首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Histone synthesis and deposition into specific classes of nuclei has been investigated in starved and conjugating Tetrahymena. During starvation and early stages of conjugation (between 0 and 5 hr after opposite mating types are mixed), micronuclei selectively lose preexisting micronuclear-specific histones α, β, γ, and H3F. Of these histones, only α appears to accumulate in micronuclear chromatin through active synthesis and deposition during the mating process. Curiously, α is not observed (by stain or label) in young macronuclear anlagen (4C, 10 hr of conjugation). Thus, young macronuclear anlagen are missing all of the histones which are known to be specific to micronuclei of vegetative cells. By 14–16 hr of conjugation, we observe active synthesis and deposition of macronuclear-specific histones, hv1, hv2, and H1, into new macronuclear anlagen (8C). Thus macronuclear differentiation seems well underway by this time of conjugation. It is also in this time period (14–16 hr) that we first detect significant amounts of micronuclear-specific H1-like polypeptides β and γ in micronuclear extracts. These polypeptides do not seem to be synthesized during this period, which suggests that β and γ are derived from a precursor molecule(s). Since these micronuclear-specific histones do not appear in micronuclear chromatin until after other micronuclei have been selected to differentiate as macronuclei, we suspect that micronuclear differentiation is also an important process which occurs in 10–16 hr mating cells. Our results also suggest that proteolytic processing of micronuclear H3S into H3F (which occurs in a cell cycle dependent fashion during vegetative growth) is not operative during most if not all of conjugation. Thus micronuclei of mating cells contain only H3S which also seems consistent with the fact that some micronuclei differentiate into new macronuclei (micronuclear H3S is indistinguishable from macronuclear H3). Interestingly, the only H3 synthesized and deposited into the former macronucleus of mating cells is the relatively minor macronuclear-specific H3-like variant, hv2. These results demonstrate that significant histone rearrangements occur during conjugation in Tetrahymena in a manner consistent with the fact that during conjugation some micronuclei eventually differentiate into new macronuclei. Our results suggest that selective synthesis and deposition of specific histones (and histone variants) plays an important role in the nuclear differentiation process in Tetrahymena. The disappearance of specific histones also raises the possibility that developmentally regulated proteolytic processing of specific histones plays an important (and previously unsuspected) role in this system.  相似文献   

2.
3.
Tetrahymena in the log phase of growth were pulse labeled with uridine-3H, fixed in acetic-alcohol, extracted with DNase, and embedded in Epon. 0.5-µ sections were cut, coated with Kodak NTB-2 emulsion, and developed after suitable exposures. Grains were counted above macronuclei, above 1000 micronuclei, and above 1000 micronucleus-sized "blanks" which were situated next to micronuclei in the visual field by means of a camera lucida. An analysis of grain counts showed that micronuclei were less than ½000 as active as macronuclei on the basis of grains per nucleus. Since micronuclei contained, on the average, about ½0 as much DNA as macronuclei, micronuclear DNA had less than 1% of the specific activity of macronuclear DNA in RNA synthesis. However, even this small amount of apparent incorporation was not significantly different from zero. Comparisons of the frequency distributions of labeled micronuclei with those of micronuclear "blanks" showed no evidence of a small population of labeled nuclei such as might be expected if micronuclei synthesized RNA for only a brief portion of the cell cycle. We conclude from these studies that there is no detectable RNA synthesis in Tetrahymena micronuclei during vegetative growth and reproduction.  相似文献   

4.
The germ nuclei (micronuclei) of Paramecium tetraurelia can be eliminated successfully by irradiating the micronucleus with an argon-ion laser microbeam after sensitization with the dye acridine orange. No immediate cytological damage of the irradiated micronuclei is visible, but they are lost before they enter the next division. This method produces cell lines lacking micronuclei (i.e., amicronucleates). These amicronucleates provide favorable materials for the study of micronuclear functions as well as intra-and inter-specific nucleocytoplasmic interactions. Some preliminary observations show that the micronucleus is not required for macronuclear fragmentation and macronuclear regeneration during sexual reproduction, but suggest that the micronucleus might participate in some asexual cellular function in addition to their gametic role.  相似文献   

