首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha.  相似文献   

2.
Soil water, solute, heat and gas transport processes are oftensimulated using convective-dispersive or diffusion-type equations.These models have to be coupled with a root activity model tosimulate plant development. To make such coupling easier, ageneric convective-dispersive model of root growth and proliferationis proposed. The submodels of root growth rate and root convectiveand dispersive propagation rates are built so that statisticalhypothesis testing can be used to reject an hypothesis on dependenceof the rates on root and soil variables. The objective of thiswork is to test this model using maize plants grown in potswhose walls and bottom mechanically restrict root growth. Treatmentsincluded supplying the normal and double the normal amount offertilizer and water. Plant development was monitored by weeklydestructive harvests until 45 d after emergence. Root concentrationswere determined in 24 sections of the pots along with shootparameters. The modular soil and root process simulator 2DSOILwas used to simulate root development. The model explained 73–77%of variation in the value of the logarithm of the root concentrationmeasured in the experiments. Statistical hypothesis testingled to rejection of the hypothesis that root diffusivity didnot depend on root concentration. The hypotheses that thereis no geotropic root development and that root growth rate decreaseswith the growth of root concentration could not be rejected.Copyright 2001 Annals of Botany Company Rootgrowth, modelling, finite element method, maize, greenhouse, convective-dispersive equation  相似文献   

3.
构件理论认为植物根可以相对独立地吸收养分和对所处环境的养分条件做出响应。根据成本-收益理论, 单个根(构件)的生死、生长发育与其吸收的养分收益和自身建造、维持的消耗有关。基于此, 该文提出两个关于吸收根生死条件的假设: 1)当可利用养分低于低临界值, 根死亡在一段时滞(数天到几周)后发生; 2)当可利用养分高于高临界值并持续一段时间, 新的侧根产生。为了检验这两个假设, 用臭椿(Ailanthus altissima)、翠菊(Callistephus chinensis)、加拿大一枝黄花(Solidago canadensis)作实验物种, 设计了温室分根实验。每株植物选3个一级根, 分别引入3个不同养分水平的斑块: 0、20、200 μg N·g-1。每4天将根暴露并拍照, 查数新根数并测量细根总长度和一级侧根长。由于高养分处理斑块内根的快速生长, 实验在开始后8天或12天结束。结果显示: 除臭椿在0养分处理外, 三物种在各养分处理下都有侧根产生, 总根长均有增加; 臭椿、翠菊、加拿大一枝黄花在不同观测时间和养分水平处理间的侧根数目和总根长差异显著, 而一级侧根长除臭椿外变异均较小; 整个过程中没有根死亡。研究结果部分支持两个假设。本研究还为进一步探究根模块构件增殖、生死过程机制提出新的建议, 即除需要更长的实验时间外, 还应该考虑: 1)多种资源各自及联合对根生长、生死过程的影响; 2)资源斑块和整个根系生长背景的资源丰度对比; 3)根构建和根维持的相对C消耗。  相似文献   

4.
Ren  Hong  Wen  Li-zhu  Guo  Yun-hui  Yu  Yuan-yuan  Sun  Cui-hui  Fan  Hong-mei  Ma  Fang-fang  Zheng  Cheng-shu 《Journal of Plant Growth Regulation》2019,38(4):1375-1386

Expansin (EXP) plays an important role in plant root formation. The EXP genes associated with chrysanthemum roots have not yet been reported. Here we isolated a root-specific EXP gene in chrysanthemum (Chrysanthemum morifolium), namely CmEXPA4. Bioinformatics analysis showed that CmEXPA4-encoded protein has a conserved DPPB (Double-Psi Beta-Barrel) domain in the N-terminal with a series of Cys residues, an HFD (His-Phe-Asp) motif in the central region, and a pollen allergen domain in the C-terminal. The protein also has a specific α-insertion of WCNP (Trp-Cys-Asn-Pro), which suggests that it belongs to the A-subgroup of the EXP family. In the present study, we cloned the 1,129 bp promoter region upstream of CmEXPA4, and the analysis revealed an abundance of cis-acting elements associated with hormones, light and stress-related responses, and some root-specific regulatory elements in particular. Subcellular localization results indicated that CmEXPA4 locates in the cell wall. Exogenous indole butyric acid induced the up-regulation of CmEXPA4 expression, whereas exogenous abscisic acid inhibited its expression. Tissue expression analysis showed that CmEXPA4 was preferentially expressed in the roots and was synchronized with the rapid emergence of the root. These results suggested that CmEXPA4 may act on the growth and development of chrysanthemum roots. The function of CmEXPA4 was further tested by virus-induced gene silencing, and the results showed that CmEXPA4 silencing inhibited the normal development of the chrysanthemum root system. The roots appeared thinner and shorter, and several important root parameters, including total length, average diameter, surface area, total volume, and root tip number, decreased significantly. The cortical cells of the transgenic plant roots were significantly smaller and shorter than those of the control. Collectively, our results demonstrated that CmEXPA4 gene plays a key role in the growth and development of chrysanthemum roots and affects the root system by acting on the individual cells.

