首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, cause cystic fibrosis. To investigate interactions of CFTR in living cells, we measured the diffusion of quantum dot-labeled CFTR molecules by single particle tracking. In multiple cell lines, including airway epithelia, CFTR diffused little in the plasma membrane, generally not moving beyond 100-200 nm. However, CFTR became mobile over micrometer distances after 1) truncations of the carboxy terminus, which contains a C-terminal PDZ (PSD95/Dlg/ZO-1) binding motif; 2) blocking PDZ binding by C-terminal green fluorescent protein fusion; 3) disrupting CFTR association with actin by expression of a mutant EBP50/NHERF1 lacking its ezrin binding domain; or 4) skeletal disruption by latrunculin. CFTR also became mobile when the cytoskeletal adaptor protein binding capacity was saturated by overexpressing CFTR or its C terminus. Our data demonstrate remarkable and previously unrecognized immobilization of CFTR in the plasma membrane and provide direct evidence that C-terminal coupling to the actin skeleton via EBP50/ezrin is responsible for its immobility.  相似文献   

2.
The C-terminal PDZ-binding motifs are required for polarized apical/basolateral localization of many membrane proteins. Ezrin–radixin–moesin (ERM) proteins regulate the organization and function of specific cortical structures in polarized epithelial cells by connecting filamentous (F)-actin to plasma membrane proteins through EBP50. Previous work showed that the membrane phosphoprotein apactin (an 80-kDa type I membrane protein derived from pro-Muclin) is associated with the acinar cell apical actin cytoskeleton and that this association is modulated by changes in the phosphorylation state of the apactin cytosolic tail. The carboxyl-terminal amino acids of apactin (–STKL–COOH) are predicted to form a type I PDZ-binding domain, similar to that of CFTR (–DTRL–COOH). Pairwise sequence comparison between NHERF/EBP50 and PDZK1/CAP70 PDZ domains reveals significant identity among the 83 amino-acid residues (12–92) of EBP50 and CAP70 (241–323), which are involved in the interaction with the carboxyl-terminal peptides (STKL–COOH and phosphomimetics) of apactin. Hence, the specificity and affinity of interactions are identical between them, which is corroborated with the two hybrid results. Substitution of all the four-carboxyl-terminal amino acids in the wild type to Ala reduces the interaction. Only the carbonyl oxygen and amide nitrogen of Ala are found to be involved in hydrogen bonding. Further, truncation of the wild carboxyl-terminal peptide to RGQPP–COOH, showed very low affinity of interaction with PDZ1 domain. Only the atom Oε1 of Gln-2 hydrogen bonds with Nε2 of His72 of PDZ domain. Ser-3 amino acid in wild type apactin protein (STKL–COOH) is not involved in hydrogen bonding with PDZ1 domain. However, substitution of Ser-3 to Asp-3 in PDTKL–COOH peptide increases the affinity of interaction of PDTKL–COOH with PDZ1 domain. Thus, carboxyl-terminal Asp(D) -3, Thr(T) -2, Lys(K) -1 and Leu(L) 0 are involved in numerous interactions with PDZ1 domains of NHERF/EBP50 and PDZK1/CAP70.  相似文献   

