首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Kaori Ohki  Tetzuya Katoh 《Planta》1976,129(3):249-251
Summary When cells of Anabaena variabilis, all the phycobilin pigments of which had been newly synthesized in the dark, were excited by light absorbed in phycocyanin, the fluorescence emission spectrum showed a peak corresponding to the emission from allophycocyanin, but no emission from chlorophyll. These cells were active in photosynthesis and, when excited by light absorbed by chlorophyll, the emitted fluorescence was characteristic of photosystem II chlorophyll. This indicates that dark synthesized phycocyanin is capable of excitation transfer to allophycocyanin but not to photosystem II chlorophyll.Abbreviation CMU 3-(p-chlorophenyl)-1,1-dimethylurea  相似文献   

2.
The addition of a nitrogen (nitrate) and carbon sources (acetate, citrate and fructose) and phosphate deficiency (nitrate medium deficient in phosphate) under unaerated conditions induced akinete differentiation inAnabœna torulosa. Aerated cultures of this organism in these nutrients did not differentiate akinetes. Oxygen evolution by aerated cultures was higher when compared to unaerated cultures, which concurred with high chlorophyll content of aerated cultures. Nitrate nitrogen supported high phycocyanin content in unaerated cultures, phycocyanin and allophycocyanin contents were low under aerated conditions. The contents of phycocyanin, allophycocyanin, phycoerythrin and carotenoids gradually decreased at the mature akinete phase. Under aerated conditions, chlorophyll content rose and the content of all the pigments increased with the growth rate of the organism.  相似文献   

3.
Akinetes are spore‐like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light intensity and quality, temperature, and nutrient deficiency. Here, we report that deprivation of potassium ion (K+) triggers akinete development in the cyanobacterium Aphanizomenon ovalisporum. Akinetes formation is initiated 3 d–7 d after an induction by K+ depletion, followed by 2–3 weeks of a maturation process. Akinete formation occurs within a restricted matrix of environmental conditions such as temperature, light intensity or photon flux. Phosphate is essential for akinete maturation and P‐limitation restricts the number of mature akinetes. DNA replication is essential for akinete maturation and akinete development is limited in the presence of Nalidixic acid. While our results unequivocally demonstrated the effect of K+ deficiency on akinete formation in laboratory cultures of A. ovalisporum, this trigger did not cause Cylindrospermopsis raciborskii to produce akinetes. Anabaena crassa however, produced akinetes upon potassium deficiency, but the highest akinete concentration was achieved at conditions that supported vegetative growth. It is speculated that an unknown internal signal is associated with the cellular response to K+ deficiency to induce the differentiation of a certain vegetative cell in a trichome into an akinete. A universal stress protein that functions as mediator in K+ deficiency signal transduction cascade, may communicate between the lack of K+ and akinete induction.  相似文献   

4.
Abstract
Phycochromes b and d, two types of photoreversibly photochromic pigments previously extracted from the blue-green alga Tolypothrix distorta , which contains phycoerythrocyanin, have now been found in three Anabaena strains also containing phycoerythrocyanin. Tests for the presence of phycochromes b and d in a number of blue-green algae lacking phycoerythrocyanin have been negative. The possibility that phycochrome b-type absorbance changes are due to changes in the α-subunit of phycoerythrocyanin is discussed.  相似文献   

5.
This paper deals with the role of light in the germination of akinetes of Anabaena azollae. The two maxima action spectra are situated at 385 and 615 nm and the stimulation of the germination process by photosynthate was confirmed. The photoreceptor absorbing at 385 nm was identified as a flavin and that at 615 nm as a phytochrome. A model is suggested for the mode of action of light in the germination of akinetes of blue-green algae.C. Tsui  相似文献   

6.
Seasonal dynamics of Anabaena flos-aquae (Lyngb.) Breb., including vegetative cells, akinetes and akinete envelopes, in bottom sediments and water column at both littoral and deeper central stations of a small Siberian reservoir was studied. Two types of akinetes were observed: in the first half of summer Anabaena formed akinetes, which served for vegetative reproduction and germinated in water column soon after differentiation, while in the second half of summer the akinetes produced served as a resting stages, which were deposited to bottom sediments. Canonical correlation analyses revealed that decrease of water temperature was the main environmental factor that stimulated the akinete formation. In contrast to the general opinion, concentration of inorganic phosphorus slightly, but positively influenced the akinete formation. Thus, akinetes formed in response to the temperature decrease, needs a certain level of this nutrient. At littoral and open-water stations abundance and seasonal dynamics of akinetes in water column and their sinking pattern were very similar. However, seasonal dynamics of abundance of akinetes in sediments in these two reservoir locations differed: whereas the abundance of akinetes in open water increased permanently during the summer, that in the littoral decreased soon after their sedimentation. The cause for decrease in abundance of akinetes in bottom sediments in winter is unknown.  相似文献   

