共查询到20条相似文献,搜索用时 15 毫秒
1.
Vanadate is used as a tool to trap magnesium nucleotides in the catalytic site of ATPases. However, it has also been reported to activate ATP-sensitive potassium (K(ATP)) channels in the absence of nucleotides. K(ATP) channels comprise Kir6.2 and sulfonylurea receptor subunits (SUR1 in pancreatic beta cells, SUR2A in cardiac and skeletal muscle, and SUR2B in smooth muscle). We explored the effect of vanadate (2 mM), in the absence and presence of magnesium nucleotides, on different types of cloned K(ATP) channels expressed in Xenopus oocytes. Currents were recorded from inside-out patches. Vanadate inhibited Kir6.2/SUR1 currents by approximately 50% but rapidly activated Kir6.2/SUR2A ( approximately 4-fold) and Kir6. 2/SUR2B ( approximately 2-fold) currents. Mutations in SUR that abolish channel activation by magnesium nucleotides did not prevent the effects of vanadate. Studies with chimeric SUR indicate that the first six transmembrane domains account for the difference in both the kinetics and the vanadate response of Kir6.2/SUR1 and Kir6. 2/SUR2A. Boiling the vanadate solution, which removes the decavanadate polymers, largely abolished both stimulatory and inhibitory actions of vanadate. Our results demonstrate that decavanadate modulates K(ATP) channel activity via the SUR subunit, that this modulation varies with the type of SUR, that it differs from that produced by magnesium nucleotides, and that it involves transmembrane domains 1-6 of SUR. 相似文献
2.
ATP mediates both activation and inhibition of K(ATP) channel activity via cAMP-dependent protein kinase in insulin-secreting cell lines 总被引:6,自引:1,他引:6 下载免费PDF全文
The single-channel recording technique was employed to investigate the mechanism conferring ATP sensitivity to a metabolite-sensitive K channel in insulin-secreting cells. ATP stimulated channel activity in the 0-10 microM range, but depressed it at higher concentrations. In inside-out patches, addition of the cAMP-dependent protein kinase inhibitor (PKI) reduced channel activity, suggesting that the stimulatory effect of ATP occurs via cAMP-dependent protein kinase-mediated phosphorylation. Raising ATP between 10 and 500 microM in the presence of exogenous PKI progressively reduced the channel activity; it is proposed that this inactivation results from a reduction in kinase activity owing to an ATP-dependent binding of PKI or a protein with similar inhibitory properties to the kinase. A model describing the effects of ATP was developed, incorporating these two separate roles for the nucleotide. Assuming that the efficacy of ATP in controlling the channel activity depends upon the relative concentrations of inhibitor and catalytic subunit associated with the membrane, our model predicts that the channel sensitivity to ATP will vary when the ratio of these two modulators is altered. Based upon this, it is shown that the apparent discrepancy existing between the sensitivity of the channel to low ATP concentrations in the excised patch and the elevated intracellular level of ATP may be explained by postulating a change in the inhibitor/kinase ratio from 1:1 to 3:2 owing to the loss of protein kinase after patch excision. At a low concentration of ATP (10-20 microM), a nonhydrolyzable ATP analogue, AMP-PNP, enhanced the channel activity when present below 10 microM, whereas the analogue blocked the channel activity at higher concentrations. It is postulated that AMP-PNP inhibits the formation of the kinase-inhibitor complex in the former case, and prevents phosphate transfer in the latter. A similar mechanism would explain the interaction between ATP and ADP which is characterized by enhanced activity at low ADP concentrations and blocking at higher concentrations. 相似文献
3.
