首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium‐sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location Africa. Methods We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat‐based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results Robust estimates of phylogenetic relationships and clock‐based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east–west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ‘ancient’ taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene.  相似文献   

2.
Soldanella contains 16 species of herbaceous perennials that are endemic to the central and south European high mountains. The genus is ecogeographically subdivided into forest/montane and alpine species. Evolutionary relationships and large-scale biogeographic patterns were inferred from parsimony analyses of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA, and genetic distance analyses based on amplified fragment length polymorphism (AFLP) markers. The ITS region proved useful for examining subgeneric relationships and testing hypotheses on genus-wide divergence times, whereas the AFLP markers were suitable for studying relationships among closely related taxa and biogeographic patterns of divergence. Neither ITS nor AFLP data supported sectional delimitations, particularly those related to the grouping of S. alpina (sect. Soldanella) with S. pusilla (sect. Tubiflores), which may be the result of hybridization. Additional results and conclusions drawn are (1) Soldanella is derived from an ancestor of Asian origin with a montane ecology; (2) estimates of divergence times suggest a late Quaternary origin of the genus; (3) alpine species of sect. Tubiflores diverged from within a paraphyletic sect. Soldanella of mainly montane species; (4) alpine and montane species of Soldanella experienced different cycles of range expansion and contraction during late Quaternary climatic changes, resulting in differential patterns of geographic distribution; and (5) AFLP divergence among montane species from eastern Europe was lower than between alpine species; we hypothesize that the latter differentiated in allopatric regions of expansion during glacials, while the former experienced secondary contact at lower elevations in more southern refugia.  相似文献   

3.
Burgess, N.D. & Mlingwa, C.O.F. 2000. Evidence for altitudinal migration of forest birds between montane Eastern Arc and lowland forests in East Africa. Ostrich 71 (1 & 2): 184–190.

In this paper we assess the evidence for altitudinal movements of forest birds from the montane forests of the Eastern Arc mountains of East Africa to nearby lowland forest patches. For 34 montane species, including all the Eastern Arc endemics except Banded Green Sunbird Anthreptes rubritorques there is no evidence that they undertake seasonal movements to lower altitudes. An additional 26 montane species, of somewhat wider distribution, have been recorded at low (<500 m) altitudes during the cold/dry season (June to September). Most records of these montane birds at lower altitudes are from sites adjoining montane forest areas, although a few records are from lowland coastal forests at 100–240 km distance from montane areas. Only five of the 26 species (White-chested Alethe Alethe fulleborni, White-starred Forest Robin Pogonocichla stellata, Orange Ground Thrush Zoothera gurneyi, Evergreen Forest Warbler Bradypterus mariae and Barred Long-tailed Cuckoo Cercococcyx montanus) are regularly and commonly reported in the lowlands. They are also found in the lowlands in small numbers during the warm/wet season (October to February), when they may breed. The abundance of at least four, and probably more, of the forest birds with a more widespread distribution in the lowland and montane forests of East Africa declines greatly at high altitudes from the onset of the cold/wet season (February) and only increases again at the start of the warm/wet season (September). It is not known how far these species move as they cannot be easily separated from resident populations in lowland forests, and there are no ringing recoveries in different forests. Altitudinal migration of a proportion of the Eastern Arc avifauna is the most likely explanation for available data, although source-sink metapopulation theories may be helpful to explain the distributions of some species. As the movement of forest birds from the Eastern Arc to the lowland forests does not involve the rare endemics, they are of lower conservation concern, but the presence of montane and lowland forest may be important for the long-term survival of some more widely distributed forest species.  相似文献   

