首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
FHC和Bim参与细胞铁代谢和由ROS引起的细胞凋亡过程.但是其具体的分子机制还未阐明.用pLexA-Bim L作为诱饵,筛选了一个基于pBD42AD的胎脑cDNA文库,发现FHC是一个新的Bim相互作用蛋白.酵母杂交实验发现Bim的相互作用片段为BH3功能域.上述相互作用进一步用免疫共沉淀和荧光共定位得以证实.在HEK293细胞过表达FHC可以减轻由Bim过表达或ROS所引起的细胞凋亡,而用FHC特异性siRNA调低FHC表达,则增加Bim过表达或ROS引起的细胞凋亡.研究首次报道了Bim和FHC的相互作用以及对细胞凋亡和氧化应激的影响,为进一步阐明FHC和Bim参与凋亡和ROS反应提供了新的线索.  相似文献   

3.
4.
Esculetin is an antioxidant and anti-inflammatory compound derived from coumarin. Oxidative stress can cause overproduction of reactive oxygen species (ROS), which can lead to the development of chronic kidney failure. In this study, human embryonic kidney 293 (HEK293) cells were treated with tert-butyl hydroperoxide (t-BHP) to determine the antioxidant effects of esculetin. HEK293 cells were treated with t-BHP to validate changes in cell viability, ROS production, and apoptosis, and then treated with esculetin to evaluate the changes. Changes in mRNA and protein levels were analyzed using a proteome kit, PCR, and Western blotting. Esculetin improved HEK293 cell viability and reduced apoptosis caused by t-BHP-induced oxidative stress. At the mRNA and protein levels, esculetin decreased pro-apoptotic factor expression as well as increased anti-apoptotic factor expression. The antioxidant efficacy of esculetin was validated when it inhibited the apoptosis caused by t-BHP-induced oxidative stress in HEK293 cells.  相似文献   

5.
6.
Protracted mitotic arrest leads to cell death; however, the molecular signals that link these distinct processes remain poorly understood. Here we report that the pro-apoptotic BH3-only family member Bim undergoes phosphorylation in K562 cells following treatment with the microtubule targeting agents Taxol and Nocodazole. The phosphorylation of two Bim isoforms, BimEL and BimL, at the mitochondria correlates with mitotic arrest and precedes cell death induced by Taxol. It was also found that Bim undergoes transient phosphorylation during normal mitosis in K562 cells. In addition, siRNA silencing of Bim reduces sensitivity to Taxol-induced cell death. The transition of K562 cells from mitosis to G1 results in the loss of BimEL and BimL phosphorylation and correlates with the degradation of cyclin B1. The Cdk1 inhibitors, RO-3306 and Purvalanol A, block Bim phosphorylation in mitotically arrested cells. Importantly, it was found that cyclin B1 co-immunoprecipitates with endogenous Bim in mitotic extracts. Furthermore, active recombinant Cdk1/cyclin B1 phosphorylates BimEL and BimL in vitro and Serine 44 on BimL has been identified as a Cdk1 phosphorylation site. Collectively, these results suggest that Cdk1/cyclin B1-dependent hyper-phosphorylation of Bim during prolonged mitotic arrest is an important cell death signal.  相似文献   

7.
8.
9.
10.
Bad is a pro-apoptotic member of the Bcl-2 family of proteins that is thought to exert a death-promoting effect by heterodimerization with Bcl-X(L), nullifying its anti-apoptotic activity. Growth factors may promote cell survival at least partially through phosphorylation of Bad at one or more of Ser-112, -136, or -155. Our previous work showed that Bad is also phosphorylated in response to cytokines at another site, which we now identify as Ser-170. The functional role of this novel phosphorylation site was assessed by site-directed mutagenesis and analysis of the pro-apoptotic function of Bad in transiently transfected HEK293 and COS-7 cells or by stable expression in the cytokine-dependent cell line, MC/9. In general, mutation of Ser-170 to Ala results in a protein with increased ability to induce apoptosis, similar to the S112A mutant. Mutation of Ser-170 to Asp, mimicking a constitutively phosphorylated site, results in a protein that is virtually unable to induce apoptosis. Similarly, the S112A/S170D double mutant does not cause apoptosis in HEK293 and MC/9 cell lines. These data strongly suggest that phosphorylation of Bad at Ser-170 is a critical event in blocking the pro-apoptotic activity of Bad.  相似文献   

