首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We isolated new gyrA and gyrB mutations in Escherichia coli which have a graded effect on DNA supercoiling. The mutants, selected respectively for resistance to nalidixic acid and coumermycin, were sorted by means of a rapid in vivo assay of DNA gyrase activity (Aleixandre and Blanco 1987). Cells carrying a gyrB (Cour) mutation usually showed a decrease in DNA supercoiling, which would indicate a reduction in gyrase activity. In contrast, most of the gyrA (Nalr) mutations had no significant effect on DNA supercoiling. Moreover, they conferred a high level of resistance to nalidixic acid and other quinolones, thus being similar to the gyrA(Nalr) mutants currently used. We also detected rare gyrA mutants showing a reduction in DNA gyrase activity. These mutants were, in addition, resistant to only low concentrations of quinolones, which allowed us to use the phenotype of partial quinolone resistance as an indicator to score gyrA mutations affecting DNA supercoiling. When gyrB mutations were introduced into the gyrA mutants, these became more sensitive to quinolones and a decrease in supercoiling was observed. Moreover, the topA10 mutation sensitized gyrA(Nalr) cells to quinolones. We conclude therefore that the GyrA-dependent quinolone resistance is diminished as a consequence of the reduction either in topoisomerase I or gyrase activities.  相似文献   

2.
Interaction of DNA gyrase A- and B-subunits during the process of DNA supercoiling was studied. For this purpose a E. coli Cour-1 mutant resistant to coumermycin and containing a mutation in the B-subunit of DNA gyrase was isolated and the influence of the DNA gyrase A-subunit specific inhibitor-nalidixic acid-on DNA supercoiling by wild-type and mutant enzymes was investigated. It turned out that the enzyme from the Cour-1 mutant strain was more sensitive to nalidixic acid than the DNA gyrase from the wild-type strain. Hence, the mutation affecting the B-subunit is capable to change A-subunit properties. That makes it possible to draw the conclusion about a close structural interaction of DNA gyrase subunits during DNA supercoiling.  相似文献   

3.
A spontaneously occurring, nalidixic acid-resistant (NalR), thermotolerant (T/r) mutant ofEscherichia coli was isolated. Bacteriophage P1-mediated transduction showed that NalR mapped at or neargyr A, one of the two genes encoding DNA gyrase. Expression ofgyrA + from a plasmid rendered the mutant sensitive to nalidixic acid and to high temperature, the result expected for alleles mapping ingyrA. Plasmid linking number measurements, made with DNA from cells grown at 37° C or shifted to 48° C, revealed that supercoiling was about 12% less negative in the T/r mutant than in the parental strain. Each strain preferentially expressed two different proteins at 48° C. The genetic and supercoiling data indicate that thermo-tolerance can arise from an alteration in DNA gyrase that lowers supercoiling. This eubacterial study, when. coupled with those of archaebacteria, suggests that DNA relaxation is a general aspect of thermotolerance.  相似文献   

4.
Subunits A and B of DNA gyrase were purified from Pseudomonas aeruginosa PAO1 and its mutant, which was resistant to nalidixic acid. Inhibition tests of DNA gyrases reconstituted with a combination of subunits from the two strains showed that an alteration of subunit A but not subunit B caused bacteria to resist fluoroquinolones.  相似文献   

5.
Escherichia coliDNA gyrase B subunit (GyrB) is composed of a 43-kDa N-terminal domain containing an ATP-binding site and a 47-kDa C-terminal domain involved in the interaction with the gyrase A subunit (GyrA). Site-directed mutagenesis was used to substitute, in both the entire GyrB subunit and its 43-kDa N-terminal fragment, the amino acid Y5 by either a serine (Y5S) or a phenylalanine residue (Y5F). Under standard conditions, cells bearing Y5S or Y5F mutant GyrB expression plasmids produced significantly less recombinant proteins than cells transformed with the wild-type plasmid. This dramatic decrease in expression of mutant GyrB proteins was not observed when the corresponding N-terminal 43-kDa mutant plasmids were used. Examination of the plasmid content of the transformed cells after induction showed that the Y5F and Y5S GyrB protein level was correlated with the plasmid copy number. By repressing tightly the promoter activity encoded by these expression vectors during cell growth, it was possible to restore the normal level of the mutant GyrB encoding plasmids in the transformed bacteria. Treatment with chloramphenicol before protein induction enabled large overexpression of the GyrB mutant Y5F and Y5S proteins. In addition, the decrease in plasmid copy number was also observed when the 47-kDa C-terminal fragment of the GyrB subunit was expressed in bacteria grown under standard culture conditions. Analysis of DNA supercoiling and relaxation activities in the presence of GyrA demonstrated that purified Y5-mutant GyrB proteins were deficient for ATP-dependent gyrase activities. Taken together, these results show that Y5F and Y5S mutant GyrB proteins, but not the corresponding 43-kDa N-terminal fragments, competein vivowith the bacterial endogenous GyrB subunit of DNA gyrase, thereby reducing the plasmid copy number in the transformed bacteria by probably acting on the level of negative DNA supercoilingin vivo.This competition could be mediated by the presence of the intact 47-kDa C-terminal domain in the Y5F and Y5S mutant GyrB subunits. This study demonstrates also that the amino acid Y5 is a crucial residue for the expression of the gyrase B activityin vivo.Thus, ourin vivoapproach may also be useful for detecting other important amino acids for DNA gyrase activity, as mutations affecting the ATPase activity or the GyrB/GyrB or GyrB/GyrA protein interactions.  相似文献   

