首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
Using the data on complete sequences of cytochrome b gene, phylogenetic relationships were studied among the Stenocephalemys s. lat. (Stenocephalemys ssp. + Praomys albipes) murine rodents, inhabiting adjacent altitudinal belts of the isolated Ethiopian mountain massifs, and among the related Praomys s. lat. species. Extremely low resolution of the relationships among the main Praomys s. lat. lineages hampered identification of the nearest sister group for the Stenocephalemys s. lat. "Ethiopian" clade, monophyly of which was strongly supported. Sister relationships between P. albipes and S. griseicauda (implying "accelerated" morphological and chromosomal evolution upon the formation of the former species), as well as between S. albocaudata and the recently described novel chromosomal form of Stenocephalemus sp. A (2n = 50; NFa = 56) were demonstrated. Definite discordance between the rates of their molecular, chromosomal, and morphological evolution was revealed. Based on phylogenetic reconstructions and the estimates of the divergence time, obtained by use of molecular clock method, an attempt to draw a phylogenetic scenario for the group examined was made. The obtained data were compared to those for analogous Sigmodontinae species complexes, distributed across a marked altitudinal gradient on the Andean slopes. It was shown that molecular genetic data on the rodents from mountain tropics did not support the gradient model of diversification, based on the possibility of morphological diversification prior to their achievement of the species status (without interruption of the gene flow between the forms) due to differently directed selection across a strong environmental gradient.  相似文献   

2.
Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant–herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.  相似文献   

3.
Advances in the understanding of biological radiations along tropical mountains depend on the knowledge of phylogenetic relationships among species. Here we present a species-level molecular phylogeny based on a multilocus dataset for the Andean hummingbird genus Coeligena. We compare this phylogeny to previous hypotheses of evolutionary relationships and use it as a framework to understand patterns in the evolution of sexual dichromatism and in the biogeography of speciation within the Andes. Previous phylogenetic hypotheses based mostly on similarities in coloration conflicted with our molecular phylogeny, emphasizing the unreliability of color characters for phylogenetic inference. Two major clades, one monochromatic and the other dichromatic, were found in Coeligena. Closely related species were either allopatric or parapatric on opposite mountain slopes. No sister lineages replaced each other along an elevational gradient. Our results indicate the importance of geographic isolation for speciation in this group and the potential interaction between isolation and sexual selection to promote diversification.  相似文献   

4.
The lichen-forming genus Parmelia Acharius occurs worldwide but its centre of distribution is in the northern hemisphere and it is widespread in boreal-temperate Eurasia and North America. Recent molecular work on Parmelia has identified phylogenetic relationships within two major groups of the genus: P. saxatilis s. lat. and P. sulcata s. lat. However, little is known about the diversification and historical biogeography of these groups. Here we have used a dataset of two genetic markers and 64 samples to estimate phylogenetic relationships within Parmelia. The dated phylogeny provides evidence for major diversification during the Neogene and Pleistocene. These diversification events are probably correlated with climatic changes during these periods. Evidence of gene flow within species between populations from North America and Europe has been found in three species: P. sulcata Taylor, P. saxatilis (L.) Acharius and P. barrenoae Divakar, M.C. Molina & A. Crespo. Cryptic species recently segregated on the basis of molecular differences (P. encryptata A. Crespo, Divakar & M.C. Molina vs. P. sulcata and P. saxatilis vs. P. mayi Divakar, A. Crespo & M.C. Molina) do not share a common ancestor. Moreover, the P. saxatilis complex is remarkably diverse. Two morphotypes of P. saxatilis s. lat. were shown to represent independent monophyletic lineages. Consequently, two species (P. sulymae Goward, Divakar, & M.C. Molina & A. Crespo and P. imbricaria Goward, Divakar, M.C. Molina & A. Crespo) are newly described here.  相似文献   

5.
A sample of 535 small mammals, caught over a range of altitudes from 1500 to 4000 m in the Bale Mountains, on various expeditions from December 1971 to August 1986, enables the altitudinal zonation of the species to be delimited. The most abundant species, Lophuromys flavopunctatus, ranged from near the lower tree line at 1550 m, right up through the forested zones and onto the Afro-alpine moorland at 3900 m. The endemic Praomys albipes also ranged through the forest from 1550 to 3200 m, but was replaced in open habitats between 2400 and 3900 m by Stenocephalemys griseicauda and between 3000 and 4000 m by S. albocaudata, which was relatively more abundant than its congener at higher altitudes. Other moorland species, including Crocidura fumosa, Otomys typus, Lophuromys melanonyx and Arvicanthis blicki were also commonest at 3800–4000 m, but, like the Stenocephalemys spp., penetrated to lower altitudes in open habitats. Mus mahomet was confined to lower altitudes (1510–3000 m) and open habitats, apparently replaced by Mus triton, not previously recorded from Ethiopia, in forested habitats at middle altitudes (1950–2400 m).  相似文献   