3.
Na(+)/H(+) exchanger regulatory factor (NHERF) is an adapter protein that is responsible for organizing a number of cell receptors and channels. NHERF contains two amino-terminal PDZ (postsynaptic density 95/disk-large/zonula occluden-1) domains that bind to the cytoplasmic domains of a number of membrane channels or receptors. The carboxyl terminus of NHERF interacts with the FERM domain (a domain shared by protein 4.1, ezrin, radixin, and moesin) of a family of actin-binding proteins, ezrin-radixin-moesin. NHERF was shown previously to be capable of enhancing the channel activities of cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that binding of the FERM domain of ezrin to NHERF regulates the cooperative binding of NHERF to bring two cytoplasmic tails of CFTR into spatial proximity to each other. We find that ezrin binding activates the second PDZ domain of NHERF to interact with the cytoplasmic tails of CFTR (C-CFTR), so as to form a specific 2:1:1 (C-CFTR)(2).NHERF.ezrin ternary complex. Without ezrin binding, the cytoplasmic tail of CFTR only interacts strongly with the first amino-terminal PDZ domain to form a 1:1 C-CFTR.NHERF complex. Immunoprecipitation and immunoblotting confirm the specific interactions of NHERF with the full-length CFTR and with ezrin in vivo. Because of the concentrated distribution of ezrin and NHERF in the apical membrane regions of epithelial cells and the diverse binding partners for the NHERF PDZ domains, the regulation of NHERF by ezrin may be employed as a general mechanism to assemble channels and receptors in the membrane cytoskeleton.  相似文献   

4.
Although it is generally recognized that cystic fibrosis transmembrane conductance regulator (CFTR) contains a PSD-95/Disc-large/ZO-1 (PDZ)-binding motif at its COOH terminus, the identity of the PDZ domain protein(s) that interact with CFTR is uncertain, and the functional impact of this interaction is not fully understood. By using human airway epithelial cells, we show that CFTR associates with Na(+)/H(+) exchanger (NHE) type 3 kinase A regulatory protein (E3KARP), an EBP50/NHE regulatory factor (NHERF)-related PDZ domain protein. The PDZ binding motif located at the COOH terminus of CFTR interacts preferentially with the second PDZ domain of E3KARP, with nanomolar affinity. In contrast to EBP50/NHERF, E3KARP is predominantly localized (>95%) in the membrane fractions of Calu-3 and T84 cells, where CFTR is located. Moreover, confocal immunofluorescence microscopy of polarized Calu-3 monolayers shows that E3KARP and CFTR are co-localized at the apical membrane domain. We also found that ezrin associates with E3KARP in vivo. Co-expression of CFTR with E3KARP and ezrin in Xenopus oocytes potentiated cAMP-stimulated CFTR Cl(-) currents. These results support the concept that E3KARP functions as a scaffold protein that links CFTR to ezrin. Since ezrin has been shown previously to function as a protein kinase A anchoring protein, we suggest that one function served by the interaction of E3KARP with both ezrin and CFTR is to localize protein kinase A in the vicinity of the R-domain of CFTR. Since ezrin is also an actin-binding protein, the formation of a CFTR.E3KARP.ezrin complex may be important also in stabilizing CFTR at the apical membrane domain of airway cells.  相似文献   

5.
This review summarizes the emerging roles of NHERF1/EBP50 adaptor protein in tumorigenesis. NHERF1/EBP50 (Na(+)/H(+) exchanger regulating factor 1; ezrin-radixin-moesin (ERM) binding phosphoprotein of 50 kDa) is a PDZ domain-containing protein with physiological localization at the plasma membrane. We discuss in this review the functions of NHERF1/EBP50 as a linker between membrane proteins and the cytoskeleton network, as well as its involvement in different types of cancer, such as breast and liver cancers. Recent evidence obtained from our laboratory and from other groups shows that NHERF1/EBP50 is an important player in cancer progression. It appears that, depending on its subcellular distribution, NHERF1/EBP50 may behave either as a tumor suppressor, when it is localized at the plasma membrane, or as an oncogenic protein, when it is shifted to the cytoplasm. We provide here an overview of the mechanisms by which this adaptor protein controls cell transformation, and propose a model suggesting a dual role of NHERF1/EBP50 in cancer.  相似文献   

