Mn2+ produced an average of 59 g/L tagatose with a productivity of 2.9 g/L.h and a conversion yield of 19.5% for the first 20 days. The operational stability of immobilized cells with Mn2+ was demonstrated, and their half-life for tagatose production was 34 days. Tagatose production was compared for free and immobilized enzymes and free and immobilized cells using the same mass of cells. Immobilized cells produced the highest tagatose concentration, indicating that cell immobilization was more efficient for tagatose production than enzyme immobilization.  相似文献   

10.
Summary Vertical Rotating Immobilized Cell Reactor was designed and built for glucose conversion into ethanol. Immobilized biomass units withZ. mobilis cells attached into polyurethane foam discs were fixed along a rotating shaft inside the bioreactor. The effect of rotation speed on the concentration of immobilized biomass was studied. Stability of the bioreactor over long-term operation was dependent on the concentration of the immobilized biomass. With fermentation carried out at 6 rpm a constant active immobilized cell concentration of only 34.5 g/l was maintained and used to convert up to 140 g glucose/l into more than 70 g ethanol/l with a volumetric ethanol productivity of 63 g/l/h.  相似文献   

11.
Cells of Leuconostoc mesenteroides immobilized in calcium alginate beads were used to produce dextransucrase (DS) in three sequential cycles of semicontinuous fed-batch fermentations. Each cycle consisted of a fed-batch DS production period of 24 h followed by a batch dextran production period for another 24 h. Free, suspended cells were used in only one cycle of fed-batch DS production followed by a dextran production period. It was impractically tedious to separate and reuse free cells. Increasing sucrose feed rate from 5 to 10 g/L h led to increases of the total enzymatic activity by about 88% with immobilized cells and by about 100% with free cells. In DS fed-batch semicontinuous fermentation, total enzymatic activity produced by immobilized cells was 1.35 and 1.56 times greater than that produced by free cells with respective sucrose feeding rates of 10 and 5 g/L h. These increases in enzyme productivity with immobilized cells, however, required total overall operating times three times longer (three cycles) than with free cells (one cycle). Growing the microorganism at optimum conditions for DS production also increased the dextran yield and shortened the time of conversion of sucrose to dextran, regardless of whether the cells were free or immobilized. Moreover, during three cycles of semicontinuous operation (144 h) immobilized cells produced more than three times as much dextran as free cells during one cycle (24 h).  相似文献   

12.
Immobilized whole cells of Clostridium butyricum reduced both NAD(+) and NADP(+) in the presence of hydrogen at a pressure of 100 atm. The NAD(+) and NADP(+) reduction activities were 4.45 and 4.30 U/g dry cells, respectively [U = NAD(P)H regenerated, mu mol/min]. The amount of NADH regenerated by immobilized cells increased with increasing hydrogen pressure above 10 atm. Immobilized cells (6 mg dry cells) of Cl. butyricum completely converted NAD(+) (6.4 mumole) to NADH for 5 h, whereas only 60% of NAD(+) were reduced by free cells. Immobilized cells retained 89% activity after the 5-h reactions were repeated 4 times. L-Alanine was continuously produced at the rate of 12.8 mumol/min g dry cells from hydrogen, ammonium, and pyruvate with immobilized Cl. butyricum-alanine dehydrogenase.  相似文献   

13.
The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 ± 1.86 g/l, an optimal ethanol concentration of 87.91 ± 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h.  相似文献   

14.
Epoxide hydrolase from Aspergillus niger was immobilized onto the modified Eupergit C 250 L through a Schiff base formation. Eupergit C 250 L was treated with ethylenediamine to introduce primary amine groups which were subsequently activated with glutaraldehyde. The amount of introduced primary amine groups was 220 μmol/g of the support after ethylenediamine treatment, and 90% of these groups were activated with glutaraldehyde. Maximum immobilization of 80% was obtained with modified Eupergit C 250 L under the optimized conditions. The optimum pH was 7.0 for the free epoxide hydrolase and 6.5 for the immobilized epoxide hydrolase. The optimum temperature for both free and immobilized epoxide hydrolase was 40 °C. The free epoxide hydrolase retained 52 and 33% of its maximum activity at 40 and 60 °C, respectively after 24h preincubation time whereas the retained activities of immobilized epoxide hydrolase at the same conditions were 90 and 75%, respectively. Immobilized epoxide hydrolase showed about 2.5-fold higher enantioselectivity than that of free epoxide hydrolase. A preparative-scale (120 g/L) kinetic resolution of racemic styrene oxide using immobilized preparation was performed in a batch reactor and (S)-styrene oxide and (R)-1-phenyl-1,2-ethanediol were both obtained with about 50% yield and 99% enantiomeric excess. The immobilized epoxide hydrolase was retained 90% of its initial activity after 5 reuses.  相似文献   

15.
基因工程菌BL21/pET22b-argE可高效表达N-乙酰鸟氨酸脱酰基酶。将含酶细胞包埋于海藻酸钙凝胶中制成固定化细胞酶,用于消旋蛋氨酸的拆分,并将其拆分能力、拆分速度及操作稳定性与游离细胞酶相比较。结果表明:单批次转化固定化细胞酶的拆分能力和游离细胞酶相近,拆分速度较慢;但多批次转化的操作稳定性显著高于游离细胞酶。重复利用8次后的固定化细胞酶仍保有95%以上的酶活力,重复利用5次后的游离细胞酶活已降至20%左右。每克湿菌泥在游离和固定化条件下重复拆分产L-蛋氨酸的量分别为74.16mmol和241.93mmol。酶拆分液中的L-蛋氨酸经重结晶后光学纯度为98.3%。固定化细胞酶比游离细胞酶更具有工业化应用的潜质。  相似文献   