Tang W Weil MH Sun S Pernat A Mason E 《American journal of physiology. Heart and circulatory physiology》2000,279(4):H1609-H1615
Postresuscitation myocardial dysfunction has been recognized as a leading cause of the high postresuscitation mortality rate. We investigated the effects of ischemic preconditioning and activation of ATP-sensitive K(+) (K(ATP)) channels on postresuscitation myocardial function. Ventricular fibrillation (VF) was induced in 25 Sprague-Dawley rats. Cardiopulmonary resuscitation (CPR), including mechanical ventilation and precordial compression, was initiated after 4 min of untreated VF. Defibrillation was attempted after 6 min of CPR. The animals were randomized to five groups treated with 1) ischemic preconditioning, 2) K(ATP) channel opener, 3) ischemic preconditioning with K(ATP) channel blocker administered 1 min after VF, 4) K(ATP) channel blocker administered 45 min before induction of ischemic preconditioning, and 5) placebo. Postresuscitation myocardial function, as measured by the rate of left ventricular pressure increase at 40 mmHg, the rate of left ventricular decline, cardiac index, and duration of survival, was significantly improved in both preconditioned and K(ATP) channel opener-treated animals. K(ATP) channel blocker administered 45 min before induction of ischemic preconditioning completely abolished the myocardial protective effects of preconditioning. We conclude that ischemic preconditioning significantly improved post-CPR myocardial function and survival. These results also provide evidence that the myocardial protective effects of ischemic preconditioning are mediated by K(ATP) channel activation. 相似文献
4.
ATP-sensitive potassium (K(ATP)) channels are composed of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits. Binding of ATP to Kir6.2 leads to inhibition of channel activity. Because there are four subunits and thus four ATP-binding sites, four binding events are possible. ATP binds to both the open and closed states of the channel and produces a decrease in the mean open time, a reduction in the mean burst duration, and an increase in the frequency and duration of the interburst closed states. Here, we investigate the mechanism of interaction of ATP with the open state of the channel by analyzing the single-channel kinetics of concatenated Kir6.2 tetramers containing from zero to four mutated Kir6.2 subunits that possess an impaired ATP-binding site. We show that the ATP-dependent decrease in the mean burst duration is well described by a Monod-Wyman-Changeux model in which channel closing is produced by all four subunits acting in a single concerted step. The data are inconsistent with a Hodgkin-Huxley model (four independent steps) or a dimer model (two independent dimers). When the channel is open, ATP binds to a single ATP-binding site with a dissociation constant of 300 microM. 相似文献
5.
We have previously reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolites of arachidonic acid, are potent stereospecific activators of the cardiac K(ATP) channel. The epoxide group in EET is critical for reducing channel sensitivity to ATP, thereby activating the channel. This study is to identify the molecular sites on the K(ATP) channels for EET-mediated activation. We investigated the effects of EETs on Kir6.2delta C26 with or without the coexpression of SUR2A and on Kir6.2 mutants of positively charged residues known to affect channel activity coexpressed with SUR2A in HEK293 cells. The ATP IC50 values were significantly increased in Kir6.2 R27A, R50A, K185A, and R201A but not in R16A, K47A, R54A, K67A, R192A, R195A, K207A, K222A, and R314A mutants. Similar to native cardiac K(ATP) channel, 5 microM 11,12-EET increased the ATP IC50 by 9.6-fold in Kir6.2/SUR2A wild type and 8.4-fold in Kir6.2delta C26. 8,9- and 14,15-EET regioisomers activated the Kir6.2 channel as potently as 11,12-EET. 8,9- and 11,12-EET failed to change the ATP sensitivity of Kir6.2 K185A, R195A, and R201A, whereas their effects were intact in the other mutants. 14,15-EET had a similar effect with K185A and R201A mutants, but instead of R195A, it failed to activate Kir6.2R192A. These results indicate that activation of Kir6.2 by EETs does not require the SUR2A subunit, and the region in the Kir6.2 C terminus from Lys-185 to Arg-201 plays a critical role in EET-mediated Kir6.2 channel activation. Based on computer modeling of the Kir6.2 structure, we infer that the EET-Kir6.2 interaction may allosterically change the ATP binding site on Kir6.2, reducing the channel sensitivity to ATP. 相似文献
6.