6.
Amphipods from the genus Niphargus represent an important part of the Western Palearctic subterranean fauna. The genus is morphologically diverse, comprising several distinct ecomorphs bound to microhabitats in the subterranean environment. The most impressive among them are “lake giants,” a series of massive, large‐bodied species. These range from morphologically distinct to morphologically cryptic taxa. We analysed the taxonomic structure of the Niphargus arbiterNiphargus salonitanus species complex, belonging to “lake giants” from the Dinaric Karst (West Balkans), and assessed their phylogenetic, morphological and ecological diversity. Multilocus phylogeny suggested that the complex is monophyletic and nested within other cave lake ecomorphs. Unilocus and multilocus coalescence species delimitations indicated that the complex totals nine species. These species substantially overlap in morphology and cannot be unambiguously told apart without the use of molecular markers. An analysis of splitting events within a palaeogeological context, and modelling of environmental characteristics on the phylogeny unveiled a complex history of diversification. Part of this diversification might have been influenced by ecological divergence along the altitudinal gradient reaching from the Adriatic coast to inland Dinaric mountain chains and Poljes. Other splits coincide with the marine regression–transgression cycles during Pliocene. We describe Niphargus alpheus sp. n., Niphargus anchialinus sp. n., Niphargus antipodes sp. n., Niphargus arethusa sp. n., Niphargus doli sp. n., Niphargus fjakae sp. n. and Niphargus pincinovae sp. n., and by doing so hope to prompt their further research.  相似文献   

7.
To document the species composition, relative abundance and habitat association of small mammals, wet and dry season surveys were conducted along the altitudinal gradient of Jiren Mountain, Jimma area, Ethiopia. Sherman traps were used to capture small mammals from the six habitats: wetland, mixed plantation, open shrub, eucalyptus plantation, montane grassland and coffee plantation. The 393 trap nights, from the six habitat types, yielded 106 individual small mammals of tweleve species. The trapped rodents were Lophuromys flavopunctatus, Stenocephalemys albipes, Desmomys harringtoni, Mus mahomet, Lemniscomys barbarous, L. striatus, Tachyoryctes splendens, Mastomys natalensis and the insectivores Crocidura fumosa and C. turba. Two species of rodents Hystrix cristata and Helioscuirus gambianus were observed. Lophuromys flavopunctatus and S. albipes contributed 83.8% of the total capture. L. flavopunctatus, S. albipes and D. harringtoni were distributed in all habitats and gradients. T. splendens was captured from montane habitat, while the zebra mice were associated with the lower altitude habitats. Lophuromys flavopunctatus and M. natalensis extended their range deep into the coffee plantation habitats. Uncontrolled vegetation exploitation of the mountains for timber production and fire wood collection are the major threats. Conservation of the area to reduce the anthropogenic pressure is essential.  相似文献   

8.
Recovering phylogenetic relationships in lineages experiencing intense diversification has always been a persistent challenge in evolutionary studies, including in Gentiana section Chondrophyllae sensu lato (s.l.). Indeed, this subcosmopolitan taxon encompasses more than 180 mostly annual species distributed around the world. We sequenced and assembled 22 new plastomes representing 21 species in section Chondrophyllae s.l. In addition to previously released plastome data, our study includes all main lineages within the section. We reconstructed their phylogenetic relationships based on protein‐coding genes and recombinant DNA (rDNA) cistron sequences, and then investigated plastome structural evolution as well as divergence time. Despite an admittedly humble species cover overall, we recovered a well‐supported phylogenetic tree based on plastome data, and found significant discordance between phylogenetic relationships and taxonomic treatments. Our results show that G. capitata and G. leucomelaena diverged early within the section, which is then further divided into two clades. The divergence time estimation showed that section Chondrophyllae s.l. evolved in the second half of the Oligocene. We found that section Chondrophyllae s.l. had the smallest average plastome size (128 KB) in tribe Gentianeae (Gentianaceae), with frequent gene and sequence losses such as the ndh complex and its flanking regions. In addition, we detected both expansion and contraction of the inverted repeat (IR) regions. Our study suggests that plastome degradation parallels the diversification of this group, and illustrates the strong discordance between phylogenetic relationships and taxonomic treatments, which now need to be carefully revised.  相似文献   