7.
Standard sporulation medium was used to produce akinetes from vegetative cells ofAnabaena variabilis and culturedAnabaena azollae isolated fromAzolla mexicana. Singlecelled, axenic akinetes were incubated on BG-11 medium supplemented with 1% Bacto-agar. Three different sources of combined nitrogen–KNO3 (5 mM), NH4Cl(5 mM), and glutamine (5 mM)–were added singly or in combination with fructose (50 mM) to the BG-11 plates. The akinetes were incubated under continuous light (5500 lux) or in the dark at 25±2°C. Akinetes of both species germinated in the dark when BG-11 was supplemented with fructose. Akinetes incubated in the dark on plates containing NH4Cl and fructose germinated less than those germinated in the presence of fructose alone. Akinetes of both species germinated in the light.  相似文献   

8.
Differentiation of akinetes was investigated in the filamentous cyanobacterium Anabaena azollae Stras. In this organism all pre-existing vegetative cells are capable of developing into akinetes. Standard sporulation medium (SSM) was used to synchronously induce the formation of akinetes, while cultures in Allen and Arnon (AA/8) medium were used as controls.This paper describes the changes in photosynthetic pigments and total soluble proteins in these cultures over a 25-day period encompassing akinete differentiation. Heterocyst frequencies and nitrogenase activity were also monitored during the same period in both media. SDS-PAGE results indicated that specific proteins were synthesized in a manner correlated with akinete differentiation. The results demonstrate that in cultures undergoing akinete development, some of the photosynthetic pigments are maintained, nitrogen-fixation and heterocyst differentiation are suppressed, and the cells synthesize a variety of specific proteins.  相似文献   

9.
Exposure to blue light has previously been shown to induce the reversible quenching of fluorescence in cyanobacteria, indicative of a photoprotective mechanism responsible for the down regulation of photosynthesis. We have investigated the molecular mechanism behind fluorescence quenching by characterizing changes in excitation energy transfer through the phycobilin pigments of the phycobilisome to chlorophyll with steady-state and time-resolved fluorescence excitation and emission spectroscopy. Quenching was investigated in both a photosystem II-less mutant, and DCMU-poisoned wild-type Synechocystis sp. PCC 6803. The action spectra for blue-light-induced quenching was identical in both cell types and was dominated by a band in the blue region, peaking at 480 nm. Fluorescence quenching and its dark recovery was inhibited by the protein cross-linking agent glutaraldehyde, which could maintain cells in either the quenched or the unquenched state. We found that high phosphate concentrations that inhibit phycobilisome mobility and the regulation of energy transfer by the light-state transition did not affect blue-light-induced fluorescence quenching. Both room temperature and 77 K fluorescence emission spectra revealed that fluorescence quenching was associated with phycobilin emission. Quenching was characterized by a decrease in the emission of allophycocyanin and long wavelength phycobilisome terminal emitters relative to that of phycocyanin. A global analysis of the room-temperature fluorescence decay kinetics revealed that phycocyanin and photosystem I decay components were unaffected by quenching, whereas the decay components originating from allophycocyanin and phycobilisome terminal emitters were altered. Our data support a regulatory mechanism involving a protein conformational change and/or change in protein-protein interaction which quenches excitation energy at the core of the phycobilisome.  相似文献   

10.
Electronmicroscopical investigations of light activated akinetes in different phases before outgrowth of the germinating cell showed two alterations in the akinete envelope, obviously in connection with the germination process. After induction of germination the akinetes show formation of an expanding more or less electron dense layer between the outer cell wall layer (outer membrane, LIV) and the condensed part of the akinete coat (the transformed sheath of the vegetative cell). Between this new formed layer and the mentioned part of the akinete coat thick laminar layers are deposited which contain alternately electron dense and electron transparent strata. The expanding layer is assumed to be a mucous layer which acts as swelling body causing, after bursting of the layered shell, the expulsion of the germinating cell in the manner characteristic for Anabaena variabilis.  相似文献   