Hale SL Kloner RA 《American journal of physiology. Heart and circulatory physiology》2000,279(6):H2673-H2677
We tested if combining treatment with cariporide, an Na(+)/H(+) exchange inhibitor, and diazoxide, a mitochondrial ATP-sensitive K(+) (K(ATP)) channel opener, would reduce myocardial infarct size (IS) to a greater extent than either intervention alone. Four groups of rabbits were studied (n = 10 each): cariporide (0.3 mg/kg), diazoxide (10 mg/kg), both drugs, and saline control, given 15 min before a 30-min coronary artery occlusion and 3 h reperfusion. IS in controls comprised 47 +/- 6% of the risk region. Cariporide reduced IS by 55% compared with control (21 +/- 3%), but diazoxide did not significantly reduce IS compared with controls (37 +/- 6%). Combined treatment resulted in an IS of 18 +/- 5%. Also we determined that diazoxide did not potentiate a subthreshold dose of cariporide nor did a mitochondrial K(ATP) channel blocker, 5-hydroxydecanoate (5-HD), prevent cariporide from reducing IS. Thus cariporide reduced necrosis by >50% in this model, both in the presence and absence of K(ATP) channel blockade. There was no significant difference in IS reduction between the group receiving cariporide alone and the group receiving combined treatment. Because the effect of cariporide was not blocked by 5-HD, it is unlikely that K(ATP) channels play a role as an end effector in cariporide's mechanism. 相似文献
7.
The mechanism of ATP-sensitive potassium (K(ATP)) channel closure by ATP is unclear, and various kinetic models in which ATP binds to open or to closed states have previously been presented. Effects of phosphatidylinositol bisphosphate (PIP2) and multiple Kir6.2 mutations on ATP inhibition and open probability in the absence of ATP are explainable in kinetic models where ATP stabilizes a closed state and interaction with an open state is not required. Evidence that ATP can in fact interact with the open state of the channel is presented here. The mutant Kir6.2[L164C] is very sensitive to Cd2+ block, but very insensitive to ATP, with no significant inhibition in 1 mM ATP. However, 1 mM ATP fully protects the channel from Cd2+ block. Allosteric kinetic models in which the channel can be in either open or closed states with or without ATP bound are considered. Such models predict a pedestal in the ATP inhibition, i.e., a maximal amount of inhibition at saturating ATP concentrations. This pedestal is predicted to occur at >50 mM ATP in the L164C mutant, but at >1 mM in the double mutant L164C/R176A. As predicted, ATP inhibits Kir6.2[L164C/R176A] to a maximum of approximately 40%, with a clear plateau beyond 2 mM. These results indicate that ATP acts as an allosteric ligand, interacting with both open and closed states of the channel. 相似文献
8.
Sato K Morio Y Morris KG Rodman DM McMurtry IF 《American journal of physiology. Lung cellular and molecular physiology》2000,278(3):L434-L442
There is controversy on the role of endothelin (ET)-1 in the mechanism of hypoxic pulmonary vasoconstriction (HPV). Although HPV is inhibited by ET-1 subtype A (ET(A))-receptor antagonists in animals, it has been reported that ET(A)-receptor blockade does not affect HPV in isolated lungs. Thus we reassessed the role of ET-1 in HPV in both rats and isolated blood- and physiological salt solution (PSS)-perfused rat lungs. In rats, the ET(A)-receptor antagonist BQ-123 and the nonselective ET(A)- and ET(B)-receptor antagonist PD-145065, but not the ET(B)-receptor antagonist BQ-788, inhibited HPV. Similarly, BQ-123, but not BQ-788, attenuated HPV in blood-perfused lungs. In PSS-perfused lungs, either BQ-123, BQ-788, or the combination of both attenuated HPV equally. Inhibition of HPV by combined BQ-123 and BQ-788 in PSS-perfused lungs was prevented by costimulation with angiotensin II. The ATP-sensitive K(+) (K(ATP))-channel blocker glibenclamide also prevented inhibition of HPV by BQ-123 in both lungs and rats. These results suggest that ET-1 contributes to HPV in both isolated lungs and intact animals through ET(A) receptor-mediated suppression of K(ATP)-channel activity. 相似文献
9.