6.
Disorganized ion transport caused by hypo- or hyperfunctioning of the cystic fibrosis transmembrane conductance regulator (CFTR) can be detrimental and may result in life-threatening diseases such as cystic fibrosis or secretory diarrhea. Thus, CFTR is controlled by elaborate positive and negative regulations for an efficient homeostasis. It has been shown that expression and activity of CFTR can be regulated either positively or negatively by PDZ (PSD-95/discs large/ZO-1) domain-based adaptors. Although a positive regulation by PDZ domain-based adaptors such as EBP50/NHERF1 is established, the mechanisms for negative regulation of the CFTR by Shank2, as well as the effects of multiple adaptor interactions, are not known. Here we demonstrate a physical and physiological competition between EBP50-CFTR and Shank2-CFTR associations and the dynamic regulation of CFTR activity by these positive and negative interactions using the surface plasmon resonance assays and consecutive patch clamp experiments. Furthermore whereas EBP50 recruits a cAMP-dependent protein kinase (PKA) complex to CFTR, Shank2 was found to be physically and functionally associated with the cyclic nucleotide phosphodiesterase PDE4D that precludes cAMP/PKA signals in epithelial cells and mouse brains. These findings strongly suggest that balanced interactions between the membrane transporter and multiple PDZ-based adaptors play a critical role in the homeostatic regulation of epithelial transport and possibly the membrane transport in other tissues.  相似文献   

7.
Based on electrophysiological measurements, it has been argued that the active form of cystic fibrosis trans-membrane conductance regulator (CFTR) Cl(-) channel is a multimer. It has also been demonstrated that this multimerization is likely due to PDZ domain-interacting partners. Here we demonstrate that although CFTR in vitro can self-associate into multimers, which depends on PDZ-based interactions, this may not be the case in cell membrane. Using chemical cross-linking, we demonstrated that CFTR exists as a higher order complex in cell membrane. However, this higher order complex is predominantly CFTR dimers, and the PDZ-interacting partners (Na(+)/H(+) exchanger regulatory factor-1 (NHERF1) and NHERF2) constitute approximately 2% of this complex. Interestingly solubilizing membrane expressing CFTR in detergents such as Triton X-100, Nonidet P-40, deoxycholate, and SDS tended to destabilize the CFTR dimers and dissociate them into monomeric form. The dimerization of CFTR was tightly regulated by cAMP-dependent protein kinase-dependent phosphorylation and did not depend on the active form of the channel. In addition, the dimerization was not influenced by either the PDZ motif or its interacting partners (NHERF1 and NHERF2). We also demonstrated that other signaling-related proteins such as Gbeta and syntaxin 1A can be in this higher order complex of CFTR as well. Our studies provide a deeper understanding of how the CFTR assembly takes place in native cell membrane.  相似文献   

8.
Polarization of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel to the apical plasma membrane in epithelial cells is critical for vectorial chloride transport. Previously, we reported that the C terminus of CFTR constitutes a PDZ-interacting domain that is required for CFTR polarization to the apical plasma membrane and interaction with the PDZ domain-containing protein EBP50 (NHERF). PDZ-interacting domains are typically composed of the C-terminal three to five amino acids, which in CFTR are QDTRL. Our goal was to identify the key amino acid(s) in the PDZ-interacting domain of CFTR with regard to its apical polarization, interaction with EBP50, and ability to mediate transepithelial chloride secretion. Point substitution of the C-terminal leucine (Leu at position 0) with alanine abrogated apical polarization of CFTR, interaction between CFTR and EBP50, efficient expression of CFTR in the apical membrane, and chloride secretion. Point substitution of the threonine (Thr at position -2) with alanine or valine had no effect on the apical polarization of CFTR, but reduced interaction between CFTR and EBP50, efficient expression of CFTR in the apical membrane as well as chloride secretion. By contrast, individual point substitution of the other C-terminal amino acids (Gln at position -4, Asp at position -3 and Arg at position -1) with alanine had no effect on measured parameters. We conclude that the PDZ-interacting domain, in particular the leucine (position 0) and threonine (position -2) residues, are required for the efficient, polarized expression of CFTR in the apical plasma membrane, interaction of CFTR with EBP50, and for the ability of CFTR to mediate chloride secretion. Mutations that delete the C terminus of CFTR may cause cystic fibrosis because CFTR is not polarized, complexed with EBP50, or efficiently expressed in the apical membrane of epithelial cells.  相似文献   

