首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in situ Raman microspectroscopic properties of an Antarctic fungus are investigated to assess the nature and the spatial localization of the main chromophores and to study their spectral changes under enhanced UV-B irradiation. The Raman spectroscopic features of spores in situ are consistent with those of carotenoid-like pigments. In particular, the Raman shifts seem to be related either to the frequency modes of long conjugated double-bond carotenoids or to protein bound beta-carotene. The spectroscopic analysis at different spore depths clearly shows the strongest Raman signal arises from cell wall and membrane structures. The intensity of such a signal shows a drastic reduction upon UV-B irradiation without any significant frequency change. The use of Raman microspectroscopy for nondestructively monitoring the UV-B effects on Arthrobotrys ferox spores is also discussed.  相似文献   

2.
Two-photon confocal microscopy is a new technology useful in nondestructive analysis of tissue. The pattern generated from laser-excited autofluorescence and second harmonic signals can be analyzed to construct a three-dimensional, microanatomical, structural image. The healing of full-thickness guinea pig skin wounds was studied over a period of 28 days using two-photon confocal microscopy. Three-dimensional data were rendered from two-dimensional images and compared with conventional, en face, histologic sections. Two-photon confocal microscopy images show resolution of muscle, fascia fibers, collagen fibers, inflammatory cells, blood vessels, and hair. Although these images do not currently have the resolution of standard histology, the ability to noninvasively acquire three-dimensional images of skin promises to be an important tool in wound-healing studies.  相似文献   

3.
Two-photon (2P) ratiometric redox fluorometry and microscopy of pyridine nucleotide (NAD(P)H) and flavoprotein (FP) fluorescence, at 800-nm excitation, has been demonstrated as a function of mitochondrial metabolic states in isolated adult dog cardiomyocytes. We have measured the 2P-excitation spectra of NAD(P)H, flavin adenine dinucleotide (FAD), and lipoamide dehydrogenase (LipDH) over the wavelength range of 720-1000 nm. The 2P-excitation action cross sections (sigma2P) increase rapidly at wavelengths below 800 nm, and the maximum sigma2P of LipDH is approximately 5 and 12 times larger than those of FAD and NAD(P)H, respectively. Only FAD and LipDH can be efficiently excited at wavelengths above 800 nm with a broad 2P-excitation band around 900 nm. Two autofluorescence spectral regions (i.e., approximately 410-490 nm and approximately 510-650 nm) of isolated cardiomyocytes were imaged using 2P-laser scanning microscopy. At 750-nm excitation, fluorescence of both regions is dominated by NAD(P)H emission, as indicated by fluorescence intensity changes induced by mitochondrial inhibitor NaCN and mitochondria uncoupler carbonyl cyanide p-(trifluoromethoxy) phenyl hydrazone (FCCP). In contrast, 2P-FP fluorescence dominates at 900-nm excitation, which is in agreement with the sigma2P measurements. Finally, 2P-autofluorescence emission spectra of single cardiac cells have been obtained, with results suggesting potential for substantial improvement of the proposed 2P-ratiometric technique.  相似文献   

4.
Studies on the stress resistance of insect-pathogenic fungi are very important to better understand the survival of these organisms in the environment. In this study, we examined the cold activity (8 ± 1 °C for 7 days), UV-B tolerance (Quaite-weighted UV-B irradiance at 847.90 mW m−2 for 1, 2, 3, and 4 h), and wet-heat tolerance (45 °C for 1, 2, 3, and 4 h) of two isolates of Tolypocladiumcylindrosporum (ARSEF 3392 and 5558), one isolate of Tolypocladium geodes (ARSEF 3275), and two isolates of Tolypocladium inflatum (ARSEF 4772 and 4877) based on their germination, compared with Metarhizium robertsii (ARSEF 2575). After 3 h of UV-B exposure, T. cylindrosporum germinated at a greater rate than the other Tolypocladium species and had similar viability to that of the M. robertsii. Most Tolypocladium isolates, however, were less UV-B tolerant than M. robertsii. The T.cylindrosporum isolates were also the most thermotolerant, with similar tolerance to the M. robertsii. The isolates of T. inflatum and T. geodes, which had similar heat tolerance, were the least heat tolerant compared with the isolates of T. cylindrosporum and M. robertsii. After 4 h of heat exposure, the germination of T. inflatum and T. geodes isolates was not significantly different. For cold activity, both T.cylindrosporum isolates germinated to ca. 100% in only 3 days. Approximately 50% of the two T. inflatum isolates germinated, and less than 5% of T. geodes germinated after 3 days. All fungal isolates, however, completely germinated by the seventh day, except M.robertsii. The isolates of T. cylindrosporum, therefore, were the most heat and UV-B tolerant, and had the highest cold activity compared to the other species. The tolerance of M. robertsii to UV-B radiation and heat was similar to that of T.cylindrosporum.  相似文献   