4.
Historical climatic refugia predict genetic diversity in lowland endemics of the Brazilian Atlantic rainforest. Yet, available data reveal distinct biological responses to the Last Glacial Maximum (LGM) conditions across species of different altitudinal ranges. We show that species occupying Brazil’s montane forests were significantly less affected by LGM conditions relative to lowland specialists, but that pre-Pleistocene tectonics greatly influenced their geographic variation. Our conclusions are based on palaeoclimatic distribution models, molecular sequences of the cytochrome b, 16S, and RAG-1 genes, and karyotype data for the endemic frog Proceratophrys boiei. DNA and chromosomal data identify in P. boiei at least two broadly divergent phylogroups, which have not been distinguished morphologically. Cytogenetic results also indicate an area of hybridization in southern São Paulo. The location of the phylogeographic break broadly matches the location of a NW–SE fault, which underwent reactivation in the Neogene and led to remarkable landscape changes in southeastern Brazil. Our results point to different mechanisms underpinning diversity patterns in lowland versus montane tropical taxa, and help us to understand the processes responsible for the large number of narrow endemics currently observed in montane areas of the southern Atlantic forest hotspot.  相似文献   

5.
Aim We investigated whether the biogeographical patterns expected if the East African fauna was affected by cycles of contraction to refugia and expansion of ranges, as has been previously hypothesized, can be found in the land snail fauna of rain forests in Uganda. Location The Albertine Rift region and the Lake Victoria forest belt in Uganda. Methods Snails and slugs were sampled in 60 plots in 13 rain forests, and small species were extracted from 5‐L leaf litter samples. Relative species richness was calculated by rarefaction. The influence of putative determinants of species richness was examined by bivariate correlation and multiple regression. Clustering and nestedness were tested by Monte Carlo simulations with a null model that considers the range size distribution, the species richness distribution of the forests, and the spatial autocorrelation of the occurrences of each species. Biotic elements were determined by model‐based Gaussian clustering. Results A total of 169 land snail species were recorded from 13 Ugandan rain forests. Relative species richness increases with rainfall and altitude, and decreases with evaporation and distance from the putative East Congolian refugia. Mean annual rainfall and distance from the putative East Congolian refugia were included in the best multiple regression model. The distribution areas of the Ugandan land snails are significantly clustered. Two montane, two lowland and a northern biotic element were found. The mean range extension increases with increasing distance from the putative East Congolian refugia. Moreover, the ranges of the Ugandan land snails are significantly nested. The centre of the sets of nested subsets is in the Virunga Mountains, close to the putative East Congolian refugia. Main conclusions The decrease of diversity with increasing distance from the putative East Congolian refugia, the clustering and nestedness of ranges, and the range size increase with increasing distance from the refugia indicate that the East African land snail fauna was affected by cycles of contraction to refugia and expansion of ranges. The significant clustering and nestedness cannot be explained by current environmental conditions. Given the environmental history, it can be supposed that the lowland elements expanded post‐glacially, whereas the ranges of the montane species are probably currently contracting.  相似文献   

6.
It is generally accepted that accentuated global climatic cycles since the Plio-Pleistocene (2.8 Ma ago) have caused the intermittent fragmentation of forest regions into isolated refugia thereby providing a mechanism for speciation of tropical forest biota contained within them. However, it has been assumed that this mechanism had its greatest effect in the species rich lowland regions. Contrary evidence from molecular studies of African and South American forest birds suggests that areas of recent intensive speciation, where mostly new lineages are clustered, occur in discrete tropical montane regions, while lowland regions contain mostly old species. Two predictions arise from this finding. First, a species phylogeny of an avian group, represented in both lowland and montane habitats, should be ordered such that montane forms are represented by the most derived characters. Second, montane speciation events should predominate within the past 2.8 Ma. In order to test this model I have investigated the evolutionary history of the recently radiated African greenbuls (genus Andropadus), using a molecular approach. This analysis finds that montane species are a derived monophyletic group when compared to lowland species of the same genus and recent speciation events (within the Plio-Pleistocene) have exclusively occurred in montane regions. These data support the view that montane regions have acted as centres of speciation during recent climatic instability.  相似文献   