11.
1. Sedimentary akinetes (resting stages) may represent significant potential inocula for nuisance blooms of cyanobacteria. We studied the effects of salinity and sediment source on the germination and subsequent growth of Anabaena flos‐aquae akinetes from a shallow, tidally influenced lake. 2. Surface sediments collected from littoral and open‐water sites were used as inocula to culture A. flos‐aquae akinetes in four salinities (0.1, 2.2, 4.4 and 6.5) over 22 days. Akinete germination and development was followed by counting developmental stages every second day. 3. Filament growth, but not akinete germination, was inhibited by salinity and there were significantly fewer filaments at 6.5 than at 0.1 and 2.2. Cultures inoculated with littoral sediment had more akinetes, germlings and filaments than those inoculated with open‐water sediment. 4. Sediment is a potential source of inocula for Anabaena blooms in the lake, which potentially could develop solely from this source because germination and subsequent filament growth do not depend on the existence of an initial pelagic Anabaena population.  相似文献   

12.
Although akinetes ofNostoc PCC 7524 lost little of their main photosynthetic pigments, phycocyanin and chlorophyll, with increasing age after the onset of sporulation, they lost at least 90% of their photosynthetic and respiratory capacities. Germination needed the supply of light throughout the process, though previous dark metabolism accelerated the following light process. In standard conditions, both respiratory and photosynthetic capacities increased markedly during the first 9–10 h, a time sufficient for the first doublets to appear, but when pigment contents had not yet changed. However, while respiratory capacity could be reacquired without de nove metabolism, resumption of photosynthetic capacity needed RNA and protein synthesis. The energetic requirement for germination was not efficiently fulfilled by cyclic photosynthesis on PSI alone or respiration alone. In the presence of both PSI and respiratory activities only 21% of the akinetes germinated, their endogenous carbon reserves thus being inadequate to support the process to completion. The addition of sucrose to such cultures permitted all of the akinetes to germinate, but at a very slow rate. Rapid and complete germination was only observed when both photosystem operated.Abbreviations Chl Chlorophyll - Phy phycocyanin - DCMU 3-(3,4-chlorophenyl)-1,1-dimethylurea - DPC diphenylcarbazide - DPIP 2,6-dichlorophenylindophenol  相似文献   

13.
Photochromic Pigments from Blue-Green Algae: Phycochromes a, b, and c   总被引:1,自引:0,他引:1  
Aqueous extracts of blue-green algae were fractionated by electrofocusing. In all algae investigated, fractions with iso-electric points at or near 4.6 showed photochromic behaviour analogous to that of phytochrome, although they were sensitive to light of shorter wavelength. Three main types of photochromic pigments were found: Phycochrome a (in Tolypothrix distorta, Phormidium luridum, Nostoc muscorum 1453/12, and Anacystis nidulans) has one form absorbing maximally at about 590 nm (formed under red light) and one absorbing maximally at about 630 nm (formed under green light). Phycochrome b (in Tolypothrix distorta) has one form absorbing maximally near 510 nm and one form absorbing maximally at 570 nm (formed in yellow-green and blue-green light, respectively). Phycochrome c (in Nostoc muscorum A and probably in Tolypothrix tenuis) has one form absorbing maximally at 650 nm (formed under green light) and one absorbing very weakly in the green region (formed under red light). The conversion of Phormidium phycochrome a from its red-absorbing form to its green-absorbing form causes the same spectral change as if an f-chromophore of phycocyanin were transformed into an s-chromophore. The quantum yield for this conversion is estimated to be 0.1, while the quantum yield for the reversion is estimated to be 0.4 on the assumption that the absorption coefficients are those of f- and s-chromophores. Phycochrome c is less light-sensitive than phycochromes a and b.  相似文献   

14.
Addition of the arginine analogue, canavanine, to cultures of nitrogen-fixing Anabaena cylindrica at the onset of akinete formation, resulted in the development of akinetes randomly distributed within the filament, in addition to those adjacent to heterocysts. The total frequency of akinetes increased up to five-fold. A feature of akinetes is their increased content of cyanophycin granules (an arginine-aspartic acid polymer) and addition of canavanine to cultures at an earlier stage resulted in entire filaments becoming agranular and containing agranular akinetes. The effects on akinete pattern appeared to be specific for canavanine since other amino acid analogues, although increasing the frequency of akinetes (approximately two-fold), had no effect on their position relative to heterocysts. In ammonia-grown, stationary phase cultures of A. cylindrica, akinetes were observed adjacent to proheterocysts and in positions more than 20 cells from any heterocyst. These observations indicate that nitrogen fixation and heterocysts are not essential for akinete formation in A. cylindrica, although the availability of a source of fixed nitrogen does appear to be a requirement.These results suggest that during exponential growth some aspect of the physiology of vegetative cells suppresses their development into akinetes and that the role of the heterocyst may not be one of direct stimulation of adjacent vegetative cells to form akinetes, but the removal or negation of the inhibition within them. A model for akinete formation and the involvement of canavanine is given.  相似文献   

