首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
T H Murcott  H Gutfreund    H Muirhead 《The EMBO journal》1992,11(11):3811-3814
The cooperative binding of the allosteric activator fructose-1,6-bisphosphate [Fru(1,6)P2] to yeast pyruvate kinase was investigated by equilibrium dialysis and fluorescence quench titration. The results show that yeast pyruvate kinase binds four molecules of Fru(1,6)P2 per tetramer and the observed fluorescence quench follows the binding of the ligand and not the cooperative T to R state transition. Additionally it is shown that the binding of Fru(1,6)P2 to yeast pyruvate kinase is compatible with the model of cooperativity that has been proposed and incorporates an intermediate state, R', with properties between those of the T and R states.  相似文献   

10.
11.
12.
13.
Amino acid effector binding to rabbit muscle pyruvate kinase   总被引:1,自引:0,他引:1  
l-Phenylalanine, an allosteric inhibitor of rabbit muscle pyruvate kinase, is shown to bind to the tetrameric enzyme in a ratio of 4 moles effector per mole of tetramer. This binding is slightly cooperative in the absence of divalent cation activators, but the cooperativity is strongly increased when measured in the presence of 2.5 mm Mg2+ or Mn2+. The effector affinity is somewhat decreased under these conditions. l-Alanine was known to antagonize all measured phenylalanine effects and is shown here to also bind to 4 sites on the protein. The binding is noncooperative and little affected by the presence of the divalent activating cations. Competition experiments with phenylalanine and alanine suggest competition for the same site. Substrate kinetic measurements at P-enolpyruvate and Mg2+ concentrations under 100 μm show considerable inhibition of the enzyme at phenylalanine concentrations around 100 μm, near the serum levels of the free amino acid. The approach to the phenylalanine-inhibited velocity occurs with half-times less than 1 sec.  相似文献   

14.
15.
Glucocorticoid induction of the phosphoenolpyruvate carboxykinase (PEPCK) gene requires a glucocorticoid response unit (GRU) comprised of two non-consensus glucocorticoid receptor (GR) binding sites, GR1 and GR2, and at least three accessory factor elements (gAF1-3). DNA-binding accessory proteins are commonly required for the regulation of genes whose products play an important role in metabolism, development, and a variety of defense responses, but little is known about why they are necessary. Quantitative, real time homogenous assays of cooperative protein-DNA interactions in complex media (e.g. nuclear extracts) have not previously been reported. Here we perform quantitative, real time equilibrium and stopped-flow fluorescence anisotropy measurements of protein-DNA interactions in nuclear extracts to demonstrate that GR binds to the GR1-GR2 elements poorly as compared with a palindromic or consensus glucocorticoid response element (GRE). Inclusion of either the gAF1 or gAF2 element with GR1-GR2, however, creates a high affinity binding environment for GR. GR can undergo multiple rounds of binding and dissociation to the palindromic GRE in less than 100 ms at nanomolar concentrations. The dissociation rate of GR is differentially slowed by the gAF1 or gAF2 elements that bind two functionally distinct accessory factors, COUP-TF/HNF4 and HNF3, respectively.  相似文献   

16.
17.
K P Cole  S D Blakeley  D T Dennis 《Gene》1992,122(2):255-261
The polymerase chain reaction (PCR) has been used to generate a series of overlapping genomic clones representing 43 bp of 5' untranslated sequence, 63 bp of 3' untranslated sequence and the entire coding sequence of the gene encoding potato cytosolic pyruvate kinase (PKc). This portion of the gene is approximately 4.5 kb in length and is interrupted by three introns, one of which is present in the 5' untranslated region. Southern blot analysis indicates that PKc is encoded by a small gene family, and sequence data from a number of PCR-derived genomic clones indicate that there are as many as six PKc genes. Sequence differences between the PCR-generated genomic clones and a PKc cDNA clone are discussed with respect to the fidelity of Taq polymerase. An alignment of intron placement in the potato PKc gene with intron placement in PK genes from other sources indicates that two of the potato introns correspond to intron positions in other species.  相似文献   

18.
T Nowak  M J Lee 《Biochemistry》1977,16(7):1343-1350
The formation of multiple ligand complexes with muscle pyruvate kinase was measured in terms of dissociation constants and the standard free energies of formation were calculated. The binding of Mn2+ to the enzyme (KA = 55 +/- 5 X 10(-6) M; deltaF degrees = -5.75 +/- 0.05 kcal/mol) and to the enzyme saturated with phosphoenolpyruvate (conditional free energy) KA' = 0.8 +/- 0.4 X 10(-6) M; deltaF degrees = -8.22 +/- 0.34 kcal/mol) has been measured under identical conditions giving a free energy of coupling, delta(deltaF degrees) = -2.47 +/- 0.34 kcal/mol. Such a large negative free energy of coupling is diagnostic of a strong positively cooperative effect in ligand binding. The binding of the substrate phosphoenolpyruvate to free enzyme and the enzyme-Mn2+ complex was, by necessity, measured by different methods. The free energy of phosphoenolpyruvate binding to free enzyme (KS = 1.58 +/- 0.10 X 10(-4)M; deltaF degrees = -5.13 +/- 0.04 kcal/mol) and to the enzyme-Mn2+ complex (K3 = 0.75 +/- 0.10 X 10(-6)M; deltaF degrees = -8.26 +/- 0.07 kcal/mol) also gives a large negative free energy of coupling, delta(deltaF degrees) = -3.16 +/- 0.08 kcal/mol. Such a large negative value confirms reciprocal binding effects between the divalent cation and the substrate phosphoenolpyruvate. The binding of Mn2+ to the enzyme-ADP complex was also investigated and a free energy of coupling, delta(deltaF degrees) = -0.08 +/- 0.08 kcal/mol, was measured, indicative of little or no cooperativity in binding. The free energy of coupling with Mn2+ and pyruvate was measured as -1.52 +/- 0.14 kcal/mol, showing a significant amount of cooperativity in ligand binding but a substantially smaller effect than that observed for phosphoenolpyruvate binding. The magnitude of the coupling free energy may be related to the role of the divalent cation in the formation of the enzyme-substrate complexes. In the absence of the activating monovalent cation, the coupling free energies for phosphoenolpyruvate and pyruvate binding decrease by 40-60% and 25%, respectively, substantiating a role for the monovalent cation in the formation of enzyme-substrate complexes with phosphoenolpyruvate and with pyruvate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号