7.
African ecosystems are at great risk. Despite their ecological and economic importance, long‐standing ideas about African forest ecology and biogeography, such as the timing of changes in forest extent and the importance of disturbance, have been unable to be tested due to a lack of sufficiently long records. Here, we present the longest continuous terrestrial record of late Quaternary vegetation from southern Africa collected to date from a drill core from Lake Malawi covering the last ~600,000 years. Pollen analysis permits us to investigate changes in vegetation structure and composition over multiple climatic transitions. We observe nine phases of forest expansion and collapse related to regional hydroclimate change. The development of desert, steppe and grassland vegetation during arid periods is likely dynamically linked to thresholds in regional hydrology associated with lake level and moisture recycling. Species composition of these dryland ecosystems varied greatly and is unlike the vegetation found at Malawi today, with assemblages suggesting strong Somali‐Masai affinities. Furthermore, nearly all semiarid assemblages contain low forest taxa abundances, suggesting that moist lowland gallery forests formed refugia along waterways during arid times. When the region was wet, forests were species‐rich and very high afromontane tree abundances suggest frequent widespread lowland colonization by modern high elevation trees. Furthermore, species composition varied little amongst forest phases until ~80 ka when disturbance tolerant tree taxa characteristic of the modern vegetation increased in abundance. The waxing and waning of forests has important implications for understanding the processes that control modern tropical vegetation biogeography as well as the environments of early humans across Africa. Finally, this work highlights the resilience of montane forests during previous warm intervals, which is relevant for future climate change; however, we point to a fundamental shift in disturbance regimes which are crucial for the structure and composition of modern East African landscapes.  相似文献   

8.
Abstract. A long pollen record from lowland Panama describes the vegetation during glacial times and probably includes a history of the last 150 000 yr, thus representing a complete glacial cycle. The record is from sediments of an extinct caldera lake under the town of El Valle. Throughout most of the last glacial period oaks and other plants of the modern montane forest maintained significant populations about 700 m lower than present. Immediately before the 14000 B.P. start ofthe late glacial period oaks had reached to 1000 m below present limits. These data require significant temperature depressions, perhaps in the order of 4 - 6 °C at some seasons ofthe year. Lowland forest taxa persisted in the neighbourhood of El Valle throughout the glacial period, however, suggesting reassortment of plant populations into communities without modern analog. Although our reconstruction of levels ofthe El Valle lake in the period 30 000 to 12 000 B.P. suggests less precipitation than in modern times, the lowland climate appears to have been moist enough for taxa of tropical forests to persist. The montane floras of the western and eastern Panama highlands did not merge at any time in the glacial cycle and an hypothesis of dispersal between enlarged areas of montane forest is put forward to explain modern disjunctions in Quer cus distributions. The wet highlands of Panama were never refugia for tropical rain forest taxa at any time during the Quaternary, rather rain forest species existed in unfamiliar communities in the Panamanian lowlands.  相似文献   

9.
High rates of species extinction have been predicted for the next century as a consequence of climate change. Although species range shifts have been widely reported, evidence of changes in species frequency linked to recent climate change is scarce. Moreover, studies have mainly focused on mountainous ecosystems and species. There is thus a clear lack of understanding of the recent changes in species frequencies linked to climate change across their whole range. Using a large forest vegetation‐plot database, we investigated changes in cold and warm‐demanding forest plant species frequencies between the periods 1914–1987 and 1997–2013 in French lowlands and highlands. Changes in frequencies were assessed for 185 lowland (warm‐demanding), 135 sub‐montane (intermediate) and 104 montane (cold‐demanding) forest plant species. Observed changes were compared to predicted changes derived from species distribution model predictions. The frequency of montane and sub‐montane species strongly declined, whereas the frequency of lowland species remained steady in lowland areas. In highlands, the frequency of lowland, sub‐montane and montane species increased, remained steady and decreased, respectively. Predicted and observed trends of changes in the frequency of forest plant species were in agreement. These results clearly show that cold‐demanding species are currently declining in lowlands that correspond to their warm range margins, whereas warm‐demanding species are expanding in highlands that correspond to their cold range margins. These trends can be seen as early signs of future regional extinction and reshuffling of the spatial presence of species due to climate warming.  相似文献   

10.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

11.