  相似文献   

5.
The hypothesis that root apical diameter may be used to evaluate root growth potential was tested. Temporal variations in the apical diameter of individual roots of rubber seedlings ( Hevea brasiliensis ) were studied together with their elongation patterns, using root observation boxes under controlled conditions. This study confirmed the overall positive correlation between apical diameter and growth rale. Moreover, the two parameters, varied in the same way during the life of a given root. For roots with short growth duration, there was a parallel quick decrease in both apical diameter and elongation rate, whereas roots that grew for longer periods showed synchronous fluctuations for both parameters. Since the mean values for the secondary roots within a root system exhibited the same trends, variations in apical diameter and elongation rates should depend on factors influencing the whole root system. When related to shoot rhythmic growth, both apical diameter and elongation rates were depressed during the periods of leaf growth. These effects were enhanced and/or prolonged by shading, hence reinforcing the hypothesis that this development depends on assimilate availability. Such results can be interpreted in terms of a source-sink relationship within the whole plant by considering the apical diameter, representing the size of the meristem related to the number of rneristematic cells, as an indicator of each root's growth potential.  相似文献   

6.
Ephemeral root modules in Fraxinus mandshurica   总被引:1,自引:0,他引:1  
Xia M  Guo D  Pregitzer KS 《The New phytologist》2010,188(4):1065-1074
Historically, ephemeral roots have been equated with 'fine roots' (i.e. all roots of less than an arbitrary diameter, such as 2 mm), but evidence shows that 'fine roots' in woody species are complex branching systems with both rapid-cycling and slow-cycling components. A precise definition of ephemeral roots is therefore needed. Using a branch-order classification, a rhizotron method and sequential sampling of a root cohort, we tested the hypothesis that ephemeral root modules exist within the branching Fraxinus mandshurica (Manchurian ash) root system as distal nonwoody lateral branches, which show anatomical, nutritional and physiological patterns distinct from their woody mother roots. Our results showed that in F. mandshurica, distal nonwoody root branch orders die rapidly as intact lateral branches (or modules). These nonwoody branch orders exhibited highly synchronous changes in tissue nitrogen concentrations and respiration, dominated root turnover, nutrient flux and root respiration, and never underwent secondary development. The ephemeral root modules proposed here may provide a functional basis for differentiating and sampling short-lived absorptive roots in woody plants, and represent a conceptual leap over the traditional coarse-fine root dichotomies based on arbitrary size classes.  相似文献   

7.
The contribution of savannas to global carbon storage is poorly understood, in part due to lack of knowledge of the amount of belowground biomass. In these ecosystems, the coexistence of woody and herbaceous life forms is often explained on the basis of belowground interactions among roots. However, the distribution of root biomass in savannas has seldom been investigated, and the dependence of root biomass on rainfall regime remains unclear, particularly for woody plants. Here we investigate patterns of belowground woody biomass along a rainfall gradient in the Kalahari of southern Africa, a region with consistent sandy soils. We test the hypotheses that (1) the root depth increases with mean annual precipitation (root optimality and plant hydrotropism hypothesis), and (2) the root-to-shoot ratio increases with decreasing mean annual rainfall (functional equilibrium hypothesis). Both hypotheses have been previously assessed for herbaceous vegetation using global root data sets. Our data do not support these hypotheses for the case of woody plants in savannas. We find that in the Kalahari, the root profiles of woody plants do not become deeper with increasing mean annual precipitation, whereas the root-to-shoot ratios decrease along a gradient of increasing aridity.  相似文献   