15.
Akinetes are the dormant cells of Nostocales (cyanobacteria) that enable the organisms to survive harsh environmental conditions while resting in bottom sediments. The germination of akinetes assists the dispersal and persistence of the species. The assessment of the akinete pool in lake sediments is essential to predict the bloom formation of the Nostocales population. We present here the implementation of an improved catalysed reporter deposition (CARD)-fluorescence in situ hybridization (FISH) protocol to assist the identification and quantification of akinetes in sediment samples. Several 16S rRNA gene oligonucleotide probes were evaluated for labelling akinetes of various species of Anabaena, Aphanizomenon and Cylindrospermopsis. Akinetes of all the taxa studied were successfully labelled and could be easily detected by their bright fluorescence signal. The probes' specificity was tested with 32 strains of different taxa. All six Cylindrospermopsis raciborskii strains were labelled with a specific probe for its 16S rRNA gene. A more general probe labelled 73% of the Anabaena and Aphanizomenon strains. The counting data of field samples obtained with CARD-FISH and the regular light microscopy approach did not differ significantly, confirming the suitability of both methods. The CARD-FISH approach was found to be less time-consuming because of better visibility of akinetes.  相似文献   

16.
Exposure of intact cells of Spirulina to high temperature (HT) stress (40–60 °C) caused decrease in absorption spectrum and fluorescence emission spectrum. Low temperature emission spectra were altered at phycocyanin (PC) level. Room and low temperature emission spectra of intact phycobilisomes showed that PC was the main target in this cyanobacterium for the altered energy transfer under HT.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

17.
Addition of Cu2+ at low concentrations, to intact cells of the cyanobacterium, Spirulina platensis, at room temperature, caused an enhancement in intensity of fluorescence emitted by phycocyanin and induced a blue shift at the emission peak, both of which indicated changes in energy transfer within the phycobillisomes. Cu2+ also suppressed the whole-chain electron transport activity (H2O→MV) and water-splitting activity of the photosystem Ⅰ. When isolated phycocyanin and allophycocyanin were exposed to very low concentrations of Cu2+ ions, C-phycocyanin but not allophycocyanin, exhibited decrease not only in the absorbance in the longer wavelength (616--620 nm) region, but also in the fluorescence emission intensity at 647 nm accompanied by a blue shift to 643 nm. These results suggested that Cu2+ selectively bleach C-phycocyanin.  相似文献   

18.
Phycochrome b, one of the reversibly photochromic pigments found in Tolypothrix distorta seems to exist in only two forms: Pb500 and Pb570. The pigment has been spectroscopically demonstrated in vivo. It has also been separated from other pigments. Two different methods for separation have been used: isoelectric focusing and gel filtration. Preparations of purified phycobilisomes contain phycochrome b. The in vivo and in vitro absorption difference spectra were determined as well as action spectra for the conversions in vitro and in vivo of Pb500 to Pb570 and vice versa. Transformation kinetics of phycochrome b show that the conversions in both directions are initially first-order reactions.  相似文献   

19.
A hitherto undescribed red fluorescent phycobiliprotein (maximum emission at ∼ 680 nm), characterized by long wavelength absorption maxima in the visible region at 671 nm (ε=172000 M−1·cm−1 per monomer of mol. wt. 30600) and 618 nm, has been purified to homogeneity from a unicellular cyanobacterium, Synechococcus sp., and from a filamentous cyanobacterium, Anabaena variabilis. The name allophycocyanin B has been proposed for the new protein. A. variabilis allophycocyanin B is characterized by a native molecular weight of 89000 ± 5000 (in 0.05 M phosphate at pH 7.2), an isoelectric point of 5.09, and a subunit molecular weight, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of 15300. The protein contains one phycocyanobilin chromophore per subunit. In common with allophycocyanin from the same organism, allophycocyanin B does not contain either histidine or tryptophan. In other respects, the amino acid compositions of the two proteins are significantly different. Synechococcus sp. (Anacystis nidulans) allophycocyanin B gives two components of 16000 and 17000 mol. wt., of equal staining intensity, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allophycocyanins B from both organisms cross-react with rabbit antisera directed against either Synechococcus sp. or Anabaena sp. allophycocyanin, but not with antisera against the phycocyanins of the same organisms. It is suggested that allophycocyanin B occupies a position between allophycocyanin and chlorophyll a in the energy transfer path from the accessory pigments to species of chlorophyll a with absorption maxima at λ>670 nm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号