The present study aimed to investigate the protective effect and mechanism of hydrogen sulfide donor NaHS administration against gastric mucosal injury induced by gastric ischemia-reperfusion (GI-R) in rats. GI-R injury was induced by clamping the celiac artery of adult male SD rats for 30 min and followed by reperfusion for 1 h. The rats were randomly divided into sham group, GI-R group, NaHS group, glibenclamide group and pinacidil group. Gastric mucosal damage was analyzed with macroscopic injured area, deep damage was assessed with histopathology scores, and the hydrogen sulfide concentration in plasma was determined by colorimetric method. The results showed that pretreatment of NaHS significantly reduced the injured area and deep damage of the gastric mucosa induced by GI-R. However, NaHS did not significantly alter the levels of hydrogen sulfide in plasma 14 d after NaHS administration. The gastric protective effect of NaHS during reperfusion could be attenuated by glibenclamide, an ATP-sensitive potassium channel (K(ATP)) blocker. However, K(ATP) opener pinacidil inhibited the GI-R-induced injury. These results suggest that exogenous hydrogen sulfide plays a protective role against GI-R injury in rats possibly through modulation of K(ATP) channel opening. 相似文献
10.
Petkov GV Heppner TJ Bonev AD Herrera GM Nelson MT 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,280(5):R1427-R1433
Activation of ATP-sensitive potassium (K(ATP)) channels can regulate smooth muscle function through membrane potential hyperpolarization. A critical issue in understanding the role of K(ATP) channels is the relationship between channel activation and the effect on tissue function. Here, we explored this relationship in urinary bladder smooth muscle (UBSM) from the detrusor by activating K(ATP) channels with the synthetic compounds N-(4-benzoylphenyl)-3,3,3-trifluoro-2-hydroxy-2-methylpropionamide (ZD-6169) and levcromakalim. The effects of ZD-6169 and levcromakalim on K(ATP) channel currents in isolated UBSM cells, on action potentials, and on related phasic contractions of isolated UBSM strips were examined. ZD-6169 and levcromakalim at 1.02 and 2.63 microM, respectively, caused half-maximal activation (K1/2) of K(ATP) currents in single UBSM cells (see Heppner TJ, Bonev A, Li JH, Kau ST, and Nelson MT. Pharmacology 53: 170-179, 1996). In contrast, much lower concentrations (K(1/2) = 47 nM for ZD-6169 and K1/2 = 38 nM for levcromakalim) caused inhibition of action potentials and phasic contractions of UBSM. The results suggest that activation of <1% of K(ATP) channels is sufficient to inhibit significantly action potentials and the related phasic contractions. 相似文献
11.
The ATP-sensitive potassium (K(ATP)) channel plays a key role in controlling beta-cell membrane potential and insulin secretion. The channels are composed of two subunits, Kir6.2, which forms the channel pore, and SUR1, which contains binding sites for nucleotides and sulphonylureas and acts as a channel regulator. Our current studies are aimed at delineating the molecular interactions involved in assembly and ligand binding by K(ATP) channel proteins. We have employed a complementation approach in which SUR1 half-molecules are co-expressed in insect cells using a baculovirus system. Together with data from truncated SUR1 molecules and a fusion protein in which SUR1 is linked to Kir6.2, we have interpreted our findings in terms of a model for the structure of the K(ATP) channel. The main features of the model are: (i) the C-terminal end of SUR1 is close to the N-terminus of Kir6.2; (ii) the two nucleotide binding domains (NBDs) of SUR1--NBD1 and NBD2--are in proximity; (iii) transmembrane helix 12 of SUR1 is orientated in such a way that it can make contact with Kir6.2; (iv) formation of the glibenclamide binding site requires that the two cytosolic loops (CLs) CL3 and CL8 are located close to each other; (v) there are homomeric interactions between the NBD1 domains of neighbouring subunits. We suggest that binding of glibenclamide leads to conformational changes in CL3 and CL8 leading to rearrangement of transmembrane helices. These effects are transmitted to Kir6.2 to result in channel closure. 相似文献
12.