9.
Loss of cell polarity is one of the initial alterations in the development of human epithelial cancers. Na(+)/H(+) exchanger regulatory factor (NHERF) homologous adaptors 1 and 2 are membrane-associated proteins composed of two amino (N)-terminal PDZ domains and an ezrin-radixin-moesin (ERM)-binding (EB) carboxyl (C)-terminal region. We describe here an intramolecular conformation of NHERF1/EBP50 (ERM-binding phosphoprotein 50) in which the C-terminal EB region binds to the PDZ2 domain. This novel head-to-tail conformation masked the interaction of both PDZ domains with PDZ domain-specific ligands, such as PTEN and beta-catenin. An EB region composite structure comprising an alpha-helix ending in a PDZ-binding motif imparted opposite effects to NHERF1 associations, mediating binding to ERM proteins and inhibiting binding of PDZ domain ligands. The PDZ domain inhibition was released by prior association of ezrin with the EB region, a condition that occurs in vivo and likely disrupts NHERF1 head-to-tail interaction. In contrast, NHERF2 did not present a regulatory mechanism for protein complex formation. Functionally, NHERF1 is required to organize complexes at the apical membranes of polarized epithelial cells. The regulation of NHERF1 interactions at the apical membrane thus appears to be a dynamic process that is important for maintaining epithelial-tissue integrity.  相似文献   

10.
We recently showed that the COOH terminus of the cystic fibrosis transmembrane conductance regulator associates with the submembranous scaffolding protein EBP50 (ERM-binding phosphoprotein 50 kD; also called Na(+)/H(+) exchanger regulatory factor). Since EBP50 associates with ezrin, this interaction links the cystic fibrosis transmembrane conductance regulator (CFTR) to the cortical actin cytoskeleton. EBP50 has two PDZ domains, and CFTR binds with high affinity to the first PDZ domain. Here, we report that Yes-associated protein 65 (YAP65) binds with high affinity to the second EBP50 PDZ domain. YAP65 is concentrated at the apical membrane in airway epithelia and interacts with EBP50 in cells. The COOH terminus of YAP65 is necessary and sufficient to mediate association with EBP50. The EBP50-YAP65 interaction is involved in the compartmentalization of YAP65 at the apical membrane since mutant YAP65 proteins lacking the EBP50 interaction motif are mislocalized when expressed in airway epithelial cells. In addition, we show that the nonreceptor tyrosine kinase c-Yes is contained within EBP50 protein complexes by association with YAP65. Subapical EBP50 protein complexes, containing the nonreceptor tyrosine kinase c-Yes, may regulate apical signal transduction pathways leading to changes in ion transport, cytoskeletal organization, or gene expression in epithelial cells.  相似文献   

11.
12.
Mammalian homologues of Drosophila Trp have been implicated to form channels that are activated following the depletion of Ca(2+) from internal stores. Recent studies indicate that actin redistribution is required for the activation of these channels. Here we show that murine Trp4 and Trp5, as well as phospholipase C beta1 and beta2 interact with the first PDZ domain of NHERF, regulatory factor of the Na(+)/H(+) exchanger. We demonstrated the association of Trp4 and phospholipase C-beta1 with NHERF in vivo in an HEK293 cell line expressing Trp4 and in adult mouse brain by immuno-coprecipitation. NHERF is a two PDZ domain-containing protein that associates with the actin cytoskeleton via interactions with members of ezrin/radixin/moesin family. Thus, store-operated channels involving Trp4 and Trp5 can form signaling complexes with phospholipase C isozymes via interactions with NHERF and thereby linking the lipase and the channels to the actin cytoskeleton. The interaction with the PDZ protein may constitute an important mechanism for distribution and regulation of store-operated channels.  相似文献   