5.
SYNOPSIS. During conjugation in Spirostomum ambiguum, the micronuclei divide thrice before synkaryon formation and 20 times thereafter. During the first meiotic division 18-24 bivalents, each about 0.5 μ or less appear on the spindle. They separate and pass to the poles. The details of the 2nd and 3rd prezygotic divisions and synkaryon formation by reciprocal exchange of gametic nuclei resemble those described for other ciliates in the literature. The synkaryon divides twice resulting in 4 nuclei; 2 of them become micronuclei and the remaining 2 macronuclear anlagen. The micronuclei enter into division, but this division is arrested in metaphase. The chromosomes in the macronuclear anlagen resemble those appearing in the Ist meiotic division in shape and size. In their maximum stage of development the macronuclear chromosomes are at least 3-4 times larger than those appearing in the arrested micronuclear metaphases in the same cell. There is no banding pattern of the chromosomes and therefore the possible extent of polyteny is difficult to evaluate. The chromosomes duplicate 3-4 times resulting in about 200–250 before they become indistinct as separate entities. Spirostomum is the only nonhypotrichous ciliate in which these cytologic features are described.  相似文献   

6.
I obtained the monoclonal antibody 93A against a micronuclear antigen of the ciliate Paramecium caudatum . Immunocytochemical observations showed that the antigen 93A appeared in some portion of the micronucleus in every stage of life cycle. In dividing micronuclei, the antigen appeared mainly in their both poles and in fibrous structures between the poles. These results suggest that the micronuclear antigen 93A may be a component of microtubule organizing center and spindles. During nuclear differentiation in P. caudatum , four among eight postzygotic micronuclei differentiate new macronuclear anlagen and one becomes a new micronucleus and the remaining three degenerate. The micronuclear antigen 93A appeared in all of the eight nuclei in the early stage of macronuclear differentiation but then disappeared in the four macronuclear anlagen and eventually persisted only in the new micronucleus, showing that the newly developing macronuclear anlagen lose the micronuclear antigen 93A during their differentiation.  相似文献   

7.
A method for the isolation of micronuclear DNA from Paramecium tetraurelia has been developed. After cell lysis, a low speed centrifugation at 1,000 g is used to remove all of the unbroken cells and macronuclei and approximately two thirds of the macronuclear fragments. Next a higher speed centrifugation of 9,000 g sediments the micronuclei and frees them from small particulates and soluble constituents. Advantage is then taken of the fact that micronuclei have a lower density than do macronuclear fragments in 45%–60% Percoll. Micronuclei float to the top during centrifugation at 24,000 g , while macronuclear fragments sediment. After several cycles of centrifugation in Percoll, the micronuclei, although heavily contaminated with cytoplasmic components, are essentially free of macronuclei and macronuclear fragments. Micronuclear DNA can then be extracted from the suspension. The whole procedure is very rapid and in about an hour micronuclear and macronuclear DNA can be separated. About 2 μ g of micronuclear DNA can be obtained from 6 times 107 paramecia. We find that there are internal sequences in the micronuclear A gene DNA in wild type cells which are eliminated when the micronuclei develop into macronuclei. They yield unique restriction fragments for micronuclei and macronuclei. Therefore the purity of the preparations is easily monitored by probing Southern blots of restriction enzyme-digested DNA with the cloned A gene. No differences have been found between the micronuclear A gene in wild type and the d48 mutant.  相似文献   