Background  

The Eastern Arc Mountains of Africa have become one of the focal systems with which to explore the patterns and mechanisms of diversification among montane species and populations. One unresolved question is the extent to which populations inhabiting montane forest interact with those of adjacent lowland forest abutting the coast of eastern Africa. The Tiny Greenbul (Phyllastephus debilis) represents the only described bird species within the Eastern Arc/coastal forest mosaic, which is polytypic across an altitudinal gradient: the subspecies albigula (green head) is distributed in the montane Usambara and Nguru Mountains whereas the subspecies rabai (grey head) is found in Tanzanian lowland and foothill forest. Using a combination of morphological and genetic data, we aim to establish if the pattern of morphological differentiation in the Tiny Greenbul (Phyllastrephus debilis) is the result of disruptive selection along an altitudinal gradient or a consequence of secondary contact following population expansion of two differentiated lineages.  相似文献   

12.
Aim To show that the frequently reported positive trend in the abundance–range‐size relationship does not hold true within a montane bird community of Afrotropical highlands; to test possible explanations of the extraordinary shape of this relationship; and to discuss the influence of island effects on patterns of bird abundance in the Cameroon Mountains. Location Bamenda Highlands, Cameroon, Western Africa. Methods We censused birds during the breeding season in November and December 2003 using a point‐count method and mapped habitat structure at these census points. Local habitat requirements of each species detected by point counts were quantified using canonical correspondence analysis, and the size of geographical ranges of species was measured from their distribution maps for sub‐Saharan Africa. We tested differences in abundance, niche breadth and niche position between three species groups: endemic bird species of the Cameroon Mountains, non‐endemic Afromontane species, and widespread species. Results We detected neither a positive nor negative abundance–range‐size relationship in the bird community studied. This pattern was caused by the similar abundance of widespread, endemic and non‐endemic montane bird species. Moreover, endemic and non‐endemic montane species had broader local niches than widespread species. The widespread species also used more atypical habitats, as indicated by the slightly larger values of their niche positions. Main conclusions The relationship detected between abundance and range size does not correspond with that inferred from contemporary macroecological theory. We suggest that island effects are responsible for the observed pattern. Relatively high abundances of montane species are probably caused by their adaptation to local environmental conditions, which was enabled by climatic stability and the isolation of montane forest in the Cameroon Mountains. Such a unique environment provides a less suitable habitat for widespread species. Montane species, which are abundant at present, may also have had large ranges in glacial periods, but their post‐glacial distribution may have become restricted after the retreat of the montane forest. On the basis of comparison of our results with studies describing the abundance structure of bird communities in other montane areas in the Afrotropics, we suggest that the detected patterns may be universal throughout Afromontane forests.  相似文献   

13.
Quaternary climate change has been strongly linked to distributional shifts and recent species diversification. Montane species, in particular, have experienced enhanced isolation and rapid genetic divergence during glacial fluctuations, and these processes have resulted in a disproportionate number of neo‐endemic species forming in high‐elevation habitats. In temperate montane environments, a general model of alpine population history is well supported, where cold‐specialized species track favourable climate conditions downslope during glacial episodes and upslope during warmer interglacial periods, which leads to a climate‐driven population or species diversification pump. However, it remains unclear how geography mediates distributional changes and whether certain episodes of glacial history have differentially impacted rates of diversification. We address these questions by examining phylogenomic data in a North American clade of flightless, cold‐specialized insects, the ice crawlers (Insecta: Grylloblattodea: Grylloblattidae: Grylloblatta). These low‐vagility organisms have the potential to reveal highly localized refugia and patterns of spatial recolonization, as well as a longer history of in situ diversification. Using continuous phylogeographic analysis of species groups, we show that all species tend to retreat to nearby low‐elevation habitats across western North America during episodes of glaciation, but species at high latitude exhibit larger distributional shifts. Lineage diversification was examined over the course of the Neogene and Quaternary periods, with statistical analysis supporting a direct association between climate variation and diversification rate. Major increases in lineage diversification appear to be correlated with warm and dry periods, rather than with extreme glacial events. Finally, we identify substantial cryptic diversity among ice crawlers, leading to high endemism across their range. This diversity provides new insights into highly localized glacial refugia for cold‐specialized species across western North America.  相似文献   