13.
Apactin is an 80-kDa type I membrane glycoprotein derived from pro-Muclin, a precursor that also gives rise to the zymogen granule protein Muclin. Previous work showed that apactin is efficiently removed from the regulated secretory pathway and targeted to the actin-rich apical plasma membrane of the pancreatic acinar cell. The cytosolic tail (C-Tail) of apactin consists of 16 amino acids, has Thr casein kinase II and Ser protein kinase C phosphorylation sites, and a C-terminal PDZ-binding domain. Secretory stimulation of acinar cells causes a decrease in Thr phosphorylation and an increase in Ser phosphorylation of apactin. Fusion peptides of the C-Tail domain pulldown actin, ezrin, and EBP50/NHERF in a phosphorylation-dependent manner. HIV TAT-C-Tail fusion peptides were used as dominant negative constructs on living pancreatic cells to study effects on the actin cytoskeleton. During secretory stimulation, TAT-C-Tail-Thr/Asp phosphomimetic peptide caused an increase in actin-coated zymogen granules at the apical surface, while TAT-C-Tail-S/D phosphomimetic peptide caused a broadening of the actin cytoskeleton. These data indicate that stimulation-mediated Thr dephosphorylation allows decreased association of apactin with EBP50/NHERF and fosters actin remodeling to coat zymogen granules. Stimulation-mediated Ser phosphorylation increases apactin association with the actin cytoskeleton, maintaining tight bundling of actin microfilaments at the apical surface. Thus, apactin is involved in remodeling the apical cytoskeleton during regulated exocytosis in a manner controlled by phosphorylation of the apactin C-Tail.  相似文献   

14.
The cystic fibrosis transmembrane conductance regulator (CFTR) channel interacts with scaffolding and other proteins that are expected to restrict its lateral movement, yet previous studies have reported predominantly free diffusion. We examined the lateral mobility of CFTR channels on live baby hamster kidney cells using three complementary methods. Channels bearing an extracellular biotinylation target sequence were labeled with streptavidin conjugated with fluorescent dyes (Alexa Fluor 488 or 568) or quantum dots (qDot605). Fluorescence recovery after photobleaching and image correlation spectroscopy of the dye-labeled channels revealed a significant immobile population ( approximately 50%), which was confirmed by direct single particle tracking (SPT) of qDot605-labeled CFTR. Adding 10 histidine residues at the C-terminus of CFTR to mask the postsynaptic density 95, Discs large, ZO-1 (PDZ) binding motif abolished its association with EBP50/NHERF1, reduced the immobile fraction, and increased mobility. Other interactions that are not normally detected on this timescale became apparent when binding of PDZ domain proteins was disrupted. SPT revealed that CFTR(His-10) channels diffuse randomly, become immobilized for periods lasting up to 1 min, and in some instances are recaptured at the same location. The impact of transient confinement on the measured diffusion using the three fluorescence techniques were assessed using computer simulations of the biological experiments. Finally, the impact of endosomal CFTR on mobility measurements was assessed by fluorescence correlation spectroscopy. These results reveal unexpected features of CFTR dynamics which may influence its ion channel activity.  相似文献   

