首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydrodipicolinate synthase (DHDPS) is the main enzyme of a specific branch of the aspartate pathway leading to lysine biosynthesis in higher plants. We have cloned and characterized the DHDPS gene from Zizania latifolia Griseb, which was named ZlDHDPS. Sequence analysis indicates that it contains an ORF of 954 bp interrupted by two exons and one intron encoding a polypeptide of 317 amino acids lacking a plastid transit peptide and a stop codon. The sequence of ZlDHDPS has high identity with known plant DHDPS in GenBank. Southern blotting analysis indicates that there are two copies of Z. latifolia DHDPS (ZlDHDPS) gene in the Z. latifolia nuclear genome. RT-PCR analysis shows the expression of ZlDHDPS is tissue specific and high level expression is present in fast-growing tissue and reproductive tissue. The 5′-regulatory sequence of ZlDHDPS contains a GT-1 box and a (CA)n element, which may play a role in regulating the expression of ZlDHDPS. The fusion construct of the ZlDHDPS sequence with the reporter gene GUS was transiently expressed in the onion epidermal cells by particle gun-mediated bombardment suggesting that ZlDHDPS was located in the cytoplasm, different from DHDPS gene of other species. Functional complementary analysis showed that ZlDHDPS can recover the DHDPS-deleted mutant of Escherichia coli.  相似文献   

2.
3.
Through the screening of a Streptomyces coelicolor genomic library, carried out in a histidinol phosphate phosphatase (HolPase) deficient strain, SCO5208 was identified as the last unknown gene involved in histidine biosynthesis. SCO5208 is a phosphatase, and it can restore the growth in minimal medium in this HolPase deficient strain when cloned in a high or low copy number vector. Moreover, it shares sequence homology with other HolPases recently identified in Actinobacteria. During this work a second phosphatase, SCO2771, sharing no homologies with SCO5208 and all so far described phosphatases was identified. It can complement HolPase activity mutation only at high copy number. Sequence analysis of SCO5208 and SCO2771, amplified from the HolPase mutant strain, revealed that SCO5208 shows a mutation in a conserved amino acid, whereas SCO2771 does not show any mutation. All these results show that S. coelicolor SCO5208, recently renamed hisN, is the HolPase involved in histidine biosynthesis.  相似文献   

4.
5.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5–1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b 2, whereas the hit1 mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

6.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

7.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

8.
The effect of dibromothymoquinone on chlorophyll fluorescence was studied in Chlamydomonas reinhardtii cells using PAM and PEA fluorometers. Dibromothymoquinone was shown to affect differently control cells incubated in complete medium and S-starved cells. The fluorescence yield in the control suspension considerably increased in the presence of the inhibitor. Presumably, this can be due to inactivation of protein kinase, as a result of which part of light-harvesting complex II that could have diffused from the stacking zone of the membrane into the lamellar zone towards photosystem I remains close to photosystem II. In S-starved cells, whose photosynthetic apparatus is in state 2, the fluorescence level declines in the presence of dibromothymoquinone. The JIP testing of induction curves (O-J-I-P fluorescence transient) suggests that dibromothymoquinone inhibits both light-harvesting complex II kinase and photosynthetic electron transport when added to the control, while in the starved cells it acts predominantly as an electron acceptor.  相似文献   

9.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

10.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

11.
The level of biosynthesis of secreted guanyl-specific ribonucleases (RNases) of Bacillus intermedius (binases) and Bacillus circulans (RNases Bci) by recombinant B. subtilis strains increases under nitrogen starvation. The promoter of the binase gene carries the sequences homologous to the recognition sites of the regulatory protein TnrA, which regulates gene expression under growth limitation by nitrogen. Using the B. subtilis strain defective in protein TnrA, it has been shown that the regulatory protein TnrA is involved in the regulation of expression of the binase gene and the gene of RNase Bci. The TnrA regulation of expression of the RNase Bci gene is indirect, probably by means of the regulatory protein PucR. Thus, it has been established that at least two regulatory mechanisms activate the expression of the genes encoding the secreted RNases of spore-forming bacteria: a system of proteins homologous to the B. subtilis PhoP-PhoR, and regulation by a protein similar to the B. subtilis TnrA regulatory protein.  相似文献   

12.
13.
The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which encodes the catalytic subunits of cellulose synthase, and eight families of CESA-like (CSL) genes whose functions are largely unknown. The CSL genes have been proposed to encode processive β-glycosyl transferases that synthesize noncellulosic cell wall polysaccharides. BLAST searches of EST and shotgun genomic sequences from the moss Physcomitrella patens (Hedw.) B.S.G. were used to identify genes with high similarity to vascular plant CESAs, CSLAs, CSLCs, and CSLDs. However, searches using Arabidopsis CSLBs, CSLEs, and CSLGs or rice CSLFs or CSLHs as queries identified no additional CESA superfamily members in P. patens, indicating that this moss lacks representatives of these families. Intron insertion sites are highly conserved between Arabidopsis and P. patens in all four shared gene families. However, phylogenetic analysis strongly supports independent diversification of the shared families in mosses and vascular plants. The lack of orthologs of vascular plant CESAs in the P. patens genome indicates that the divergence of mosses and vascular plants predated divergence and specialization of CESAs for primary and secondary cell wall syntheses and for distinct roles within the rosette terminal complexes. In contrast to Arabidopsis, the CSLD family is highly represented among P. patens ESTs. This is consistent with the proposed function of CSLDs in tip growth and the central role of tip growth in the development of the moss protonema. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Accession numbers: DQ417756, DQ417757, DQ898284–6, DQ898147–54, DQ902545–51.  相似文献   

14.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

15.
Calycanthus chinensis is an endangered plant of the national second-grade protection of China restricted in a small area in Zhejiang Province. We studied parameters of photosynthesis, chlorophyll (Chl) contents, and Chl fluorescence (minimum fluorescence, F0, maximum fluorescence, Fm, variable fluorescence, Fv, and Fv/Fm) of C. chinensis and Chimonanthus praecox. C. chinensis had lower compensation irradiance but higher saturation irradiance than C. praecox. Hence C. chinensis has more advantage in obtaining and utilizing photon energy and higher Chl content, and is more adaptive to higher temperature and propitious to thermal dissipation than C. praecox. In addition, C. chinensis produces abundant, well-preserved seed with a higher germination rate and a wider adaptability to temperature than C. praecox. Thus C. chinensis is prone to survival and viability, and gets rid of the endangered plant species of the national second-grade protection of China.  相似文献   

16.
17.
18.
19.
The arabidopsis gene LEAFY controls the induction of flowering and maintenance of the floral meristem identity. By comparing the primary structure of LEAFY and its homologs in other Brassicaceae species and beyond this family, we singled out four clusters corresponding to three systematically remote families of angiosperms, Brassicaceae, Solanaceae, and Poaceae, and to gymnosperms. Both structural and functional distinctions of LEAFY homologs from their arabidopsis prototype expanded in the range Brassicaceae—Solanaceae—Poaceae. A LEAFY homolog from B. juncea cloned in our laboratory was used as a hybridization probe to analyze the restriction fragment length polymorphism in six Brassica species comprising diploid (AA, BB, and CC) and allotetraploid (AABB, AACC, and BBCC) genomes. In this way we recognized LEAFY fragments specific of genomes A, B, and C; in contrast, the variations of the length and structure of the LEAFY intron 2 were not genome-specific. LEAFY polymorphism in the Brassica accessions comprising genome B was related to their geographic origin and apparently to the adaptation to day length.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号