Xu M Wang Y Ayub A Ashraf M 《American journal of physiology. Heart and circulatory physiology》2001,281(3):H1295-H1303
Mitochondrial membrane potential (DeltaPsi(m)) is severely compromised in the myocardium after ischemia-reperfusion and triggers apoptotic events leading to cell demise. This study tests the hypothesis that mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel activation prevents the collapse of DeltaPsi(m) in myocytes during anoxia-reoxygenation (A-R) and is responsible for cell protection via inhibition of apoptosis. After 3-h anoxia and 2-h reoxygenation, the cultured myocytes underwent extensive damage, as evidenced by decreased cell viability, compromised membrane permeability, increased apoptosis, and decreased ATP concentration. Mitochondria in A-R myocytes were swollen and fuzzy as shown after staining with Mito Tracker Orange CMTMRos and in an electron microscope and exhibited a collapsed DeltaPsi(m), as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Cytochrome c was released from mitochondria into the cytosol as demonstrated by cytochrome c immunostaining. Activation of mitoK(ATP) channel with diazoxide (100 micromol/l) resulted in a significant protection against mitochondrial damage, ATP depletion, cytochrome c loss, and stabilized DeltaPsi(m). This protection was blocked by 5-hydroxydecanoate (500 micromol/l), a mitoK(ATP) channel-selective inhibitor, but not by HMR-1098 (30 micromol/l), a putative sarcolemmal K(ATP) channel-selective inhibitor. Dissipation of DeltaPsi(m) also leads to opening of mitochondrial permeability transition pore, which was prevented by cyclosporin A. The data support the hypothesis that A-R disrupts DeltaPsi(m) and induces apoptosis, which are prevented by the activation of the mitoK(ATP) channel. This further emphasizes the therapeutic significance of mitoK(ATP) channel agonists in the prevention of ischemia-reperfusion cell injury. 相似文献
13.
ATP-sensitive potassium (KATP) channels couple cell metabolism to plasmalemmal potassium fluxes in a variety of cell types. The activity of these channels is primarily determined by intracellular adenosine nucleotides, which have both inhibitory and stimulatory effects. The role of KATP channels has been studied most extensively in pancreatic beta-cells, where they link glucose metabolism to insulin secretion. Many mutations in KATP channel subunits (Kir6.2, SUR1) have been identified that cause either neonatal diabetes or congenital hyperinsulinism. Thus, a mechanistic understanding of KATP channel behavior is necessary for modeling beta-cell electrical activity and insulin release in both health and disease. Here, we review recent advances in the KATP channel structure and function. We focus on the molecular mechanisms of KATP channel gating by adenosine nucleotides, phospholipids and sulphonylureas and consider the advantages and limitations of various mathematical models of macroscopic and single-channel KATP currents. Finally, we outline future directions for the development of more realistic models of KATP channel gating. 相似文献
14.
The modelling of molecule-molecule interactions has been widely accepted as a tool for drug discovery and development studies. However, this powerful technique is unappreciated in physiological and biochemical studies, where it could be extremely useful for understanding the mechanisms of action of various compounds in cases when experimental data are controversial due to complexity of the investigated systems. In this study, based on the biochemical data suggesting involvement of mitochondrial ADP/ATP carrier in K+ and H+ transport to mitochondrial matrix molecular modelling is applied to elucidate the possible interactions between the ADP/ATP carrier and its putative ligands--K(ATP) channel blockers glybenclamide, tolbutamide and 5-hydroxydecanoate. Results revealed that K(ATP) channel blockers could bind to the specific location proximal to H1, H4, H5 and H6 transmembrane helices within the cavity of the ADP/ ATP carrier. Analysis of the predicted binding site suggests that K(ATP) channel blockers could interfere with both the ADP/ATP translocation and possible cation flux through the ADP/ATP carrier, and supports the hypothesis that the ADP/ATP carrier is a target of K(ATP) channel modulators. 相似文献
15.