15.
Background information. CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, ΔF508 (deletion of Phe‐508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na+/H+‐exchanger regulatory factor 1) in CF airway cells induced both a redistribution of ΔF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)‐dependent activation of ΔF508CFTR‐dependent chloride secretion. In view of the potential importance of the targeted up‐regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o, with subsequent rescue of apical ΔF508CFTR chloride transport activity. Results. We found that CFBE41o cells do express ERs (oestrogen receptors) in the nuclear fraction and that β‐oestradiol treatment was able to significantly rescue ΔF508CFTR‐dependent chloride secretion in CFBE41o cell monolayers with a peak between 6 and 12 h of treatment, demonstrating that the ΔF508CFTR translocated to the apical membrane can function as a cAMP‐responsive channel, with a significant increase in chloride secretion noted at 1 nM β‐oestradiol and a maximal effect observed at 10 nM. Importantly, knock‐down of NHERF1 expression by transfection with siRNA (small interfering RNA) for NHERF1 inhibited the β‐oestradiol‐dependent increase in ΔF508CFTR protein expression levels and completely prevented the β‐oestradiol‐dependent rescue of ΔF508CFTR transport activity. Conclusions. These results demonstrate that β‐oestradiol‐dependent up‐regulation of NHERF1 significantly increases ΔF508CFTR functional expression in CFBE41o cells.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis. Its expression and functional interactions in the apical membrane are regulated by several PDZ (PSD-95, discs large, zonula occludens-1) proteins, which mediate protein-protein interactions, typically by binding C-terminal recognition motifs. In particular, the CFTR-associated ligand (CAL) limits cell-surface levels of the most common disease-associated mutant DeltaF508-CFTR. CAL also mediates degradation of wild-type CFTR, targeting it to lysosomes following endocytosis. Nevertheless, wild-type CFTR survives numerous cycles of uptake and recycling. In doing so, how does it repeatedly avoid CAL-mediated degradation? One mechanism may involve competition between CAL and other PDZ proteins including Na (+)/H (+) exchanger-3 regulatory factors 1 and 2 (NHERF1 and NHERF2), which functionally stabilize cell-surface CFTR. Thus, to understand the biochemical basis of WT-CFTR persistence, we need to know the relative affinities of these partners. However, no quantitative binding data are available for CAL or the individual NHERF2 PDZ domains, and published estimates for the NHERF1 PDZ domains conflict. Here we demonstrate that the affinity of the CAL PDZ domain for the CFTR C-terminus is much weaker than those of NHERF1 and NHERF2 domains, enabling wild-type CFTR to avoid premature entrapment in the lysosomal pathway. At the same time, CAL's affinity is evidently sufficient to capture and degrade more rapidly cycling mutants, such as DeltaF508-CFTR. The relatively weak affinity of the CAL:CFTR interaction may provide a pharmacological window for stabilizing rescued DeltaF508-CFTR in patients with cystic fibrosis.  相似文献   

17.
Phosphoprotein associated with GEMs (PAG), also known as Csk-binding protein (Cbp), is a broadly expressed palmitoylated transmembrane adapter protein found in membrane rafts, also called GEMs (glycosphingolipid-enriched membrane microdomains). PAG is known to bind and activate the essential regulator of Src-family kinases, cytoplasmic protein tyrosine kinase Csk. In the present study we used the yeast 2-hybrid system to search for additional proteins which might bind to PAG. We have identified the abundant cytoplasmic adapter protein EBP50 (ezrin/radixin/moesin (ERM)-binding phosphoprotein of 50 kDa), also known as NHERF (Na(+)/H(+) exchanger regulatory factor), as a specific PAG-binding partner. The interaction involves the C-terminal sequence (TRL) of PAG and N-terminal PDZ domain(s) of EBP50. As EBP50 is known to interact via its C-terminal domain with the ERM-family proteins, which in turn bind to actin cytoskeleton, the PAG-EBP50 interaction may be important for connecting membrane rafts to the actin cytoskeleton.  相似文献   