16.
Extracellular exoinulinase from Kluyveromyces marxianus YS-1, which hydrolyzes inulin into fructose, was immobilized on Duolite A568 after partial purification by ethanol precipitation and gel exclusion chromatography on Sephadex G-100. Optimum temperature of immobilized enzyme was 55 °C, which was 5 °C higher than the free enzyme and optimal pH was 5.5. Immobilized biocatalyst retained more than 90% of its original activity after incubation at 60 °C for 3 h, whereas in free form its activity was reduced to 10% under same conditions, showing a significant improvement in the thermal stability of the biocatalyst after immobilization. Apparent K m values for inulin, raffinose and sucrose were found to be 3.75, 28.5 and 30.7 mM, respectively. Activation energy (E a) of the immobilized biocatalyst was found to be 46.8 kJ/mol. Metal ions like Co2+ and Mn2+ enhanced the activity, whereas Hg2+ and Ag2+ were found to be potent inhibitors even at lower concentrations of 1 mM. Immobilized biocatalyst was effectively used in batch preparation of high fructose syrup from Asparagus racemosus raw inulin and pure inulin, which yielded 39.2 and 40.2 g/L of fructose in 4 h; it was 85.5 and 92.6% of total reducing sugars produced, respectively.  相似文献   

17.
To develop a feasible enzymatic process for d-tagatose production, a thermostable l-arabinose isomerase, Gali152, was immobilized in alginate, and the galactose isomerization reaction conditions were optimized. The pH and temperature for the maximal galactose isomerization reaction were pH 8.0 and 65 degrees C in the immobilized enzyme system and pH 7.5 and 60 degrees C in the free enzyme system. The presence of manganese ion enhanced galactose isomerization to tagatose in both the free and immobilized enzyme systems. The immobilized enzyme was more stable than the free enzyme at the same pH and temperature. Under stable conditions of pH 8.0 and 60 degrees C, the immobilized enzyme produced 58 g/L of tagatose from 100 g/L galactose in 90 h by batch reaction, whereas the free enzyme produced 37 g/L tagatose due to its lower stability. A packed-bed bioreactor with immobilized Gali152 in alginate beads produced 50 g/L tagatose from 100 g/L galactose in 168 h, with a productivity of 13.3 (g of tagatose)/(L-reactor.h) in continuous mode. The bioreactor produced 230 g/L tagatose from 500 g/L galactose in continuous recycling mode, with a productivity of 9.6 g/(L.h) and a conversion yield of 46%.  相似文献   

18.
Catalase was immobilized on the chitosan film that is a natural polymer. Studies were done on free catalase and immobilized catalase on chitosan film concerning the determination of optimum temperature, optimum pH, thermal stability, storage stability, operational stability, and kinetic parameters. It was determined that optimum temperature for free catalase and immobilized catalase on chitosan film is 25 degrees C, and optimum pH is 7.0. It was found as K(m) = 25.16 mM, V(max) = 24042 μmole/min mg protein for free catalase, K(m) = 27.67 mM, V(max) = 1022 μmole/min mg protein for immobilized catalase on chitosan. It was observed that there was a big difference between V(max) value of the free catalase and V(max) value of immobilized catalase on chitosan film whereas there were minor changes in the value of K(m) for free catalase and immobilized catalase. It was found that storage stability at 5 degrees C for immobilized catalase stored wet is greater than free catalase and immobilized catalase stored dry, and immobilized catalase showed a operational stability.  相似文献   

19.
Cells of S. cerevisiae strain "14-12" of different ages were immobilized in sodium alginate and used for conversion of glucose to ethanol. Immobilized cells of 48 hr old were the most potential. Employment of high counts of alginate-entrapped cells shortened the period required for production of the maximal alcohol yield. However, the percentage surviving cells decreased with increasing initial cell counts. Maximal accumulation of ethanol (4.18 g/100 ml) was obtained after 4 days of static fermentation with 1.8 X 10(8) immobilized yeast cells. The residual viable cell count was found to represent 3-fold the surviving percentage in a control experiment using an inoculum of the free yeast cells. Immobilized yeast cells could convert about 85% of the available sugars to ethanol over 28 days of the repeated-batch fermentation. The immobilized cells retained 50% of their viability for 16 days. After 48 days of repeated fermentation only 6% of the yeast cells were viable, and on the 52nd day no viable cells could be detected.  相似文献   

20.
Recycle batch fermentations using immobilized cells of Propionibacterium acidipropionici were studied for propionate production from whey permeate, de-lactose whey permeate, and acid whey. Cells were immobilized in a spirally wound fibrous sheet packed in a 0.5-L column reactor, which was connected to a 5-L stirred tank batch fermentor with recirculation. The immobilized cells bioreactor served as a breeder for these recycle batch fermentations. High fermentation rates and conversions were obtained with these whey media without nutrient supplementation. It took approximately 55 h to ferment whey permeate containing approximately 45 g/L lactose to approximately 20 g/L propionic acid. Higher propionate concentrations can be produced with various concentrated whey media containing more lactose. The highest propionic acid concentration obtained with the recycle batch reactor was 65 g/L, which is much higher than the normal maximum concentration of 35 to 45 g/L reported in the literature. The volumetric productivity ranged from 0.22 g/L . h to 0.47 g/L . h, depending on the propionate concentration and whey medium used. The corresponding specific cell productivity was 0.033 to 0.07 g/L . g cell. The productivity increased to 0.68 g/L . h when whey permeate was supplemented with 1% (w/v) yeast extract. Compared with conventional batch fermentation, the recycle batch fermentation with the immobilized cell bioreactor allows faster fermentation, produces a higher concentration of product, and can be run continually without significant downtime. The process also produced similar fermentation results with nonsterile whey media. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号