11.
Bim (Bcl-2-interacting mediator of cell death) is a BH3-only protein (BOP), a pro-apoptotic member of the Bcl-2 protein family. The Bim mRNA undergoes alternate splicing to give rise to the short, long and extra long protein variants (BimS, BimL and BimEL). These proteins have distinct potency in promoting death and distinct modes of regulation conferred by their interaction with other proteins. Quite how Bim and other BOPs promote apoptosis has been the subject of some debate. Bim was isolated by it’s interaction with pro-survival proteins such as Bcl-2 and it has been suggested that this is key to the ability of Bim to induce apoptosis. However, an alternative model argues that some forms of Bim can bind directly to the pro-apoptotic Bax and Bak proteins to initiate apoptosis. A new study may finally put this debate to rest as it provides strong evidence to suggest that Bim and other BOPs act primarily by binding to pro-survival Bcl-2 proteins, thereby releasing Bax or Bak proteins to promote apoptosis. The importance of the interaction between Bim and the pro-survival Bcl-2 proteins is underlined by our demonstration that it is regulated by ERK1/2-dependent phosphorylation of BimEL. ERK1/2-dependent dissociation of BimEL from pro-survival proteins is the first step in a process by which the pro-survival ERK1/2 pathway promotes the destruction of this most abundant Bim splice variant. In this review we outline the significance of these new studies to our understanding of how BOPs such as Bim initiate apoptosis and how this process is regulated by growth factor-dependent signalling pathways.  相似文献   

12.
Increasing evidence suggests that histone H2AX plays a critical role in regulation of tumor cell apoptosis and acts as a novel human tumor suppressor protein. However, the action of H2AX in chronic myelogenous leukemia (CML) cells is unknown. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. Here, we report that H2AX was involved in apoptosis of CML cells. Overexpression of H2AX increased apoptotic sensitivity of CML cells (K562) induced by imatinib. However, overexpression of Ser139-mutated H2AX (blocking phosphorylation) decreased sensitivity of K562 cells to apoptosis. Similarly, knockdown of H2AX made K562 cells resistant to apoptotic induction. These results revealed that the function of H2AX involved in apoptosis is strictly related to its phosphorylation (Ser139). Our data further indicated that imatinib may stimulate mitogen-activated protein kinase (MAPK) family member p38, and H2AX phosphorylation followed a similar time course, suggesting a parallel response. H2AX phosphorylation can be blocked by p38 siRNA or its inhibitor. These data demonstrated that H2AX phosphorylation was regulated by p38 MAPK pathway in K562 cells. However, the p38 MAPK downstream, mitogen- and stress-activated protein kinase-1 and -2, which phosphorylated histone H3, were not required for H2AX phosphorylation during apoptosis. Finally, we provided epigenetic evidence that H2AX phosphorylation regulated apoptosis-related gene Bim expression. Blocking of H2AX phosphorylation inhibited Bim gene expression. Taken together, these data demonstrated that H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in CML cells induced by imatinib.  相似文献   

13.
《MABS-AUSTIN》2013,5(5):977-986
ABSTRACT

HEK293 transient expression systems are used to quickly generate proteins for research and pre-clinical studies. With the aim of engineering a high-producing host that grows and transfects robustly in bioreactors, we deleted the pro-apoptotic genes Bax and Bak in an HEK293 cell line. The HEK293 Bax Bak double knock-out (HEK293 DKO) cell line exhibited resistance to apoptosis and shear stress. HEK293 DKO cells sourced from 2 L seed train bioreactors were most productive when a pH setpoint of 7.0, a narrow pH deadband of ±0.03, and a DO setpoint of 30% were used. HEK293 DKO seed train cells cultivated for up to 60 days in a 35 L bioreactor showed similar productivities to cells cultivated in shake flasks. To optimize HEK293 DKO transfection cultures, we first evaluated different pH and agitation parameters in ambr15 microbioreactors before scaling up to 10 L wavebag bioreactors. In ambr15 microbioreactors with a pH setpoint of 7.0, a wide pH deadband of ±0.3, and an agitation of 630 rpm, HEK293 DKO transient cultures yielded antibody titers up to 650 mg/L in 7 days. The optimal ambr15 conditions prompted us to operate the 10 L wavebag transfection without direct pH control to mimic the wide pH deadband ranges. The HEK293 DKO transfection process produces high titers at all scales tested. Combined, our optimized HEK293 DKO 35 L bioreactor seed train and 10 L high titer transient processes support efficient, large-scale recombinant protein production for research studies.  相似文献   