14.
Abstract. A review is presented on the literature about the distribution of savannas in humid climates in Africa and Asia and their vegetation dynamics. Sections are devoted to African lowland and montane savannas (the latter divided into southern, eastern, western and northern African), Madagascar, Indian subcontinent, SE Asia and New Guinea. It is concluded that the extension of savannas under humid climatic conditions and the relation to the distribution of forests is a function of cultivation, grazing by domestic and wild animals, present and previous climate, geomorphology and soil characteristics. Once established, savannas are often maintained by fires, both natural and man-made. Montane savannas are generally brought about by man's clearing, cultivation and burning. Fire is a stochastic variable; it creates an ecotone sensu stricto (an environmentally stochastic stress zone) at the forest/savanna border. On the other hand, if geomorphology and soil are the determinants, the transition between forest and savanna would have the character of an ecocline (a gradient zone) with fundamentally different conditions. In humid African lowland climates forests expand into savannas if the latter are not maintained by man. Whether forests also expand in less humid climates is disputed. In montane areas forest expansion may be delayed on degraded soils and when diaspores are lacking.  相似文献   

15.
A standardized analysis of palaeoecological data, in the form of six pollen sequences and forty- four radiocarbon ages, has permitted a region-wide reconstruction of Late Quaternary vegetation dynamics for the interlacustrine highlands of central Africa.
A landscape widely dominated by ericaceous scrub and grasslands, but also supporting sparse patches of open-canopied montane forest, possibly in those areas with a topography most favourable to the growth of trees, is indicated for the last glacial maximum of 18,000 yr bp . Major expansions in the extent of upper altitudinal forms of montane forest occurred from around 12,500 yr bp , while lower moist montane forest—the expected climax for much of the region today—did not become prominent until 11,000 yr bp to 10,000 yr bp . From the palaeoecological evidence at least, it appears that the major east Central forest refuge, proposed by some workers on the basis of current species' distribution patterns, did not extend to the eastern flanks of the Albertine Rift.
A late glacial–early Holocene transition is only fully chronicled in two of the sites. However, it appears that the expansion of lower montane forest had a time-transgressive pattern across the region, and was not simply from low to high altitude. The composition of forests during the early Holocene appears to have been different to that in the later stages of the present interglacial, as taxa presently associated with wetter and/or more open forest types were much more common. Pollen data also indicate that higher altitude parts of the interlacustrine highlands were more attractive to the earliest (possibly Bantu-speaking) farmers and metal-workers. There is evidence of wide-spread forest clearance around the beginning of the present millennium, possibly as a result of substantial changes in socio-economic conditions, and patterns of settlement, associated with the onset of the Late Iron Age.  相似文献   

16.
Determining the biogeographical histories of rainforests is central to our understanding of the present distribution of tropical biodiversity. Ice age fragmentation of central African rainforests strongly influenced species distributions. Elevated areas characterized by higher species richness and endemism have been postulated to be Pleistocene forest refugia. However, it is often difficult to separate the effects of history and of present-day ecological conditions on diversity patterns at the interspecific level. Intraspecific genetic variation could yield new insights into history, because refugia hypotheses predict patterns not expected on the basis of contemporary environmental dynamics. Here, we test geographically explicit hypotheses of vicariance associated with the presence of putative refugia and provide clues about their location. We intensively sampled populations of Aucoumea klaineana, a forest tree sensitive to forest fragmentation, throughout its geographical range. Characterizing variation at 10 nuclear microsatellite loci, we were able to obtain phylogeographic data of unprecedented detail for this region. Using Bayesian clustering approaches, we demonstrated the presence of four differentiated genetic units. Their distribution matched that of forest refugia postulated from patterns of species richness and endemism. Our data also show differences in diversity dynamics at leading and trailing edges of the species' shifting distribution. Our results confirm predictions based on refugia hypotheses and cannot be explained on the basis of present-day ecological conditions.  相似文献   