6.
    
 We report here that in Escherichia coli, the anti-bacterial agent nalidixic acid induces transient stabilization and increased synthesis of σ32, accompanied by the induction of heat shock proteins (Dnak and GroEL proteins). The induction of heat shock proteins, increased synthesis of σ32, and stabilization of σ32 observed on treatment of wild-type cells with nalidixic acid were not observed in a nalA26 mutant, a strain that is resistant to nalidixic acid as the result of a mutation in the gyrA gene. Not only oxolinic acid, but also novobiocin, whose targets are the A and B subunits of DNA gyrase, respectively, also induced stabilization and increased synthesis of σ32. Thus, inhibition of the activity of DNA gyrase may cause stabilization and increased synthesis of σ32, resulting in turn in induction of heat shock proteins. Received: 11 July 1996 / Accepted: 16 August 1996  相似文献   

7.
8.
A spontaneously occurring, nalidixic acid-resistant (NalR), thermotolerant (T/r) mutant ofEscherichia coli was isolated. Bacteriophage P1-mediated transduction showed that NalR mapped at or neargyr A, one of the two genes encoding DNA gyrase. Expression ofgyrA + from a plasmid rendered the mutant sensitive to nalidixic acid and to high temperature, the result expected for alleles mapping ingyrA. Plasmid linking number measurements, made with DNA from cells grown at 37° C or shifted to 48° C, revealed that supercoiling was about 12% less negative in the T/r mutant than in the parental strain. Each strain preferentially expressed two different proteins at 48° C. The genetic and supercoiling data indicate that thermo-tolerance can arise from an alteration in DNA gyrase that lowers supercoiling. This eubacterial study, when. coupled with those of archaebacteria, suggests that DNA relaxation is a general aspect of thermotolerance.  相似文献   

9.
We report here that in Escherichia coli, the anti-bacterial agent nalidixic acid induces transient stabilization and increased synthesis of σ32, accompanied by the induction of heat shock proteins (Dnak and GroEL proteins). The induction of heat shock proteins, increased synthesis of σ32, and stabilization of σ32 observed on treatment of wild-type cells with nalidixic acid were not observed in a nalA26 mutant, a strain that is resistant to nalidixic acid as the result of a mutation in the gyrA gene. Not only oxolinic acid, but also novobiocin, whose targets are the A and B subunits of DNA gyrase, respectively, also induced stabilization and increased synthesis of σ32. Thus, inhibition of the activity of DNA gyrase may cause stabilization and increased synthesis of σ32, resulting in turn in induction of heat shock proteins.  相似文献   

10.
Negative supercoiling of plasmid DNA in Escherichia coli cells can decrease transiently when exposed to heat shock. The effect of cold shock on DNA supercoiling was examined, and analysis by agarose gel electrophoresis in the presence of chloroquine revealed that negative supercoiling of plasmid DNA in cells increased when cells were exposed to cold shock. This increase was transient and was nil when the cells were pretreated with nalidixic acid, an inhibitor of DNA gyrase. In a mutant deficient in expression of HU protein, the increase in negative supercoiling of DNA by cold shock is less apparent than in wild-type cells. It is proposed that DNA gyrase and HU protein have a role in the DNA supercoiling reaction seen with cold shock.  相似文献   