5.
6.
Huiskes  A.H.L.  Lud  D.  Moerdijk-Poortvliet  T.C.W. 《Plant Ecology》2001,154(1-2):75-86
Patches of vegetation of six common species growing on Léonie Island (67°35 S, 68°20 W), Antarctic Peninsula region were covered with either UV-B transparent perspex screens or UV-B absorbing screens. Uncovered plots served as a control. Temperature and relative humidity were monitored during the austral summer under and outside the screens. The mean effective PSII quantum efficiency showed significant differences among the species, but not between the UV-B treatments. It was concluded that the temperature and the moisture status of the vegetation obscured any possible influence of UV-B treatment on the tteffective PSII quantum efficiency. he usefulness of various UV-B exclusion and supplementation methods used to study the influence of UV-B in the field is discussed.  相似文献   

7.
8.
Since ovarian follicles appear to be randomly oriented with respect to the plane of the section, the method of sectioning and examining follicles at their maximum diameter described here allows direct comparison between oocyte populations of women and small differences can be detected. Re-sectioning for EM allows selected follicles of interest to be examined at a higher resolution.  相似文献   

9.
Lud  D.  Huiskes  A.H.L.  Moerdijk  T.C.W.  Rozema  J. 《Plant Ecology》2001,154(1-2):87-99
We report a long-term experiment on the photosynthetic response of natural vegetation of Deschampsia antarctica (Poaceae) and Turgidosculum complicatulum (Lichenes) to altered UV-B levels on Léonie Island, Antarctica.UV-B above the vegetation was reduced by filter screens during two seasons. Half of the screens were transparent to UV-A and UV-B (ambient treatment) or absorbing UV-B and part of the UV-A (below-ambient treatment). Half of the wedge- shaped filters had side walls leading to an enhancement of the daily mean temperature in summer by 2–4 °C, simulating rising mean air temperature on the Antarctic Peninsula. The other half of the filters were without side walls resulting in close-to-ambient temperature underneath. Plots without filters served as controls.UV-B supplementation of an extra 1.3 kJ UV-BBE was achieved using UV-mini-lamp systems during 15 days in the second season.We found no evidence that altered incident UV-B levels and temperature had an effect on maximum photosystem II efficiency (F v/F m) and effective photosystem II efficiency (F/F m) in both species. UV-B reduction did not influence contents of chlorophyll, carotenoids and methanol-soluble UV absorbing compounds in D. antarctica.Flowering shoot length of D. antarctica was not affected by UV-B reduction. Temperature enhancement tended to result in longer inflorescence axes. Results of two austral summer seasons of UV- reduction in natural stands of D. antarctica and T. complicatulum suggest that current ambient levels of UV-B do not have a direct effect on the photosynthetic performance and pigment contents of these species. Cumulative effects on growth have not been recorded after two years but can not be excluded on a longer term.  相似文献   

10.
The barrier function of skin resides in the lipid components of the stratum corneum, particularly their spatial organisation. FTIR spectroscopy has already been used as a relevant tool to study this lipid organisation: IR vibration band shifts have been attributed to the variations in lipid organisation induced by temperature. Our study included a stratum corneum model, composed of the three main lipids: palmitic acid as an example of fatty acids, cholesterol and ceramide III as an example of ceramide. Different films with various ratios of these lipids were studied. In our analytical strategy, the interest of using a chemometric analysis of global data obtained from ATR-FTIR spectra to highlight the main interactions involved in the molecular organisation of lipids has been demonstrated. Two kinds of interaction between the three main lipids have been shown: a non polar interaction between the long hydrocarbon chains and a polar interaction as the hydrogen bonding between polar functional groups. By varying the lipid ratio, we have shown first that the relative importance of each interaction was modified, second, that the induced modification of organisation can be detected by chemometric analysis of the ATR-FTIR spectra. The role of each kind of lipid in the organisation has been discussed. In conclusion, associating the ATR-FTIR with chemometric treatment is a promising tool: firstly, to understand the consequence of lipid relative compositions on the structural organisation of the stratum corneum, secondly, to show the relationship between lipid organisation and percutaneous penetration data. Indeed, this methodology will be transposed to in vivo studies with IR measurements through a probe.  相似文献   