8.
The effects of Cd, Ni and Pb on the growth, chlorophyll (Chl) and protein contents, and content of proteases of potted weed plants Cyperus difformis, Chenopodium ambrosioides and Digitaria sanguinolis were determined. The three heavy metals inhibited the shoot growth but were less suppresive to root growth. They also lowered leaf Chl content. The changes in root and shoot protein and proteases contents of weeds were interrelated. The heavy metal additions to soil increased their contents in both roots and shoots, several times more in roots than in shoots. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Many plants proliferate roots in nutrient patches, presumably increasing nutrient uptake and plant fitness. Nutrient heterogeneity has been hypothesized to maintain community diversity because of a trade-off between the spatial extent over which plants forage (foraging scale) and their ability to proliferate roots precisely in nutrient patches (foraging precision). Empirical support for this hypothesis has been mixed, and some authors have suggested that interspecific differences in relative growth rate may be confounded with measurements of foraging precision. We collected previously published data from numerous studies of root foraging ability (foraging precision, scale, response to heterogeneity, and relative growth rate) and phylogenetic relationships for >100 plant species to test these hypotheses using comparative methods. Root foraging precision was phylogenetically and taxonomically conserved. Using a historical and phylogenetically independent contrast correlations, we found no evidence of a root foraging scale-precision trade-off, mixed support for a relative growth rate-precision relationship, and no support for the widespread assumption that foraging precision increases the benefit gained from growth in heterogeneous soil. Our understanding of the impacts of plant foraging precision and soil heterogeneity on plants and communities is less advanced than commonly believed, and we suggest several areas in which further research is needed.  相似文献   

10.
It has been assumed that plant biomass partitioning to stems and roots at the ecosystem level follows a single strategy according to which the stem biomass scales isometrically with root biomass, a hypothesis known as ??isometric scaling??. In this study, we examined an alternative theory used for plants: plant biomass is allocated preferentially to the plant organ that harvests the limiting growth resource, a theory known as the ??balanced growth hypothesis??. Our objective was to test these two alternative hypotheses across a water availability gradient. We quantified the stem and root biomass in a seasonally dry tropical forest (SDTF) in three regions of the Yucatán peninsula along a precipitation gradient. Reduced major axis analysis showed that the slopes of the relationship between stem and root biomass across the study regions were statistically similar and significantly different from 1.0 (common slope?=?2.5), which contrasts with the ??isometric scaling?? hypothesis. The allometric coefficient was different between regions along the precipitation gradient, which showed that plant biomass allocation to stems is higher in high than in low water availability regions where biomass is allocated in greater proportions to roots. The stem:root ratio increases following the low to high water availability gradient. Our results showed that plant biomass allocation in the SDTF follows a simple allometric strategy in which greater plant biomass is allocated to stems irrespective of water availability, suggesting to the forest level that plant biomass allocation strategy is invariant across the water availability gradient.  相似文献   

11.
12.
Split‐root experiments were conducted to test the hypothesis that adjustments in lateral root initiation, as might occur in response to localized soil conditions, are determined by the sugar content of the root and do not depend on changes in the import of phloem‐translocated phytohormones. Wheat ( Triticum aesticum L. cv. Alexandria) seedlings were grown in hydroponics with their seminal roots divided between two compartments within the culture vessel. Two seminal roots of treated plants were supplied with standard nutrient solution supplemented with 50 m M glucose, whilst the remaining three roots received nutrient solution without glucose. Control plants had their roots divided in the same ratio, but both 'halves' received nutrient solution without glucose. Feeding glucose to one 'half' of the root system increased the frequency (number per unit length) of lateral root primordia in the fed axes. The increase was first observed 15 h after the start of treatment and was located within the apical 30 mm of root. At this time there was no significant treatment effect on the frequency of primordia in non‐fed axes. The enhanced initiation of lateral roots in glucose‐fed root tips was associated with an increase in their concentration of glucose and sucrose plus low molecular mass fructans. In contrast, there was a reduction in partitioning of 14C‐photosynthate to these root tips compared to the non‐fed roots of treated plants and controls. The results indicate that lateral root initiation can be stimulated by sugars in the absence of an increase in phloem translocation. It is proposed that proliferation of lateral roots in response to localized soil conditions, such as nutrient patches, may be signalled by an increase in sugar content of the tissue, rather than an altered flux of phytohormones or other material co‐transported with sucrose in the phloem.  相似文献   