9.
The major vectors of malaria in sub-Saharan Africa belong to subgenus Cellia. Yet, phylogenetic relationships and temporal diversification among African mosquito species have not been unambiguously determined. Knowledge about vector evolutionary history is crucial for correct interpretation of genetic changes identified through comparative genomics analyses. In this study, we estimated a molecular phylogeny using 49 gene sequences for the African malaria vectors An. gambiae, An. funestus, An. nili, the Asian malaria mosquito An. stephensi, and the outgroup species Culex quinquefasciatus and Aedes aegypti. To infer the phylogeny, we identified orthologous sequences uniformly distributed approximately every 5 Mb in the five chromosomal arms. The sequences were aligned and the phylogenetic trees were inferred using maximum likelihood and neighbor-joining methods. Bayesian molecular dating using a relaxed log normal model was used to infer divergence times. Trees from individual genes agreed with each other, placing An. nili as a basal clade that diversified from the studied malaria mosquito species 47.6 million years ago (mya). Other African malaria vectors originated more recently, and independently acquired traits related to vectorial capacity. The lineage leading to An. gambiae diverged 30.4 mya, while the African vector An. funestus and the Asian vector An. stephensi were the most closely related sister taxa that split 20.8 mya. These results were supported by consistently high bootstrap values in concatenated phylogenetic trees generated individually for each chromosomal arm. Genome-wide multigene phylogenetic analysis is a useful approach for discerning historic relationships among malaria vectors, providing a framework for the correct interpretation of genomic changes across species, and comprehending the evolutionary origins of this ubiquitous and deadly insect-borne disease.  相似文献   

10.
Sigmodontinae rodents represent one of the most diverse and complex components of the mammalian fauna of South America. Among them most species belongs to Oryzomyini and Akodontini tribes. The highly specific diversification observed in both tribes is characterized by diploid complements, which vary from 2n = 10 to 86. Given this diversity, a consistent hypothesis about the origin and evolution of chromosomes depends on the correct establishment of synteny analyzed in a suitable phylogenetic framework. The chromosome painting technique has been particularly useful for identifying chromosomal synteny. In order to extend our knowledge of the homeological relationships between Akodontini and Oryzomyini species, we analyzed the species Akodon montensis (2n = 24) and Thaptomys nigrita (2n = 52) both from the tribe Akodontini, with chromosome probes of Hylaeamys megacephalus (2n = 54) of the tribe Oryzomyini. The results indicate that at least 12 of the 26 autosomes of H. megacephalus show conserved synteny in A. montensis and 14 in T. nigrita. The karyotype of Akodon montensis, as well as some species of the Akodon cursor species group, results from many chromosomal fusions and therefore the syntenic associations observed probably represent synapomorphies. Our finding of a set of such associations revealed by H. megacephalus chromosome probes (6/21; 3/25; 11/16/17; and, 14/19) provides phylogenetic information for both tribes. An extension of these observations to other members of Akodontini and Oryzomyini tribes should improve our knowledge about chromosome evolution in both these groups.  相似文献   

11.
Torrubiella is a genus of arthropod-pathogenic fungi that primarily attacks spiders and scale insects. Based on the morphology of the perithecia, asci, and ascospores, it is classified in Clavicipitaceae s. lat. (Hypocreales), and is considered a close relative of Cordyceps s. 1., which was recently reclassified into three families (Clavicipitaceae s. str., Cordycipitaceae, Ophiocordycipitaceae) and four genera (Cordyceps s. str, Elaphocordyceps, Metacordyceps, and Ophiocordyceps). Torrubiella is distinguished morphologically from Cordyceps s. lat. mainly by the production of superficial perithecia and the absence of a well-developed stipitate stroma. To test and refine evolutionary hypotheses regarding the placement of Torrubiella and its relationship to Cordyceps s. lat., a multi-gene phylogeny was constructed by conducting ML and Bayesian analyses. The monophyly of Torrubiella was rejected by these analyses with species of the genus present in Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae, and often intermixed among species of Cordyceps s. lat. The morphological characters traditionally used to define the genus are, therefore, not phylogenetically informative, with the stipitate stromata being gained and/or lost several times among clavicipitaceous fungi. Two new genera (Conoideocrella, Orbiocrella) are proposed to accommodate two separate lineages of torrubielloid fungi in the Clavicipitaceae s. str. In addition, one species is reclassified in Cordyceps s. str. and three are reclassified in Ophiocordyceps. The phylogenetic importance of anamorphic genera, host affiliation, and stipitate stromata is discussed.  相似文献   