11.
12.
A new technique for studying axonal transport has been developed. The technique, which is based on histofluorescence techniques, enables the measurement of several different accumulated substances and parameters within a single nerve in relation to a nerve crush or local cooling. Any substance that can be made to fluoresce can be measured. The tissue is treated according to the formaldehyde-induced fluorescence method of Hillarp and Falck for visualization of monoamines, or according to the indirect immunofluorescence method. For immunofluorescence the nerve is cryostat-sectioned and various sections can be incubated with primary antisera against different antigens. After incubation and mounting the sections are placed in a cytofluorimeter (Leitz MPV II). They are passed under a measuring slit at a steady speed by a motor driven cross-table. The fluorescence intensity passing through the measuring slit is continuously registered by a recording unit with an integrator. This recorder produces a graphical nerve accumulation profile, and the area under the profile, relating to the fluorescence, is expressed in arbitrary units. This article presents data on the accumulation of noradrenaline, dopamine beta-hydroxylase, and tyrosine hydroxylase in crush-operated rat sciatic nerve. The time-course accumulations for noradrenaline (visualized by the Falck and Hillarp method) and dopamine beta-hydroxylase (visualized by immunofluorescence) demonstrated a striking similarity, which is to be expected since the two substances are stored in the same organelle. Tyrosine hydroxylase (visualized by immunofluorescence) showed a slower accumulation with time, but faster than would be expected had the enzyme been 100% soluble. Colchicine but not lumi-colchicine blocked the transport of noradrenaline organelles. With the new scanning technique we have the potential to study accumulation profiles of several different substances within a single nerve. Morphometric data, morphological observations, and photograph documentation of the same nerve section are also available.  相似文献   

13.
Barley (Hordeum vulgare), corn (Zea mays), bean (Phaseolus vulgaris), and radish (Raphanus sativus) seedlings were continuously irradiated under a lighting device for 5–10 d at an increased ultraviolet (UV)-B fluence rate. In their growth parameters, composition, and leaf surface, these four species responded differently to the increased UV-B exposure. Bean seedlings suffered the most serious effects, radish and barley less, and corn was hardly influenced at all. In all plant species, the fresh weight, the leaf area, the amounts of chlorophylls, carotenoids and the galactolipids of the chloroplasts were reduced. The lipid content of the corn and bean seedlings also diminished. But all the irradiated plants showed a rise in their protein content compared to the control plants. The content of flavonoids increased in barley and radish seedlings by about 50%. The effects on growth parameters and composition were more extensive with increasing UV-B fluence rates, at least as shown in the case of barley seedlings. The fresh weights fell proportionally with the chlorophylls and carotenoids. In contrast, the flavonoid content of barley leaves rose parallel to the increasing UV-B fluence rates and reached 180% of the value in the control plants with the highest UV-B fluence rate. Scorching appeared regularly in the form of bronze leaf discoloration at the highest UV-B fluence rates. Scanning electron micrographs of the leaf surface of UV-B irradiated plants showed deformed epidermal structures.Abbreviations MGDG monogalactosyldiglyceride - DGDG digalactosyldiglyceride - SL sulfoquinovosyldiglyceride - PG phosphatidylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - LA leaf are - FW fresh weight - DW dry weight - SEM scanning electron microscopy - C total carotenoids - Chl total chlorophyll  相似文献   

14.
15.
Autofluorescence of aldehyde-fixed neural tissue often complicates the use of fluorescence microscopy. Background fluorescence can be notably reduced or eliminated by irradiation with light before treatment with fluorescence probes, resulting in a higher contrast without adversely affecting the staining probabilities.  相似文献   