11.
ABSTRACT

The inhibitory effect of WQ-3810 on DNA gyrase was assayed to evaluate the potential of WQ-3810 as a candidate drug for the treatment of quinolone resistant Salmonella Typhymurium infection. The inhibitory effect of WQ-3810, ciprofloxacin and nalidixic acid was compared by accessing the drug concentration that halves the enzyme activity (IC50) of purified S. Typhimurium wildtype and mutant DNA gyrase with amino acid substitution at position 83 or/and 87 in subunit A (GyrA) causing quinolone resistance. As a result, WQ-3810 reduced the enzyme activity of both wildtype and mutant DNA gyrase at a lower concentration than ciprofloxacin and nalidixic acid. Remarkably, WQ-3810 showed a higher inhibitory effect on DNA gyrase with amino acid substitutions at position 87 than with that at position 83 in GyrA. This study revealed that WQ-3810 could be an effective therapeutic agent, especially against quinolone resistant Salmonella enterica having amino acid substitution at position 87.  相似文献   

12.
In Salmonella enterica serovar Typhimurium, an S431P substitution in the B subunit of gyrase (allele gyrB651) confers resistance to nalidixic acid and causes reduced DNA superhelicity and hypersensitivity to novobiocin. Selection for novobiocin resistance allowed isolation of a mutation in the gyrA gene (allele gyrA659), a T467S substitution, which partially suppresses the supercoiling defect of gyrB651. Modeling analysis suggests that this mutation acts by destabilizing the GyrA bottom dimer interface. This is the first example of a gyrA mutation that compensates for a gyrB defect.  相似文献   

13.
Involvement of host DNA gyrase in growth of bacteriophage T5.   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacteriophage T5 did not grow at the nonpermissive temperature of 42 degrees C in Escherichia coli carrying a temperature-sensitive mutation in gyrB [gyrB(Ts)], but it did grow in gyrA(Ts) mutants at 42 degrees C. These findings indicate that the A subunit of host DNA gyrase is unnecessary, whereas the B subunit is necessary for growth of T5. The necessity for the B subunit was confirmed by a strong inhibition of T5 growth by novobiocin and coumermycin A1, which interfere specifically with the function of the B subunit of host DNA gyrase. However, T5 growth was also strongly inhibited by nalidixic acid, which interferes specifically with the function of the A subunit. This inhibition was due to the interaction of nalidixic acid with the A subunit and not just to its binding to DNA, because appropriate mutations in the gyrA gene of the host conferred nalidixic acid resistance to the host and resistance to T5 growth in such a host. The inhibition by nalidixic acid was also not due to a cell poison formed between nalidixic acid and the A subunit (K. N. Kreuzer and N. R. Cozzarelli, J. Bacteriol. 140:424-435, 1979) because nalidixic acid inhibited growth of T5 in a gyrA(Ts) mutant (KNK453) at 42 degrees C. We suggest that T5 grows in KNK453 at 42 degrees C because its gyrA(Ts) mutation is leaky for T5. Inhibition of T5 growth due to inactivation of host DNA gyrase was caused mainly by inhibition of T5 DNA replication. In addition, however, late T5 genes were barely expressed when host DNA gyrase was inactivated.  相似文献   

14.
Quinolone antibacterial drugs such as nalidixic acid target DNA gyrase in Escherichia coli. These inhibitors bind to and stabilize a normally transient covalent protein-DNA intermediate in the gyrase reaction cycle, referred to as the cleavage complex. Stabilization of the cleavage complex is necessary but not sufficient for cell killing--cytotoxicity apparently results from the conversion of cleavage complexes into overt DNA breaks by an as-yet-unknown mechanism(s). Quinolone treatment induces the bacterial SOS response in a RecBC-dependent manner, arguing that cleavage complexes are somehow converted into double-stranded breaks. However, the only proteins known to be required for SOS induction by nalidixic acid are RecA and RecBC. In hopes of identifying additional proteins involved in the cytotoxic response to nalidixic acid, we screened for E. coli mutants specifically deficient in SOS induction upon nalidixic acid treatment by using a dinD::lacZ reporter construct. From a collection of SOS partially constitutive mutants with disruptions of 47 different genes, we found that dnaQ insertion mutants are specifically deficient in the SOS response to nalidixic acid. dnaQ encodes DNA polymerase III epsilon subunit, the proofreading subunit of the replicative polymerase. The deficient response to nalidixic acid was rescued by the presence of the wild-type dnaQ gene, confirming involvement of the epsilon subunit. To further characterize the SOS deficiency of dnaQ mutants, we analyzed the expression of several additional SOS genes in response to nalidixic acid using real-time PCR. A subset of SOS genes lost their response to nalidixic acid in the dnaQ mutant strain, while two tested SOS genes (recA and recN) continued to exhibit induction. These results argue that the replication complex plays a role in modulating the SOS response to nalidixic acid and that the response is more complex than a simple on/off switch.  相似文献   