8.
Each cell of Paramecium caudatum has a germinal micronucleus. When a bi-micronucleate state was created artificially by micronuclear transplantation, both micronuclei divided for at least 2 cell cycles after nuclear transplantation. However, this bi-micronucleate state was unstable and reduced to a uni-micronucleate state after several fissions. Although the number of micronuclei was usually 1 during the vegetative phase, 4 presumptive micronuclei differentiated after conjugation. At the first post-conjugational fission, only 1 of the 4 micronuclei divided, indicating that there is tight regulation of micronuclear number in exconjugants. Micronuclei that did not divide at the first post-conjugational fission may persist through the first and second post-conjugational cell cycles. The decision to divide appears to be separate from the decision to degenerate, as evidenced by division of a remaining micronucleus upon removal of the dividing micronucleus at the first division. Degeneration of micronuclei in exconjugants differs from that of haploid nuclei after meiosis. Nutritional state affected micronuclear degeneration. Under well-fed conditions, the micronuclei destined to degenerate lost the ability to divide earlier than after starvation treatment, suggesting that micronuclear degeneration is an "apoptotic" phenomenon, probably under the control of the new macronuclei (macronuclear anlagen).  相似文献   

9.
Macro- and micronuclei were isolated from Tetrahymena pyriformis (Syngen 1, strain WH-6) and their DNAs compared by isopycnic centrifugation in neutral and alkaline CsCl, by analysis of thermal denaturation properties and by molecular hybridization. Unlike the situation observed in Stylonychia the buoyant densities and thermal denaturation patterns of Tetrahymena macro- and micronuclear DNAs were virtually identical—the only observable differences bordering on the limits of resolution of these techniques. DNA was isolated from the two nuclei which had been labelled with different radioactive isotopes (i.e. 14C-thymidine and 3H-thymidine), and the renaturation kinetics of mixtures of macro- and micronuclear DNA were examined using a single-strand specific deoxyribonuclease (S1). Renaturation kinetics obtained using varying ratios of macro- and micronuclear DNA suggested that 80–90% of the sequences present in micronuclei were present in similar amounts in macronuclei. However, careful analyses of the renaturation kinetics indicate that approximately 10–20% of the sequences found in micronuclei are probably absent in macronuclei, and that most of these sequences are probably moderately repetitive (100 copies per genome or less). These findings place severe constraint on possible models concerning the structure of the Tetrahymena macronucleus, and are very different from the situation observed in Stylonychia where it has been suggested that only a small percentage of the sequences in micronuclei are present in significant amounts in macronuclei. Nonetheless, these results along with those in Stylonychia can be taken as an indication that the loss or under-replication of some DNA sequences accompanies macronuclear differentiation in ciliates.  相似文献   

10.
A method for the isolation of micronuclear DNA from Paramecium tetraurelia has been developed. After cell lysis, a low speed centrifugation at 1,000 g is used to remove all of the unbroken cells and macronuclei and approximately two thirds of the macronuclear fragments. Next a higher speed centrifugation of 9,000 g sediments the micronuclei and frees them from small particulates and soluble constituents. Advantage is then taken of the fact that micronuclei have a lower density than do macronuclear fragments in 45%-60% Percoll. Micronuclei float to the top during centrifugation at 24,000 g, while macronuclear fragments sediment. After several cycles of centrifugation in Percoll, the micronuclei, although heavily contaminated with cytoplasmic components, are essentially free of macronuclei and macronuclear fragments. Micronuclear DNA can then be extracted from the suspension. The whole procedure is very rapid and in about an hour micronuclear and macronuclear DNA can be separated. About 2 micrograms of micronuclear DNA can be obtained from 6 x 10(7) paramecia. We find that there are internal sequences in the micronuclear A gene DNA in wild type cells which are eliminated when the micronuclei develop into macronuclei. They yield unique restriction fragments for micronuclei and macronuclei. Therefore the purity of the preparations is easily monitored by probing Southern blots of restriction enzyme-digested DNA with the cloned A gene. No differences have been found between the micronuclear A gene in wild type and the d48 mutant.  相似文献   