13.
在控制条件下云南松幼苗根系对低磷胁迫的响应   总被引:2,自引:0,他引:2  
磷是控制生命过程的重要元素,植物在生长过程中需要大量的磷,低磷常导致一些植物发生适应性变化。云南松(PinusyunnanensisFranch.)以云南高原为起源和分布中心,其对低磷土壤环境表现出了很强的适应能力,广泛分布并正常生长于贫瘠的低磷红壤上,研究云南松对低磷环境的适应机制,对人类探索高效利用有限的磷素资源的方法具有现实意义。本实验通过对不同磷处理水平下培养的云南松幼苗根系生物量和根冠比等的研究,分析了云南松幼苗根系对低磷胁迫的响应。实验所用云南松种子采集自云南省通海县秀山森林公园内的健壮云南松林。结果表明:当磷浓度下降到0.5mmol/L时,云南松幼苗主根长度开始随磷浓度的降低而增加,根冠比随磷浓度的降低而增大,而侧根发生数没有随磷浓度的降低而显示出显著的增减规律,根系生物量也没有随磷浓度的降低而呈现出有规律的增减,根系生物量始终保持在一定的水平。进一步的分析表明:低磷胁迫下,云南松幼苗保证了物质分配对根的优先地位,以维持其根的生物量在一定水平,进而维持整个生命;云南松幼苗主要是靠主根长度的增加而不是靠侧根数量的增加来适应低磷环境。  相似文献   

14.
Dynamic models of tree root growth and function have to reconcile the architectural rules for coarse root topology with the dynamics of fine root growth (and decay) in order to predict the strategic plus opportunistic behaviour of a tree root system in a heterogeneous soil. We present an algorithm for a 3D model based on both local (soil voxel level) and global (tree level) controls of root growth, with development of structural roots as a consequence of fine root function, rather than as driver. The suggested allocation rules of carbon to fine root growth in each rooted voxel depend on the success in water uptake in this voxel during the previous day, relative to overall supply and demand at plant level. The allocated C in each voxel is then split into proliferation (within voxel growth) and extension into neighbouring voxels (colonisation), with scale-dependent thresholds and transfer coefficients. The fine root colonisation process defines a dynamic and spatially explicit demand for transport functions. C allocation to development of a coarse root infrastructure linking all rooted voxels depends on the apparent need for adjustment of root diameter to meet the topologically defined sap flow through this voxel during the previous day. The allometric properties of the coarse root system are maintained to be in line with fractal branching theory. The model can predict the dynamics of the shape and structure (fine root density, coarse root topology and biomass) of the root system either independently of soil conditions (purely genetically-driven) or including both the genetic and environmental effects of roots interacting with soil water supply and its external replenishment, linking in with existing water balance models. Sensitivity of the initial model to voxel dimensions was addressed through explicit scaling rules resulting in scale-independent parameters. The model was parameterised for two tree species: hybrid walnut (Juglans nigra × regia) and wild cherry (Prunus avium L.) using results of a pot experiment. The model satisfactorily predicted the root growth behaviour of the two species. The model is sparse in parameters and yet applicable to heterogeneous soils, and could easily be upgraded to include additional local influences on root growth (and decay) such as local success in nutrient uptake or dynamic soil physical properties.  相似文献   

15.
The control of carbon acquisition by roots   总被引:35,自引:3,他引:35  
  相似文献   

16.
由链格孢菌引起的菊花黑斑病严重降低了菊花的品质和产量.链格孢菌在代谢过程中分泌的粗毒素是菊花黑斑病发生的主要致病因子之一.本文从菊花黑斑病发病叶片中分离筛选出致病真菌链格孢菌1株,研究其粗毒素对菊花幼苗‘神马’生长的影响以及测定盆栽幼苗叶片细胞膜相对透性、抗性物质含量、诱导酶活性及代谢物质含量变化.结果表明: 链格孢菌粗毒素对菊花‘神马’幼苗的株高、茎粗、根长均有抑制作用,毒素浓度与抑制效果呈正相关,且粗毒素原液处理14 d后,菊花幼苗株高、茎粗、根长受到显著抑制,分别比对照减少了28.9%、21.4%和23.3%;链格孢菌粗毒素处理菊花‘神马’幼苗后,根系组织细胞膜透性随着毒素浓度的增加而增加,在同一毒素浓度处理下,菊花幼苗叶片细胞膜透性随着处理时间的增加呈先增大后降低的趋势;毒素原液处理菊花幼苗后,菊花幼苗叶片中抗性物质可溶性蛋白、丙二醛(MDA)以及脯氨酸含量均显著提高.链格孢菌10倍稀释液处理对叶片苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)和多酚氧化酶(PPO)活性的提高最为显著.链格孢菌粗毒素对切花菊‘神马’幼苗的致病作用主要通过抑制菊花幼苗根、茎的正常生长,增加菊花幼苗叶片细胞膜透性,影响切花菊幼苗叶片中抗性物质代谢以及提高叶片保护酶活性而影响植株正常生理代谢.  相似文献   

17.
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots.  相似文献   

18.