Ohnuma Y Miura T Miki T Tanno M Kuno A Tsuchida A Shimamoto K 《American journal of physiology. Heart and circulatory physiology》2002,283(1):H440-H447
We examined whether the mitochondrial ATP-sensitive K channel (K(ATP)) is an effector downstream of protein kinase C-epsilon (PKC-epsilon) in the mechanism of preconditioning (PC) in isolated rabbit hearts. PC with two cycles of 5-min ischemia/5-min reperfusion before 30-min global ischemia reduced infarction from 50.3 +/- 6.8% of the left ventricle to 20.3 +/- 3.7%. PC significantly increased PKC-epsilon protein in the particulate fraction from 51 +/- 4% of the total to 60 +/- 4%, whereas no translocation was observed for PKC-delta and PKC-alpha. In mitochondria separated from the other particulate fractions, PC increased the PKC-epsilon level by 50%. Infusion of 5-hydroxydecanoate (5-HD), a mitochondrial K(ATP) blocker, after PC abolished the cardioprotection of PC, whereas PKC-epsilon translocation by PC was not interfered with 5-HD. Diazoxide, a mitochondrial K(ATP) opener, infused 10 min before ischemia limited infarct size to 5.2 +/- 1.4%, but this agent neither translocated PKC-epsilon by itself nor accelerated PKC-epsilon translocation after ischemia. Together with the results of earlier studies showing mitochondrial K(ATP) opening by PKC, the present results suggest that mitochondrial K(ATP)-mediated cardioprotection occurs subsequent to PKC-epsilon activation by PC. 相似文献
16.
Queliconi BB Wojtovich AP Nadtochiy SM Kowaltowski AJ Brookes PS 《Biochimica et biophysica acta》2011,1813(7):1309-1315
The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in the protective mechanism of ischemic preconditioning (IPC). The channel is reportedly sensitive to reactive oxygen and nitrogen species, and the aim of this study was to compare such species in parallel, to build a more comprehensive picture of mK(ATP) regulation. mK(ATP) activity was measured by both osmotic swelling and Tl(+) flux assays, in isolated rat heart mitochondria. An isolated adult rat cardiomyocyte model of ischemia-reperfusion (IR) injury was also used to determine the role of mK(ATP) in cardioprotection by nitroxyl. Key findings were as follows: (i) mK(ATP) was activated by O(2)(-) and H(2)O(2) but not other peroxides. (ii) mK(ATP) was inhibited by NADPH. (iii) mK(ATP) was activated by S-nitrosothiols, nitroxyl, and nitrolinoleate. The latter two species also inhibited mitochondrial complex II. (iv) Nitroxyl protected cardiomyocytes against IR injury in an mK(ATP)-dependent manner. Overall, these results suggest that the mK(ATP) channel is activated by specific reactive oxygen and nitrogen species, and inhibited by NADPH. The redox modulation of mK(ATP) may be an underlying mechanism for its regulation in the context of IPC. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. 相似文献
17.