11.
12.
ABSTRACT The micronuclear version of the gene encoding β-telomere binding protein (β-TBP) in Oxytricha nova has been sequenced and compared to the macronuclear β-TBP gene, previously described. The micronuclear gene contains three AT-rich internal eliminated sequences (IES) of 37, 40, and 43 bp and four macronuclear destined sequences (MDS). The IES interrupt the gene once near the 5′ end of the coding region and twice in the 3′ trailer downstream from the TGA stop codon. The sequences of the micronuclear and macronuclear genes are colinear. Thus, the micronuclear β-TBP gene is not scrambled, which contrasts with the highly scrambled state among the 14 MDS in the micronuclear α;-TBP gene.  相似文献   

13.
Ciliates are unicellular eukaryotic organisms containing two types of nuclei: macronuclei and micronuclei. After the sexual pathway takes place, a new macronucleus is formed from a zygote nucleus, whereas the old macronucleus is degraded and resorbed. In the course of macronuclear differentiation, polytene chromosomes are synthesized that become degraded again after some hours. Most of the DNA is eliminated, and the remaining DNA is fragmented into small DNA molecules that are amplified to a high copy number in the new macronucleus. The protein Pdd1p (programmed DNA degradation protein 1) from Tetrahymena has been shown to be present in macronuclear anlagen in the DNA degradation stage and also in the old macronuclei, which are resorbed during the formation of the new macronucleus. In this study the identification and localization of a Pdd1p homologous protein in Stylonychia (Spdd1p) is described. Spdd1p is localized in the precursor nuclei in the DNA elimination stage and in the old macronuclei during their degradation, but also in macronuclei and micronuclei of starved cells. In all of these nuclei, apoptotic-like DNA breakdown was detected. These data suggest that Spdd1p is a general factor involved in programmed DNA degradation in Stylonychia.  相似文献   

14.
Macronuclei of Tetrahymena pyriformis contain approximately 200 copies of the genes for 25S and 17S ribosomal RNA (rRNA) per haploid genome. Micronuclei, however, contain only a few copies of the rRNA genes per haploid complement. Since macronuclei develop from, products of meiosis, fertilization and division of micronuclei, we suggested that the multiple copies of the rRNA genes in macronuclei are generated by amplification of the small number of genes in micronuclei (Yao et al., 1974). This process provides a simple mechanism for maintaining the homogeneity of the repeated rRNA genes. To test if amplification is a general mechanism operating on all repeated genes in Tetrahymena, we have examined the numbers of 5S RNA and tRNA genes in macro- and micronuclei. 5S RNA was purified by polyacrylamide gel electrophoresis and hybridized to saturation against macro- and micronuclear DNA. Approximately 0.013–0.014% of macronuclear DNA and about 0.009% of micronuclear DNA is complementary to 5S RNA. After correcting for the differences in the DNA sequence complexities between the two nuclei, we calculate that there are 300–350 5S genes per haploid macro- or micronuclear genome. From these data we conclude that there is little or no detectable amplification of the 5S genes in macronuclei relative to micronuclei. Similar studies using tRNA indicate that these genes are also highly repeated in both nuclei; about 800 genes are present per haploid genome. Thus, amplification from a small number of genes can be excluded as the mechanism for generating the repeated copies of the 5S and tRNA genes in Tetrahymena and it is likely that another, as yet unidentified, mechanism operates to maintain the homogeneity of these genes.  相似文献   

15.
Nuclear reorganization, which results in the differentiation between macronuclear anlagen and micronuclei during autogamy or conjugation in Paramecium tetraurelia, was compared in wild-type cells and in two mutants, mic44 and kin241, which form abnormal numbers of macronuclear anlagen and micronuclei. Our observations show that all macronuclear anlagen derive from the nuclei positioned at the posterior pole of the cell at the second postzygotic division. This posterior localization is transient and correlated with a marked change in cell shape and decrease of cell length. These results suggest that cytoplasmic or cortical factors precisely located in the posterior pole are essential to trigger macronuclear differentiation and that the control of nuclear positioning is dependent upon precise modifications of cell shape.  相似文献   