14.
15.
以药物敏感型细胞株K562/S和耐药型细胞株K562/A02为对象.观察原癌基因Bcl-2的表达量在两种细胞中的差异,以及神经酰胺作为一个新的脂质第二信使诱导细胞凋亡的能力,并利用酪氨酸激酶抑制剂genistein,酪氨酸磷酸酯酶抑制剂vanadate,观察酪氨酸可逆磷酸化与细胞凋亡间的关系.结果显示:在K562/A02中Bcl-2的表达量明显高于K562/S;外源性神经酰胺能成功地诱导K562/S,K562/A02细胞凋亡,凋亡细胞具有典型的形态学改变和DNA“Ladder”形成,FCM检测出现凋亡细胞峰,但在同样的诱导条件下,K562/S细胞凋亡明显高于K562/A02细胞.FCM检测genistein能显著改变这两种细胞生长周期,但细胞阻滞于G2/M期,便对神经酰胺诱导的细胞凋亡无明显作用,vanadate单独对细胞地明显作用,但与神经酰胺共同作用能明显提高细胞凋亡率.以上结果表明在药物诱导的细胞调亡中Bcl-2基因起重要作用,神经酰胺能诱导K562/S和K562/A02细胞调亡.  相似文献   

16.
17.
Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor κB (NF-κB) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cells increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-κB activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-κB activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.  相似文献   

18.
The neural dysfunction in Alzheimer's disease (AD) could arise from endoplasmic reticulum (ER) stress and deficits of the unfolded protein response (UPR). To explore whether tau hyperphosphorylation, a hallmark of AD brain pathologies, plays a role in ER stress-induced alterations of cell viability, we established cell lines with stable expression of human tau (HEK293/tau) or the vector (HEK293/vec) and treated the cells with thapsigargin (TG), an ER stress inducer. We observed that the HEK293/tau cells were more resistant than the HEK293/vec cells to the TG-induced apoptosis, importantly, a time dependent increase of tau phosphorylation at Thr205 and Thr231 sites was positively correlated with the inhibition of apoptosis. We also observed that expression of tau upregulated phosphorylation of PERK, eIF2 and IRE1 with an increased cleavage of ATF6 and ATF4. The potentiation of UPR was also detected in HEK293/tau cells treated with other ER stress inducers, including staurosporine, camptothecin and hydrogen peroxide, in which a suppressed apoptosis was also shown. Our data suggest that tau hyperphosphorylation could attenuate the ER stress-induced apoptosis with the mechanism involving upregulation of UPR system.  相似文献   

19.
Zhang J  Ghio AJ  Chang W  Kamdar O  Rosen GD  Upadhyay D 《FEBS letters》2007,581(22):4148-4152
We studied the role of Bim, a pro-apoptotic BCL-2 family member in Airborne particulate matter (PM 2.5 microm)-induced apoptosis in alveolar epithelial cells (AEC). PM induced AEC apoptosis by causing significant reduction of mitochondrial membrane potential and increase in caspase-9, caspase-3 and PARP-1 activation. PM upregulated pro-apoptotic protein Bim and enhanced translocation of Bim to the mitochondria. ShRNABim blocked PM-induced apoptosis by preventing activation of the mitochondrial death pathway suggesting a role of Bim in the regulation of mitochondrial pathway in AEC. Accordingly, we provide the evidence that Bim mediates PM-induced apoptosis via mitochondrial pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号