18.
The ROMK subtypes of inward rectifier K+ channels (Kir 1.1, KCNJ1) mediate potassium secretion and regulate NaCl reabsorption in the kidney. In the present study, the role of the PDZ binding motif in ROMK function is explored. Here we identify the Na/H exchange regulatory factors, NHERF-1 and NHERF-2, as PDZ domain interaction partners of the ROMK channel. Characterization of the basis and consequences of NHERF association with ROMK reveals a PDZ interaction-dependent trafficking process and a coupling mechanism for linking ROMK to a channel modifier protein, the cystic fibrosis transmembrane regulator (CFTR). As measured by antibody binding of external epitope-tagged forms of Kir 1.1 in intact cells, NHERF-1 or NHERF-2 coexpression increased cell surface expression of ROMK. Channel interaction with NHERF proteins and effects of NHERF on ROMK localization were dependent on the presence of the PDZ domain binding motif in ROMK. Both NHERF proteins contain two PDZ domains; recombinant protein-protein binding assays and yeast-two-hybrid studies revealed that ROMK preferentially associates with the second PDZ domain of NHERF-1 and with the first PDZ domain of NHERF-2, precisely opposite of what has been reported for CFTR. Consistent with the scaffolding capacity of the NHERF proteins, coexpression of NHERF-2 with ROMK and CFTR dramatically increases the amount of ROMK protein that coimmunopurifies and functionally interacts with CFTR. Thus NHERF facilitates assembly of a ternary complex containing ROMK and CFTR. These observations raise the possibility that PDZ-based interactions may underscore physiological regulation and membrane targeting of ROMK in the kidney.  相似文献   

19.
The Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50) contains two PDZ domains that mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The NHERF PDZ1 domain interacts specifically with the motifs DSLL, DSFL, and DTRL present at the carboxyl termini of the beta(2) adrenergic receptor (beta(2)AR), the platelet-derived growth factor receptor (PDGFR), and the cystic fibrosis transmembrane conductance regulator (CFTR), respectively, and plays a central role in the physiological regulation of these proteins. The crystal structure of the human NHERF PDZ1 has been determined at 1.5 A resolution using multiwavelength anomalous diffraction phasing. The overall structure is similar to known PDZ structures, with notable differences in the NHERF PDZ1 carboxylate-binding loop that contains the GYGF motif, and the variable loop between the beta2 and beta3 strands. In the crystalline state, the carboxyl-terminal sequence DEQL of PDZ1 occupies the peptide-binding pocket of a neighboring PDZ1 molecule related by 2-fold crystallographic symmetry. This structure reveals the molecular mechanism of carboxyl-terminal leucine recognition by class I PDZ domains, and provides insights into the specificity of NHERF interaction with the carboxyl termini of several membrane receptors and ion channels, including the beta(2)AR, PDGFR, and CFTR.  相似文献   

20.
Previous studies from this laboratory demonstrated a role for protein kinase C (PKC) in the regulation of cAMP-dependent cystic fibrosis transmembrane regulator (CFTR) Cl channel function via binding of PKC to RACK1, a receptor for activated C kinase, and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In the present study, we investigated the role of RACK1 in regulating CFTR function in a Calu-3 airway epithelial cell line. Confocal microscopy and biotinylation of apical surface proteins demonstrate apical localization of RACK1 independent of actin. Mass spectrometric analysis of NHERF1 revealed copurification of tubulin, which, in in vitro binding assays, selectively binds to NHERF1, but not RACK1, via a PDZ1 domain. In binding and pulldown assays, we show direct binding of a PDZ2 domain to NHERF1, pulldown of endogenous NHERF1 by a PDZ2 domain, and inhibition of NHERF1-tubulin binding by a PDZ1 domain. Downregulation of RACK1 using double-stranded silencing RNA reduced the amount of RACK1 by 77.5% and apical expression of biotinylated CFTR by 87.4%. Expression of CFTR, NHERF1, and actin were not altered by treatment with siRACK1 or by nontargeting control silencing RNA, which, in addition, did not affect RACK1 expression. On the basis of these results, we model a RACK1 proteome consisting of PKC-RACK1-NHERF1-NHERF1-tubulin with a role in stable expression of CFTR in the apical plasma membrane of epithelial cells. silencing RNA; downregulation; biotinylation; tubulin; NHERF1; tailless cystic fibrosis transmembrane regulator; PDZ domain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号