16.
G-DNA is a four-stranded DNA structure with diverse putative biological roles. We have previously purified and cloned a novel G-DNA-binding protein TGP1 from the ciliate Tetrahymena thermophila. Here we report the molecular cloning of TGP3, an additional G-DNA-binding protein from the same organism. The TGP3 cDNA encodes a 365 amino acid protein that is homologous to TGP1 (34% identity and 44% similarity). The proteins share a sequence pattern that contains two novel repetitive and homologous motifs flanking an extensively hydrophilic and basic region. A nuclear fractionation experiment showed that TGP1 and TGP3 activities are localized predominantly in the nuclear fraction. To further investigate the biological roles of the proteins in vivo, we have generated separate macronuclear gene knockout (KO) strains (TGP1KO and TGP3KO) for each of the two genes. Southern blot analysis demonstrated that the macronuclear copies of each gene were completely disrupted. Mobility shift assays showed that the corresponding G-DNA-binding activity for each protein was abolished in the KO strains. Growth analysis showed that both KO strains grew at near wild-type rates, indicating that neither of the genes is essential for cell growth. Nevertheless, nuclear staining analysis revealed that both TGP1KO and TGP3KO cells have an increased occurrence (more than 2-fold) of extra micronuclei, implying faulty control of micronuclear division in the KO cells.  相似文献   

17.
Autoradiography has been used to confirm and to extend previous microspectrophotometric studies (Doerder and DeBault, 1975) on the timing of DNA synthesis during conjugation in Tetrahymena thermophila. The majority of DNA synthesis occurs at the expected periods preceding gamete formation and the two postzygotic divisions and during macronuclear development. DNA in new macronuclei is endoreplicated in an extremely discontinuous fashion. Under starvation conditions, the first endoreplication (2C to 4C) occurs immediately after the second postzygotic division when both new macronuclei and new micronuclei replicate. The second endoreplication (4C to 8C) does not occur until after separation of conjugants. If mating cells are kept under prolonged starvation conditions (20-24 hr), refeeding induces a partially synchronous division, after which an unexpectedly high percentage of cells incorporate tritiated thymidine into both macro- and micronuclei. Two previously undescribed periods of DNA synthesis were observed in the micronuclei of conjugating Tetrahymena. The first occurs during the early stages of meiotic prophase, before full crescent elongation. The second takes place in an extended period corresponding to macronuclear anlagen development, before conjugants have separated. CsCl gradient analyses indicate that, in micronuclear fractions, only main band DNA is being synthesized in both of these periods. However, in macronuclear fractions from both stages, a significant fraction (approximately 20%) of the DNA being synthesized has the buoyant density of ribosomal DNA. The finding that macro- and micronuclear DNA can be synthesized simultaneously in a single cell, both during conjugation and after refeeding starved exconjugants, raises interesting questions of how macro- or micronuclear-specific histones are targeted to the appropriate nuclei.  相似文献   

18.
19.
Histones were extracted from isolated macro- and micronuclear fractions and from nucleohistone fibers which were prepared from the isolated macronuclear fraction. Analysis of these histones by polyacrylamide gel electrophoresis indicated that there are electrophoretic differences between the histones of macro- and micronuclei.  相似文献   

20.
In order to study the derivation of the macronuclear genome from the micronuclear genome in Oxytricha nova micronuclear DNA was partially digested with EcoRI, size fractionated, and then cloned in the lambda phage Charon 8. Clones were selected a) at random b) by hybridization with macronuclear DNA or c) by hybridization with clones of macronuclear DNA. One group of these clones contains only unique sequence DNA, and all of these had sequences that were homologous to macronuclear sequences. The number of macronuclear genes with sequences homologous to these micronuclear clones indicates that macronuclear sequences are clustered in the micronuclear genome. Many micronuclear clones contain repetitive DNA sequences and hybridize to numerous EcoRI fragments of total micronuclear DNA, yielding similar but non-identical patterns. Some micronuclear clones containing these repetitive sequences also contained unique sequence DNA that hybridized to a macronuclear sequence. These clones define a major interspersed repetitive sequence family in the micronuclear genome that is eliminated during formation of the macronuclear genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号