Bancila V Cens T Monnier D Chanson F Faure C Dunant Y Bloc A 《The Journal of biological chemistry》2005,280(10):8793-8799
Zinc at micromolar concentrations hyperpolarizes rat pancreatic beta-cells and brain nerve terminals by activating ATP-sensitive potassium channels (KATP). The molecular determinants of this effect were analyzed using insulinoma cell lines and cells transfected with either wild type or mutated KATP subunits. Zinc activated KATP in cells co-expressing rat Kir6.2 and SUR1 subunits, as in insulinoma cell lines. In contrast, zinc exerted an inhibitory action on SUR2A-containing cells. Therefore, SUR1 expression is required for the activating action of zinc, which also depended on extracellular pH and was blocked by diethyl pyrocarbonate, suggesting histidine involvement. The five SUR1-specific extracellular histidine residues were submitted to site-directed mutagenesis. Of them, two histidines (His-326 and His-332) were found to be critical for the activation of KATP by zinc, as confirmed by the double mutation H326A/H332A. In conclusion, zinc activates KATP by binding itself to extracellular His-326 and His-332 of the SUR1 subunit. Thereby zinc could exert a negative control on cell excitability and secretion process of pancreatic beta-and alpha-cells. In fact, we have recently shown that such a mechanism occurs in hippocampal mossy fibers, a brain region characterized, like the pancreas, by an important accumulation of zinc and a high density of SUR1-containing KATP. 相似文献
18.
The I182 region of k(ir)6.2 is closely associated with ligand binding in K(ATP) channel inhibition by ATP 下载免费PDF全文
The ATP-inhibited potassium (K(ATP)) channel is assembled from four inward rectifier potassium (K(ir)6.x) subunits and four sulfonylurea receptor (SURx) subunits. The inhibitory action of ATP is mediated by at least two distinct functional domains within the C-terminal cytoplasmic tail of K(ir)6.2. The G334D mutation of K(ir)6.2 virtually eliminates ATP-dependent gating with no effect on ligand-independent gating, suggesting a role in linkage of the site to the gate or in the ATP binding site, itself. The T171A mutation of K(ir)6.2 strongly disrupts both ATP-dependent and ligand-independent gating, suggesting a role for T171 in the gating step. A neighboring mutation, I182Q, virtually eliminates ATP inhibition, but its effect on ligand-independent gating remained unknown. We have now characterized both the K(i) values for inhibition by ATP and the ligand-independent gating kinetics of 15 substitutions at position 182. All substitutions decreased ATP-dependent inhibition gating as measured by the K(i), many profoundly so, yet had little or no effect on ligand-independent gating kinetics. Thus, substitutions at position 182 are unlikely to act by disrupting inhibition gate movement. Our results indicate an indispensable role for I182 in a step of the ATP binding mechanism, the linkage mechanism coupling the ATP binding site to the inhibition gate, or both. 相似文献
19.
目的:观察Syn-1A在抑制弱酸性pH诱导的KATP通道活化过程中的作用及机制。方法:用稳定表达Kir6.2/SUR2A KATP通道的HEK-293细胞构建细胞膜内面向外的记录方式,并给细胞膜片连续灌流含或不含Syn-1A的pH7.4,7.0,6.8,6.5和6.0的溶液,观察弱酸性pH对通道的活化作用及Syn-1A对上述作用的抑制,并采用体外结合实验分析不同pH对Syn-1A与SUR2A亚单位结合的影响。结果:Syn-1A可抑制pH 6.5,6.8和7.0时诱发的通道活化作用,Syn-1A与SUR2A的结合在pH7.4至6.0范围内,随pH下降逐渐增加。结论:Syn-1A对KATP通道的抑制作用可缓冲pH波动引起的KATP通道开放,从而抑制折返性心律失常的发生。 相似文献
20.
κ-阿片受体激动通过激活KATP通道对大鼠腹主动脉产生舒张作用 总被引:1,自引:0,他引:1
为观察U50,488H(选择性κ-阿片受体激动剂)对大鼠腹主动态的佶张作用,并探讨其机制,实验采用离体血管灌流实验,测定血管张力的改变。结果显示:(1)U50,488H对大鼠腹主动脉具有明显的舒张作用;(2)U50,488H对大鼠腹主动脉的舒张效应部分依赖于内皮细胞的存在;(3)优降糖和格列甲嗪可明显抑制U50,488H对大鼠腹主动脉的佶张作用;(4)U50,488H的舒张血管效应与M受体、β受体、前列腺素及NO无关。结果表明,U50,488H是一种有效的扩血管物质,其舒张血管的效应具有内皮依赖性,且与KATP通道有密切关系。 相似文献