16.
Two-photon microscopy: shedding light on the chemistry of vision   总被引:2,自引:0,他引:2  
Two-photon microscopy (TPM) has come to occupy a prominent place in modern biological research with its ability to resolve the three-dimensional distribution of molecules deep inside living tissue. TPM can employ two different types of signals, fluorescence and second harmonic generation, to image biological structures with subcellular resolution. Two-photon excited fluorescence imaging is a powerful technique with which to monitor the dynamic behavior of the chemical components of tissues, whereas second harmonic imaging provides novel ways to study their spatial organization. Using TPM, great strides have been made toward understanding the metabolism, structure, signal transduction, and signal transmission in the eye. These include the characterization of the spatial distribution, transport, and metabolism of the endogenous retinoids, molecules essential for the detection of light, as well as the elucidation of the architecture of the living cornea. In this review, we present and discuss the current applications of TPM for the chemical and structural imaging of the eye. In addition, we address what we see as the future potential of TPM for eye research. This relatively new method of microscopy has been the subject of numerous technical improvements in terms of the optics and indicators used, improvements that should lead to more detailed biochemical characterizations of the eyes of live animals and even to imaging of the human eye in vivo.  相似文献   

17.
Super-resolution microscopy is a series of imaging techniques that bypass the diffraction limit of resolution. Since the 1990s, optical approaches, such as single-molecular localization microscopy, have allowed us to visualize biological samples from the sub-organelle to the molecular level. Recently, a chemical approach called expansion microscopy emerged as a new trend in super-resolution microscopy. It physically enlarges cells and tissues, which leads to an increase in the effective resolution of any microscope by the length expansion factor. Compared with optical approaches, expansion microscopy has a lower cost and higher imaging depth but requires a more complex procedure. The integration of expansion microscopy and advanced microscopes significantly pushed forward the boundary of super-resolution microscopy. This review covers the current state of the art in expansion microscopy, including the latest methods and their applications, as well as challenges and opportunities for future research.  相似文献   

18.
A method for determination of the interaction between pectins and proteins was developed using cross-linked polygalacturonic acid (CLPG) as the pectic substrate and polygalacturonase-inhibiting proteins (PGIPs). Defined water-insoluble pectins were prepared by chemical substitutions with acetyl or methoxyl groups on CLPG. In the presence of 0.1 M NaCl, PGIPs fully bound to CLPG but not to cross-linked alginic acid (CLAL), which had a similar pK(a) to CLPG, suggesting that the inhibitor was not simply bound to the substrate by nonspecific electrostatic interaction. Optimum binding of PGIPs to CLPG occurred at pH 2.4 to 4.7. The binding ability of the inhibitor to CLPGs with degree of methylation (DM) of 66% or degree of acetylation (DAc) of 133% was not significantly changed. In contrast, the DM of 82% or 95% decreased the binding. These results indicated that the carboxylic groups of galacturonic acid residues were involved in the recognition of the substrate by PGIPs.  相似文献   

19.
Summary Genetic effects of pyrex-filtered sunlamp irradiation (primarily UV-B, 280–320 nm which is present in natural sunlight) were studied in diploid and haploid yeast strains designed to monitor the incidence of mitotic crossing over, mitotic gene conversion and mutations. Exposure to UV-B was found to be very effective in inducing all three types of genetic endpoints. These effects could be observed even after UV-B treatments resulting in no cellular inactivation. Comparative studies using filtered sunlamp radiation and germicidal UV radiation (254 nm) indicated that, at an equivalent survival level (including exposures causing little or no cell death), UV-B induced more gene convertants and that the kinetics of mutations induced by the two lights are demonstrably different.  相似文献   

20.
The terrestrial ecosystem of Antarctica are among the most extreme on earth, challenging the communities and making their existence difficult by rapidly increasing annual summer influx of solar ultraviolet radiations (UV-R), extremely cold conditions and lesser availability of nutrients. Spring time ozone depletion is due to release of chlorofluorocarbons in the earth atmosphere and is a serious cause of concern among environmentalists. Antarctic continent is mostly dominated by cryptogamic plants with limited distribution in different parts of the icy continent however; their distribution is mostly confined to Sub-Antarctic region. By the virtue of light requirement, cryptogams are exposed to extreme seasonal fluctuation in photosynthetically active radiation (PAR), and ultraviolet (UV) radiation which are closely associated with photosynthetic pigments in photoautotrophic organisms. Antarctic cryptogams cope up the stress imposed by UV radiation by the development of efficient systems for repairing damage by synthesis of screening compounds such as UV-B absorbing pigments and anthocyanin compounds. A major part of the UV absorbing compounds are appeared to be constitutive in lichens which are usnic acid, perlatolic acid and fumarphotocetraric acid which is particularly induced by UV-B. Secondary metabolites such as phenolics, atranorin, parietin and melanin also enhance the plant defense, by different molecular targets in specific solar irradiance and potential for increased antioxidative protection to UV induced vulnerability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号