12.
The publication of the world catalog of terrestrial isopods some ten years ago by Schmalfuss has facilitated research on isopod diversity patterns at a global scale. Furthermore, even though we still lack a comprehensive and robust phylogeny of Oniscidea, we do have some useful approaches to phylogenetic relationships among major clades which can offer additional insights into isopod evolutionary dynamics. Taxonomic diversity is one of many approaches to biodiversity and, despite its sensitiveness to biases in taxonomic practice, has proved useful in exploring diversification dynamics of various taxa. In the present work, we attempt an analysis of taxonomic diversity patterns among Oniscidea based on an updated world list of species containing 3,710 species belonging to 527 genera and 37 families (data till April 2014). The analysis explores species diversity at the genus and family level, as well as the relationships between species per genera, species per families, and genera per families. In addition, we consider the structure of isopod taxonomic system under the fractal perspective that has been proposed as a measure of a taxon’s diversification. Finally, we check whether there is any phylogenetic signal behind taxonomic diversity patterns. The results can be useful in a more detailed elaboration of Oniscidea systematics.  相似文献   

13.
The Hengduan Mountains (HDM) in China are an important hotspot of plant diversity and endemism, and are considered to be a secondary diversification center for the woody plant genus Salix L. (Salicaceae). Here we aimed to reconstruct the spatiotemporal evolution of the Salix ChamaetiaVetrix clade in the HDM and to test for the occurrence of a local radiation. We inferred phylogenetic relationships based on more than 34 000 restriction‐site associated DNA loci from 27 species. Phylogenetic analyses recovered a well‐resolved tree topology with two major clades, the Eurasian clade and the HDM clade, with a divergence time of ca. 23.9 Ma. Species in the HDM clade originated in the northern part of the range and adjacent areas, and then dispersed into the southern HDM, westwards to the Himalayas and eastwards to the Qinling Mountains. Niche modelling analyses reveal that range contractions occurred in the northern areas during the last glacial maximum, while southward expansions resulted in range overlaps. Reconstructions of character evolution related to plant height, inflorescence, and flower morphology suggest that adaptations to altitudinal distribution contributed to the diversification of the HDM willows. Our data support the occurrence of a radiation in the HDM within the Salix ChamaetiaVetrix clade. Dispersal within the mountain system, and to adjacent regions, in addition to survival in glacial refugia shaped the biogeographical history of the clade, while adaptations of the HDM willows along an altitudinal gradient could be important ecological factors explaining the high species diversity of Salix in this area.  相似文献   

14.
Aim We addressed the following questions: (1) Does tephritid body size tend to increase in species found at higher elevations, as predicted by Bergmann's rule? (2) Do tephritids conform to Rapoport's rule, so that species found at higher elevations tend to have broader altitudinal ranges? (3) More generally, how do body size and host range jointly affect the patterns of altitudinal distribution among Neotropical tephritid flies? Location The Mantiqueira mountain range, south‐eastern Brazil, at sites ranging from c. 700 to 2500 m a.s.l. Methods At each site we collected flower heads of all Asteraceae species to rear out endophagous immatures (from January to June in 1998 and 1999). We used structural equation models (SEM) to evaluate jointly the relationships between body size, host range and altitudinal distribution (range and mid‐point). Results Neotropical tephritid body size showed a negative relationship with altitudinal distribution. SE modelling showed no significant direct effect of body size on altitudinal range; however, it had significant indirect negative effects through host range and altitudinal mid‐point. The SE model was a good predictor of observed correlations and accounted for 84% of the variation in tephritid altitudinal range. Main conclusions The altitudinal range of flower‐head‐feeding tephritids is related to host range and is indirectly affected by body size via host range and altitudinal mid‐point. As predicted by Rapoport's rule, tephritids that occur at higher elevations also present wider altitudinal ranges. Bergmann's rule does not apply to Neotropical tephritids along a tropical elevational gradient, but rather its converse was found. Body size may determine host range by imposing a restriction upon large individuals using small flower heads. Host species turnover along the altitudinal gradient may be the main factor explaining the strong relationship between host range and insect elevational distribution.  相似文献   

15.
We describe a new species of Alopoglossus from the Pacific slopes of the Andes in northern Ecuador based on morphological and molecular evidence. The new species differs most significantly from all other congeners in having a double longitudinal row of widened gular scales, lanceolate dorsal scales in transverse rows, 29–32 dorsal scales in a transverse row at midbody, and 4 longitudinal rows of ventrals at midbody. It is most similar in morphology to A. festae, the only species of Alopoglossus currently recognized in western Ecuador. We analyze the phylogenetic relationships among species of Alopoglossus based on the mitochondrial gene ND4. Cis-Andean [east of the Andes] and Trans-Andean [west of the Andes] species are nested in two separate clades, suggesting that the uplift of these mountains had an important effect in the diversification of Alopoglossus. In addition, we present an updated key to the species of Alopoglossus.  相似文献   

16.