Background and aims

Soil compaction strongly affects water uptake by roots. The aim of the work was to examine soil—plant interactions with focus on the impact of distribution of compacted soil layers on growth and water uptake by wheat roots.

Methods

The growth-chamber experiment was conducted on wheat growth in soil with compacted soil layers. The system for maintaining constant soil water potential and measurement of daily water uptake from variously compacted soil layers was used.

Results

Layered soil compaction differentiated vertical root distribution to higher extent for root length than root mass. The propagation rate of a water extraction front was the highest through layers of moderately compacted soil. The root water uptake rate was on average 67 % higher from moderately than heavily compacted soil layers. Correlations between water uptake and the length of thick roots were increasing with increasing level of soil compaction.

Conclusions

The study shows that root amount, water uptake, propagation of water extraction and shoot growth strongly depend on the existence of compacted layers within soil profile. The negative effects of heavily compacted subsoil layer on water uptake were partly compensated by increased uptake from looser top soil layers and significant contribution of thicker roots in water uptake.  相似文献   

19.
When cultured on media containing the plant growth regulator auxin, hypocotyl explants of Arabidopsis thaliana generate adventitious roots. As a first step to investigate the genetic basis of adventitious organogenesis in plants, we isolated nine temperature-sensitive mutants defective in various stages in the formation of adventitious roots: five root initiation defective (rid1 to rid5) mutants failed to initiate the formation of root primordia; in one root primordium defective (rpd1) mutant, the development of root primordia was arrested; three root growth defective (rgd1, rgd2, and rgd3) mutants were defective in root growth after the establishment of the root apical meristem. The temperature sensitivity of callus formation and lateral root formation revealed further distinctions between the isolated mutants. The rid1 mutant was specifically defective in the reinitiation of cell proliferation from hypocotyl explants, while the rid2 mutant was also defective in the reinitiation of cell proliferation from root explants. These two mutants also exhibited abnormalities in the formation of the root apical meristem when lateral roots were induced at the restrictive temperature. The rgd1 and rgd2 mutants were deficient in root and callus growth, whereas the rgd3 mutation specifically affected root growth. The rid5 mutant required higher auxin concentrations for rooting at the restrictive temperature, implying a deficiency in auxin signaling. The rid5 phenotype was found to result from a mutation in the MOR1/GEM1 gene encoding a microtubule-associated protein. These findings about the rid5 mutant suggest a possible function of the microtubule system in auxin response.  相似文献   

20.
Black spruce (Picea mariana [Mill.] BSP) is a boreal tree species characterized by the formation of an adventitious root system. Unlike initial roots from seed germination, adventitious roots gradually appear above the root collar, until they constitute most of mature black spruce root system. Little is known about the physiological role they play and their influence on tree growth relative to initial roots. We hypothesized that adventitious roots present an advantage over initial roots in acquiring water and nutrients. To test this hypothesis, the absorptive capacities of the two root systems were explored in a controlled environment during one growing season. Black spruce seedlings were placed in a double‐pot system allowing irrigation (25 and 100% water container capacity) and fertilization (with or without fertilizer) inputs independent to initial and adventitious roots. After 14 weeks, growth parameters (height, diameter, biomass), physiology (net photosynthetic rate, stomatal conductance, shoot water potential) and nutrient content (N, P, K, Ca and Mg foliar content) were compared. Most measured parameters showed no difference for the same treatment on adventitious or initial roots, except for root biomass. Indeed, fertilized black spruce seedlings invested heavily in adventitious root production, twice as much as initial roots. This was also the case when adventitious roots alone were irrigated, while seedlings with adventitious roots subjected to low irrigation produced initial root biomass equivalent to that of adventitious roots. We conclude that black spruce seedlings perform equally well through adventitious and initial roots, but if resources are abundant, they strongly promote development of adventitious roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号