17.
I estimated habitat-specific population densities for a population of Bornean white-bearded gibbons Hylobates albibarbis inhabiting seven distinct forest types at Gunung Palung National Park, West Kalimantan, Indonesia. Population densities in montane forests (0.44 individuals/km2) were almost ten times lower than those in the next best habitat (upland granite forest; 4.2 individuals/km2) and far lower than those in lowland forest types. Demographic data on 33 gibbon groups living across the seven forest types showed that reproduction was substantially depressed in montane forests compared to high-quality lowland habitats. A simple model suggests that montane forests are demographic sinks for gibbons at Gunung Palung. Follow-up data from observations of montane groups 5 yr after the initial observation period support this result. As high-quality lowland forests (source habitat for gibbons) are being disproportionately lost in and around Gunung Palung National Park due to illegal logging and conversion to oil palm plantations, an increasing percentage of the remaining forest in the park comprises sink habitat for gibbons. This result has disquieting implications for the long-term viability of gibbon populations at Gunung Palung. In addition, as montane forests are generally low-quality habitat for most rainforest vertebrates, and since lowland forests are being lost at alarming rates across the tropics, source-sink population dynamics similar to those I describe here may characterize populations of other tropical vertebrate species.  相似文献   

18.
Mediterranean mountain ranges harbour highly endemic biota in islandlike habitats. Their topographic diversity offered the opportunity for mountain species to persist in refugial areas during episodes of major climatic change. We investigate the role of Quaternary climatic oscillations in shaping the demographic history and distribution ranges in the spider Harpactocrates ravastellus, endemic to the Pyrenees. Gene trees and multispecies coalescent analyses on mitochondrial and nuclear DNA sequences unveiled two distinct lineages with a hybrid zone around the northwestern area of the Catalan Pyrenees. The lineages were further supported by morphological differences. Climatic niche‐based species distribution models (SDMs) identified two lowland refugia at the western and eastern extremes of the mountain range, which would suggest secondary contact following postglacial expansion of populations from both refugia. Neutrality test and approximate Bayesian computation (ABC) analyses indicated that several local populations underwent severe bottlenecks followed by population expansions, which in combination with the deep population differentiation provided evidence for population survival during glacial periods in microrefugia across the mountain range, in addition to the main Atlantic and Mediterranean (western and eastern) refugia. This study sheds light on the complexities of Quaternary climatic oscillations in building up genetic diversity and local endemicity in the southern Europe mountain ranges.  相似文献   

19.
HILARY TYE 《Ibis》1992,134(2):154-163
Evidence of breeding during the dry season is given for 31 species of lowland birds in montane and semi-montane areas in western Cameroon. At least 17 of these species are shown to breed in the wet season at lower altitudes in West Africa. This reversal of breeding season may be due to the unusually heavy rainfall and high humidities which cause temperatures to decrease more rapidly with altitude than on mountains with drier climates. Low temperatures and heavy rainfall during the wet season prevent almost all montane species from breeding then, and affect similarly the lowland birds whose ranges overlap with those of montane birds. Breeding seasons of some lowland species in Cameroon have previously been considered prolonged, but separation of breeding records by altitude reveals clear seasonality.  相似文献   

20.
Abstract.
  • 1 Samples of Microlepidoptera (including Pyraloidea) collected at light in mangrove forest, lowland mixed dipterocarp forest, and montane oak-laurel forest in Borneo are compared.
  • 2 Diversity (Williams' alpha) is very high in lowland forest, with a value of 414; it is lower, 226, in montane forest and very much lower, 47, at the edge of mangrove forest.
  • 3 There is some evidence that apparent diversity increases with accumulation of samples.
  • 4 Samples from the three forest types have very few species in common and come from separate assemblages.
  • 5 Pyraloidea in samples taken 1km apart in lowland forest represent an assemblage common to the two sites but Microlepidoptera samples appear to represent slightly different assemblages.
  • 6 There are no abundant species in lowland or montane forest: species with more than ten individuals comprised less than 4% of the samples. Four common species in mangrove forest accounted for 34% of the sample.
  • 7 The proportion of Tineoidea, Gelechioidea and Pyraloidea is lower in montane forest than in lowland forest, while that of Yponomeutoidea and Tortricoidea is higher.
  • 8 Just eight families of Microlepidoptera account for 90% of the species in samples from all three forest types.
  • 9 The number of species of moths in Borneo is suggested to be in excess of 8500.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号