Background and Aims

Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene.

Methods

Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time.

Key Results

A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world.

Conclusions

Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups.  相似文献   

17.
Although mutualism between ants and flowering plants is wide spread, ant pollination has not evolved as a major pollination syndrome. So far ant pollination has been reported largely in herbaceous species, growing in warm and dry habitats. While studying pollination ecology of Syzygium species (Myrtaceae), growing in tropical forests of the Western Ghats, India, we observed one of the ant species, Technomyrmex albipes, to be the dominant floral visitor in S. occidentale (Bourd.) Chithra among a range of other insect (species of Xylocopa and Trigona, and Apis cerana) and bird visitors. We studied the role of ant species in pollination when compared to other floral visitors. The fruit set in flowers exclusively visited by T. albipes was significantly higher than those visited by any other visitor. The day and night exclusive pollination experiments allowing only T. albipes indicated diel pollination by T. albipes, which was the only active flower visitor during the night. The breeding system of the species was studied through controlled pollinations. The species is partially self-compatible and exhibits considerable autogamy.  相似文献   

18.
Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid‐altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump‐shaped species richness patterns were observed for several growth forms. A mid‐altitudinal richness peak was the result of a combination of climate‐related water–energy dynamics, species–area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high‐mountain regions of the tropics.  相似文献   

19.
《Mycological Research》2007,111(2):163-175
The two rust genera with the largest number of species are Puccinia Pers. ex Pers. and Uromyces (Link) Unger in the family Pucciniaceae (Uredinales). The hosts of these pathogens include representatives from almost all major angiosperm orders. Despite their ecological and economic importance, the status of Puccinia and Uromyces as distinct genera has been disputed, and little is known about relationships within and among these groups. Here we present phylogenetic analyses based on sequence data from the translation elongation factor 1α gene for over 60 species in the family Pucciniaceae. In particular, we investigate evolutionary relationships between Puccinia and Uromyces. A relatively smaller phylogeny using the beta-tubulin 1 gene was generated to test support for this phylogeny. Two main phylogenetic clades were identified and indicate at least two radiations within the Pucciniaceae. As expected neither Puccinia s. lat. nor Uromyces s. lat. are supported as monophyletic groups by either of the protein coding genes. However, both Puccinia sensu stricto (type P. graminis), and Uromyces sensu stricto (type U. appendiculatus) constitute distinct clades. In general, members of Uromyces spp. occurred scattered throughout the phylogeny suggesting that they represent more recent radiations. Several host families are found in both of the two main clades while two families, Poaceae and Cyperaceae, are separated, with one in each of the two main clades.  相似文献   

20.
Missoup, A.D., Nicolas, V., Wendelen, W., Keming, E., Bilong Bilong, C.F., Couloux, A., Atanga, E., Hutterer, R. & Denys, C. (2012). Systematics and diversification of Praomys species (Rodentia: Muridae) endemic to the Cameroon Volcanic Line (West Central Africa). —Zoologica Scripta, 41, 327–345. Our integrative approach combines two mitochondrial genes (16S and cyt b gene), two nuclear genes (exon 10 GHR and exon 1 IRBP) and craniometrical data to test the status and to infer phylogenetic relationships of the three Praomys Cameroon Volcanic Line endemics (P. hartwigi, P. morio and P. obscurus). The taxonomic rank of the principal genus group is assessed and the mode of diversification of species of the P. tullbergi complex in Afrotropical forests is discussed based on estimates of times to the most recent common ancestors and on tree topologies. This study documents for the first time the molecular and morphometrical distinctiveness of P. hartwigi and P. morio within the P. tullbergi species complex. Further studies including specimens of P. hartwigi from all its distribution range are needed to conclude on the status of P. obscurus. The monophyly of the genus Praomys is refuted. Times to the most recent common ancestors of major clades within the P. tullbergi species complex are estimated for the last 2.5 Mya and during the last 1 or 2 Mya for different species or forms. The lowland forest refuge hypothesis might well explain the diversification of P. misonnei, P. rostratus and P. tullbergi in the guineo‐congolese forest block. The isolation of montane forests could have facilitated the divergence between the two montane forest forms P. hartwigi and P. obscurus and between populations of P. morio from the continent and those from the island of Bioko. Praomys populations (species) that inhabit the Cameroon Volcanic Line Praomys probably originated as lowland forms subsequently specialized to highland conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号