15.
We have constructed a clone which over-produces a 33 kDa protein representing the C-terminal portion of the Escherichia coli DNA gyrase A subunit. This protein has no enzymic activity of its own, but will form a complex with a 64 kDa protein (representing the N-terminal part of the A subunit) and the gyrase B subunit, that will efficiently catalyse DNA supercoiling. We show that the 33 kDa protein can bind to DNA on its own in a manner which induces positive supercoiling of the DNA. We propose that the 33 kDa protein represents a domain of the gyrase A subunit which is involved in the wrapping of DNA around DNA gyrase.  相似文献   

16.
Summary It has been found that strains carrying mutations in the dnaA gene are unusually sensitive to COU, NAL or NOV, which are known to inhibit DNA gyrase activities. The delay in the initiation of chromosome replication after COU treatment has been observed in cells with chromosomes synchronized by amino acid starvation or by temperature shift-up (dnaA46). The unusual sensitivity of growth to COU of the initiation mutant runs parallel to a higher sensitivity to the drug of the initiation of chromosome replication.The double mutant, dnaA46 cou-110 has been isolated and mutation cou-110 conferring resistance of growth, initiation and elongation of chromosome replication to COU was mapped in the gene coding for the subunit of DNA gyrase. The reduced frequency of appearance of the mutants resistant to COU, NAL or NOV in the initiation mutant suggests that some mutations in genes coding for DNA gyrase subunits cannot coexist with the dnaA46 mutation. The possible mechanisms of the requirement of DNA gyrase for dnaA-dependent initiation of E. coli chromosome are discussed.Abbreviations used COU coumermycin A1 - NAL nalidixic acid - NOV novobiocin  相似文献   

17.
18.
DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4–5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic‐membrane‐located inhibitor of proton‐driven F1F0 ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin‐resistant (NovR) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with NovR gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug‐treated bacteria. The Salmonella cytosol reaches pH 5–6 in response to an external pH of 4–5: the ATP‐dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP‐dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid‐mediated impairment of the negative supercoiling activity of gyrase.  相似文献   

19.
To study the mechanism of DNA gyrase-mediated illegitimate recombination in Escherichia coli, we isolated temperature-sensitive gyrA mutants that confer spontaneous illegitimate recombination and spontaneous induction of lambda prophage at higher frequencies than that in the wild-type. After reconstruction of single mutations by targeted mutagenesis, we confirmed that two single mutations, gyrAL492P and gyrAL488P, and a double mutation, gyrAI203V+gyrAI205V, show the same properties as those described above. With respect to the phenotypes of hyper-recombination and higher induction of lambda prophage, these mutations were dominant over the wild-type. Analysis of recombination junctions of lambdabio transducing phages formed spontaneously in these mutants showed that the parental E. coli bio and lambda recombination sites have a homologous sequence of only 0. 7 base-pair on average, indicating that homology is not required for this illegitimate recombination. Analysis of nucleotide sequences of mutant gyrA genes revealed that the gyrAL492P and gyrAL488P mutations contain amino acid substitutions of Leu492-->Pro and Leu488-->Pro, respectively, which correspond to the alpha18 helix in the breakage-reunion domain of DNA gyrase A subunit. The gyrAI203V and gyrAI205V mutations contain Ile203-->Val and Ile205-->Val, respectively, which correspond to the alpha10' helix, also in the breakage-reunion domain of DNA gyrase A subunit. Biochemical analysis indicated that the GyrA63 protein that contains the L492P mutation has an apparently normal supercoiling activity, but it also produces a small amount of linear DNA in the absence of DNA gyrase inhibitor during the supercoiling reaction, suggesting that the mutant DNA gyrase may have a defect at the step of religation or a defect in the subunit interaction. These results suggest that the recombination is induced by defects of religation and/or dimer formation in the mutant DNA gyrases, implying that two alpha helices, alpha10' and alpha18, of DNA gyrase A subunit have crucial roles in subunit interaction and/or resealing of DNA.  相似文献   

20.
The linking number of plasmid DNA in exponentially growingEscherichia coli increases immediately and transiently after heat shock. The purpose of this study was to search for DNA topoisomerases that catalyze this relaxation of DNA. Neither introduction of atopA deletion mutation nor treatment of cells with DNA gyrase inhibitors affected the DNA relaxation induced by heat shock. Thus, DNA topoisomerase I and DNA gyrase are apparently not involved in the process. However, the reaction was inhibited by nalidixic acid or by oxolinic acid in thetopA mutant and the reaction was resistant to nalidixic acid in atopA mutant carrying, in addition, thenalA26 mutation. These results are interpreted as indicating that both DNA topoisomerase I and DNA gyrase are involved in the DNA relaxation induced by heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号